Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,074)

Search Parameters:
Keywords = food and pharmaceutical applications

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3676 KB  
Article
Emulsion Quality and Functional Properties of Natural Emulsion Systems with Xanthan Gum as a Stabilizer and Carrier of Compounds Based on Enzymatically Modified Mutton Tallow and Hemp Oil
by Małgorzata Kowalska, Magdalena Wozniak, Anna Zbikowska, Jerzy Szakiel and Paweł Turek
Molecules 2026, 31(3), 431; https://doi.org/10.3390/molecules31030431 - 26 Jan 2026
Abstract
The aging population and increasing prevalence of oxidative stress-related diseases underscore the need for functional food and pharmaceutical formulations enriched with bioactive compounds. This study aimed to design sustainable emulsion systems incorporating enzymatically modified fats with enhanced functional and bioactive properties. Enzymatic interesterification [...] Read more.
The aging population and increasing prevalence of oxidative stress-related diseases underscore the need for functional food and pharmaceutical formulations enriched with bioactive compounds. This study aimed to design sustainable emulsion systems incorporating enzymatically modified fats with enhanced functional and bioactive properties. Enzymatic interesterification was employed as an environmentally friendly alternative to chemical catalysis, enabling the transformation of natural lipids without generating undesirable trans isomers. The lipid phase was formulated from blends of hemp oil, a plant-derived source rich in polyunsaturated fatty acids with documented antioxidant potential, and mutton tallow, in an effort to valorize meat industry by-products. Systematic evaluation of emulsion stability, viscosity, and textural properties was conducted using Turbiscan analysis and texture profile analysis. The results demonstrated that xanthan gum concentration was the primary determinant of structural stability, physicochemical stability, and structural integrity of the emulsion systems. Formulation no. 38 (0.8% w/w xanthan gum) was identified as the statistically most stable system based on Turbiscan Stability Index values (TSI = 1.4). Although emulsions containing 1.0% w/w xanthan gum exhibited similarly low TSI values and slightly smaller final droplet diameters, formulation E38 showed the smallest increase in droplet size during storage (<1 µm), indicating superior resistance to structural changes over time. Fat composition showed minimal influence on emulsion behavior, suggesting that lipid selection should prioritize nutritional and bioactive value. These findings indicate that emulsions based on enzymatically modified fats and stabilized with natural polysaccharides can serve as physically stable systems with potential applicability in food, cosmeceutical, and pharmaceutical formulations intended for bioactive compound delivery. Full article
(This article belongs to the Section Food Chemistry)
Show Figures

Figure 1

19 pages, 1569 KB  
Article
Revealing the Bioactive Potential of Romanian Wild Hop Cones: An Integrative Chemical, Antimicrobial, and Antibiofilm Activity and In Silico Docking Analysis
by Mona Luciana Gălăţanu, Mariana Panţuroiu, Viorel Ordeanu, Răzvan Neagu, Roxana Măriuca Gavriloaia, Sorina Nicoleta Aurică and Gabriela Mariana Costache
Molecules 2026, 31(3), 405; https://doi.org/10.3390/molecules31030405 - 24 Jan 2026
Viewed by 39
Abstract
Hop (Humulus lupulus L.) is recognized as a valuable source of bioactive compounds; however, the phytochemical composition and biological potential of wild Romanian hops remain insufficiently characterized. In this study, the bioactive profile of wild hop cones was evaluated using an integrated [...] Read more.
Hop (Humulus lupulus L.) is recognized as a valuable source of bioactive compounds; however, the phytochemical composition and biological potential of wild Romanian hops remain insufficiently characterized. In this study, the bioactive profile of wild hop cones was evaluated using an integrated phytochemical, biological, and in silico approach. The hydroethanolic extract was characterized by a total phenolic content of 25.61 mg GAE/g DW and a total flavonoid content of 3.20 mg RE/g DW, with α-acids predominating (8.77%) and β-acids detected only at trace levels (0.15%). Hydrodistillation yielded 0.613 ± 0.11% essential oil, which was rich in sesquiterpene hydrocarbons (64.61%), mainly α-humulene, β-caryophyllene oxide, selina-3,7-diene, and germacrene B. The hydroethanolic extract exhibited strong antioxidant activity (IC50 = 5.03 µg GAE/mL), whereas the essential oil showed a moderate but dose-dependent radical-scavenging capacity (IC50 = 0.44% v/v). In addition, the essential oil displayed pronounced antibacterial and antibiofilm activity against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa, at 25 mg/mL, with the highest antibiofilm inhibition observed for Pseudomonas aeruginosa (96.44%). Molecular docking analysis suggested that the major volatile constituents may interact with Staphylococcus aureus Sortase A, providing a plausible mechanistic basis for the observed antibiofilm effects. Overall, these findings indicate that wild Romanian hop cones represent a promising source of antioxidant and antimicrobial bioactive compounds, supporting their potential applications in pharmaceutical, food, and cosmetic formulations, as well as in natural-product-based drug discovery. Full article
(This article belongs to the Special Issue Bioactive Natural Products: The Potential Sources of New Drugs)
Show Figures

Graphical abstract

11 pages, 2533 KB  
Article
Characterization of Pimpinella anisum Germplasm: Diversity Available for Agronomic Performance and Essential Oil Content and Composition
by Pierluigi Reveglia, Eleonora Barilli, María José Cobos, Maria Claudia López-Orozco and Diego Rubiales
Agronomy 2026, 16(3), 285; https://doi.org/10.3390/agronomy16030285 - 23 Jan 2026
Viewed by 201
Abstract
Anise (Pimpinella anisum L.) is one of the most important annual herbs of the Apiaceae family, widely cultivated in southern Spain. Their seeds are highly valued for culinary uses and for producing quality essential oils widely used in food and beverage products, [...] Read more.
Anise (Pimpinella anisum L.) is one of the most important annual herbs of the Apiaceae family, widely cultivated in southern Spain. Their seeds are highly valued for culinary uses and for producing quality essential oils widely used in food and beverage products, as well as for industry, medicinal, and cosmetics applications. This study investigates the seed yield and essential oil content within a set of 50 anise accessions from worldwide origin, as well as their composition by GC–MS and GC–FID analysis. Accessions showed significant differences in the agronomic parameters measured, including plant height (cm), seed yield (kg ha−1), and the Harvest Index (%), with accessions PA_87 (Spain), PA_47 (Greece), and PA_21 (unknown origin) being the most performant. Essential oil (EO) content varied between 0.8% and 5.7% across different genotypes, resulting in EO production values ranging from 0.1 to 300 kg ha−1. Trans-anethole was identified as the dominant terpene, comprising 84.4% to 94.4% of the content, followed by eugenol (1.4% to 5.5%) and α-muurolene (1.4% to 7.2%). PCA analysis identified five distinct groups and one outlier, influenced by minor terpenes. Indeed, there was a strong negative correlation between estragole and pseudoisoeugenyl 2-methylbutyrate. This study underscores the significance of minor terpenes, which play crucial roles in defining unique aniseed chemotypes, allowing for the selection of cultivars optimized for specific uses in food, cosmetics, and pharmaceuticals. Additionally, these findings emphasize the impact of cultivar genetics on agronomic traits and EO profiles, suggesting the need for further research to optimize plant growth and yield and EO quality. Full article
(This article belongs to the Section Crop Breeding and Genetics)
Show Figures

Figure 1

35 pages, 920 KB  
Review
Hemp (Cannabis sativa L.) Phytochemicals and Their Potential in Agrochemical, Cosmetic, and Food Industries: A Review
by Daniela Trono
Int. J. Mol. Sci. 2026, 27(3), 1146; https://doi.org/10.3390/ijms27031146 - 23 Jan 2026
Viewed by 72
Abstract
Hemp is a high-yield crop traditionally cultivated for fiber used in products such as paper, textiles, ropes, and animal bedding, and more recently for sustainable applications in biofuels, insulation, and bioplastics. Beyond fiber, hemp is rich in phytochemicals. More than 500 compounds including [...] Read more.
Hemp is a high-yield crop traditionally cultivated for fiber used in products such as paper, textiles, ropes, and animal bedding, and more recently for sustainable applications in biofuels, insulation, and bioplastics. Beyond fiber, hemp is rich in phytochemicals. More than 500 compounds including cannabinoids, terpenes, phenolics, phytosterols, and tocopherols are accumulated in leaves, flowers, and seeds, which are typically considered waste products in the fiber industry. These compounds exhibit antioxidant, anti-inflammatory, neuroprotective, and antimicrobial properties, which have stimulated research into their pharmaceutical potential. However, hemp phytochemicals also find applications in other industrial sectors, including agrochemistry as natural insecticides, cosmetics for skin and hair care, and food and dietary supplements due to their associated health benefits. In light of this, the present review aims to give an overview of the available literature on the most common applications of hemp tissues, hemp extract, and purified hemp phytochemicals in agrochemical, cosmetic, and food sectors. This will be helpful to critically assess the current state of knowledge in this field and contribute to the ongoing debate over the natural and sustainable applications of hemp by-products. Full article
(This article belongs to the Collection Feature Papers in Bioactives and Nutraceuticals)
Show Figures

Figure 1

20 pages, 6904 KB  
Article
Natural Mineral Waters as Solvents for Sustainable Extraction of Polyphenolic Compounds from Aronia Stems
by Irina-Loredana Ifrim, Ionuț Avătămăniței, Oana-Irina Patriciu, Cristina-Gabriela Grigoraș and Adriana-Luminița Fînaru
Foods 2026, 15(2), 406; https://doi.org/10.3390/foods15020406 - 22 Jan 2026
Viewed by 48
Abstract
Aronia melanocarpa, a plant with nutrient-rich fruits, with application in the food and pharmaceutical industry, has been extensively investigated but, nevertheless, the exploration of the secondary metabolites profile from its by-products remains quite limited. The main objective of this study was to evaluate [...] Read more.
Aronia melanocarpa, a plant with nutrient-rich fruits, with application in the food and pharmaceutical industry, has been extensively investigated but, nevertheless, the exploration of the secondary metabolites profile from its by-products remains quite limited. The main objective of this study was to evaluate the possibility of using some different natural mineral waters from Romania, as green solvents, for the extraction of bioactive compounds from aronia stems and fruits by applying eco-compatible working techniques (maceration for 24 h, and ultrasonication at room temperature and 50 °C for 30 min). The effect of five natural mineral waters (one with medium and four with low mineral content) on the extraction capacity and phytochemical profile of stems and fruits’ extracts was monitored using fast and efficient analysis techniques (electrochemical, spectroscopic, and chromatographic) and compared with that of classical solvents. The results showed that, in the case of stems, extraction by maceration was, for all types of water used, the most efficient, followed by ultrasonication at room temperature. Also, at the same time, in most cases, all mineral waters showed better performance than distilled water, and the highest efficiency of the extraction process was recorded for natural water with a medium mineralization level. The similarity observed in the phytochemical profiles of aqueous extracts from the aronia stems and the fruits highlights both the potential of this by-product as a source of bioactive compounds and the efficiency of natural mineral waters as green extraction solvents. Full article
Show Figures

Figure 1

14 pages, 1720 KB  
Article
Chemical Characterization of Extracts Derived from Apple, Sour Cherry, and Sweet Cherry Seed Oils
by Marek Szmigielski, Marek Domin, Piotr Kiczorowski, Marta Krajewska, Jolanta Piekut, Marzena Smolewska and Małgorzata Szczepanik
Agriculture 2026, 16(2), 255; https://doi.org/10.3390/agriculture16020255 - 19 Jan 2026
Viewed by 124
Abstract
Numerous sectors of the food processing and oleochemical industries require oils with specific physicochemical properties. Fruit processing generates substantial waste potentially containing valuable raw materials for oil extraction. The significant volumes of apples and cherries processed in Poland prompted an assessment of their [...] Read more.
Numerous sectors of the food processing and oleochemical industries require oils with specific physicochemical properties. Fruit processing generates substantial waste potentially containing valuable raw materials for oil extraction. The significant volumes of apples and cherries processed in Poland prompted an assessment of their seeds’ suitability as oil sources. Seed dry matter, protein, and oil content were determined. The extracted oils were analyzed for acid value (AV), peroxide value (PV), oxidative stability, fatty acid composition, and sterol and tocopherol content. The predominant higher fatty acids identified in the sour cherry and sweet cherry kernel oils were linoleic acid (C18:2, n-6), with mean concentrations of 45.82% and 29.23%, respectively, and oleic acid (C18:1, n-9), accounting for 41.54% and 46.59%, respectively. Additional fatty acids detected included palmitic acid C16:0 (6.23% and 5.91%), palmitoleic acid C16:1, n-7 (0.29%), stearic acid C18:0 (1.36% and 3.11%), arachidic acid C20:0 (1.13%), α-eleostearic acid C18:3 (5.07% and 9.48%), and α-linolenic acid C18:3, n-3 (4.09%). Given the substantial proportion of the oil fraction containing numerous potentially biologically active compounds, including nutritionally valuable fatty acids, tocopherols, and phytosterols, apple, sour cherry, and sweet cherry seeds demonstrate considerable potential as raw materials for applications in the food, pharmaceutical, and cosmetics industries. Full article
Show Figures

Figure 1

20 pages, 3400 KB  
Article
Standardized Hydroxytyrosol-Enriched Olive Pomace Juice Modulates Metabolic and Neurotrophic Signaling Pathways to Attenuate Neuroinflammation and Protect Neuronal Cells
by Ye-Lim You, Ha-Jun Byun, Namgil Kang, Min Soo Lee, Jeong-In Lee, Ilbum Park and Hyeon-Son Choi
Molecules 2026, 31(2), 336; https://doi.org/10.3390/molecules31020336 - 19 Jan 2026
Viewed by 100
Abstract
Olive pomace (OP), a by-product of olive oil production, is a sustainable resource rich in bioactive compounds with potential applications in cosmetics and pharmaceuticals. This study investigates the protective effects of olive pomace juice (OPJ) against H2O2-induced neuronal damage [...] Read more.
Olive pomace (OP), a by-product of olive oil production, is a sustainable resource rich in bioactive compounds with potential applications in cosmetics and pharmaceuticals. This study investigates the protective effects of olive pomace juice (OPJ) against H2O2-induced neuronal damage and LPS-induced inflammatory responses in HT22 and BV2 cells, respectively. OPJ suppressed H2O2-induced cell death and exerted anti-apoptotic effects by reducing the BAX/BCL2 ratio and caspase-3 cleavage. OPJ also mitigated neurodegenerative hallmarks by decreasing amyloid fibrils formation and inhibiting β-secretase and acetylcholinesterase (AChE) activity. Mechanistically, OPJ enhanced antioxidant response by upregulating Nrf2 and its downstream molecule HO-1, along with increasing mRNA levels of antioxidant enzymes, including catalase, SOD1, and GPx. OPJ further activated AMPKα–SIRT1–PGC1α signaling and CREB–BDNF–TrkB signaling, suggesting modulation of key antioxidant, anti-apoptotic, and neurotrophic pathways. In BV2 cells, OPJ downregulated pro-inflammatory cytokines (IL-6 and IL-1β) and decreased iNOS and COX-2 expression through suppression of NF-κB and MAPK signaling pathways. HPLC analysis identified hydroxytyrosol (10.92%) as the major active compound in OPJ, which compared with tyrosol (2.18%), and hydroxytyrosol exhibited greater neuroprotective and anti-inflammatory effects than tyrosol. This study highlights the potential of OPJ and its major compound, hydroxytyrosol, as functional agents for mitigating neurodegeneration-related cellular response, supporting its application in the food and pharmaceutical industries. Full article
(This article belongs to the Special Issue Bioactive Compounds in Foods and Their By-Products)
Show Figures

Figure 1

23 pages, 2777 KB  
Article
Isolation and Biophysical Characterization of Lipoxygenase-1 from Soybean Seed, a Versatile Biocatalyst for Industrial Applications
by Ioanna Gerogianni, Antiopi Vardaxi, Ilias Matis, Maria Karayianni, Maria Zoumpanioti, Thomas Mavromoustakos, Stergios Pispas and Evangelia D. Chrysina
Biomolecules 2026, 16(1), 162; https://doi.org/10.3390/biom16010162 - 19 Jan 2026
Viewed by 161
Abstract
Lipoxygenases are enzymes found in plants, mammals, and other organisms that catalyse the hydroperoxidation of polyunsaturated fatty acids, such as arachidonic, linoleic, and linolenic acids. They have attracted a lot of attention as molecular targets for industrial and biomedical applications, due to their [...] Read more.
Lipoxygenases are enzymes found in plants, mammals, and other organisms that catalyse the hydroperoxidation of polyunsaturated fatty acids, such as arachidonic, linoleic, and linolenic acids. They have attracted a lot of attention as molecular targets for industrial and biomedical applications, due to their implication in key biological processes, such as plant development and defence, cell growth, as well as immune response and inflammation. Soybean (Glycine max) lipoxygenase (LOX) is a versatile biocatalyst used in biotechnology, pharmaceutical, and food industries. sLOX1, a soybean LOX isoform, is central in various industrial applications; thus, it is of particular interest to develop an efficient sLOX1 isolation process, control its activity, and leverage its potential as an effective industrial biocatalyst, tailoring it to a specific desired outcome. In this study, sLOX1 was extracted and purified from soybean seeds using an optimized protocol that yielded an enzyme preparation with higher activity compared to the commercially available lipoxygenase. Comprehensive biophysical characterization employing dynamic and electrophoretic light scattering, fluorescence, and Fourier-transform infrared spectroscopies revealed that sLOX1 exhibits remarkable structural and functional stability, particularly in sodium borate buffer (pH 9), where it retains activity and integrity up to at least 55 °C and displays minimal aggregation under thermal, ionic, and temporal stress. In contrast, sLOX1 in sodium phosphate buffer (pH 6.8) remained relatively stable against ionic strength and time but showed thermally induced aggregation above 55 °C, while in sodium acetate buffer (pH 4.6), the enzyme exhibited a pronounced aggregation tendency under all tested conditions. Overall, this study provides physicochemical and stability assessments of sLOX1. The combination of enhanced catalytic activity, high purity, and well-defined stability profile across diverse buffer systems highlights sLOX1 as a promising and adaptable biocatalyst for industrial applications, offering valuable insights into optimizing lipoxygenase-based bioprocesses. Full article
(This article belongs to the Section Molecular Biophysics: Structure, Dynamics, and Function)
Show Figures

Figure 1

19 pages, 1571 KB  
Review
Recent Progress in Curcumin Extraction, Synthesis, and Applications: A Comprehensive Review
by Qirui Meng, Feng Xiao, Dahai Jiang, Wenxuan Jiang, Wenze Lin, Huiliang Gan, Tong Ye, Jianchun Jiang and Liming Lu
Foods 2026, 15(2), 354; https://doi.org/10.3390/foods15020354 - 18 Jan 2026
Viewed by 286
Abstract
Curcumin, a natural polyphenol derived from Curcuma longa L., exhibits diverse biological activities including anti-inflammatory, anticancer, and antioxidant effects, making it a versatile candidate for food, feed, pharmaceutical, and cosmetic applications. However, its industrial application is hindered by low bioavailability, poor water solubility, [...] Read more.
Curcumin, a natural polyphenol derived from Curcuma longa L., exhibits diverse biological activities including anti-inflammatory, anticancer, and antioxidant effects, making it a versatile candidate for food, feed, pharmaceutical, and cosmetic applications. However, its industrial application is hindered by low bioavailability, poor water solubility, and high production costs. This review comprehensively summarizes the latest advances in curcumin’s physicochemical properties, production routes (phytoextraction, chemical synthesis, and microbial biosynthesis), and wide applications. Compared with existing reviews, this work emphasizes quantitative benchmarking of production methods (yield, productivity, and environmental metrics), critical evaluation of application feasibility including regulatory hurdles and clinical evidence, and actionable future directions for industrial scalability. We systematically analyze the advantages, limitations, economic and environmental trade-offs of each production route, and highlight recent innovations in bioavailability enhancement and metabolic engineering. This review aims to provide a holistic theoretical and technical framework for accelerating curcumin’s sustainable development and commercialization in high-value products. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Graphical abstract

43 pages, 1794 KB  
Review
Microbial Fermentation: A Sustainable Strategy for Producing High-Value Bioactive Compounds for Agriculture, Animal Feed, and Human Health
by Victor Eduardo Zamudio-Sosa, Luis Angel Cabanillas-Bojórquez, Evangelina García-Armenta, Marilyn Shomara Criollo-Mendoza, José Andrés Medrano-Felix, Alma Haydee Astorga-Gaxiola, José Basilio Heredia, Laura Aracely Contreras-Angulo and Erick Paul Gutiérrez-Grijalva
Appl. Microbiol. 2026, 6(1), 17; https://doi.org/10.3390/applmicrobiol6010017 - 18 Jan 2026
Viewed by 158
Abstract
Microbial fermentation is a key biotechnological tool for producing bioactive metabolites such as alkaloids, carotenoids, essential oils, and phenolic compounds, among others, with applications in human health, agriculture, and food industries. This review comprehensively reviews recent information on the synthesis of valuable compounds [...] Read more.
Microbial fermentation is a key biotechnological tool for producing bioactive metabolites such as alkaloids, carotenoids, essential oils, and phenolic compounds, among others, with applications in human health, agriculture, and food industries. This review comprehensively reviews recent information on the synthesis of valuable compounds and enzymes through fermentation processes. Here, we discuss the advantages of the different types of fermentation, such as submerged and solid-state fermentation, in optimizing metabolite production by bacteria, fungi, and yeast. The role of microbial metabolism, enzymatic activity, and fermentation conditions in enhancing the bioavailability and functionality of these compounds is discussed. Integrating fermentation with emerging biotechnologies, including metabolic engineering, further enhances yields and specificity. The potential of microbial-derived bioactive compounds in developing functional foods, pharmaceuticals, and eco-friendly agricultural solutions positions fermentation as a pivotal strategy for future biotechnological advancements. Therefore, microbial fermentation is a sustainable tool to obtain high-quality metabolites from different sources that can be used in agriculture, animal, and human health. Full article
Show Figures

Figure 1

26 pages, 2278 KB  
Review
Molecular Mechanisms of Lignans in Lowering Blood Pressure and Anti-Obesity Effects: A Review
by Gitishree Das, Sandra Gonçalves, José Basilio Heredia, Nayely Leyva-López, Anabela Romano, Spiros Paramithiotis, Han-Seung Shin and Jayanta Kumar Patra
Foods 2026, 15(2), 336; https://doi.org/10.3390/foods15020336 - 16 Jan 2026
Viewed by 233
Abstract
Lignans are naturally occurring compounds found in a wide variety of plant species, including flaxseed, soybean, pumpkin seed, broccoli, sesame seed, and some berries. Lignans have been used for centuries in both food and traditional herbal medicine. Recently, numerous new lignans and lignan [...] Read more.
Lignans are naturally occurring compounds found in a wide variety of plant species, including flaxseed, soybean, pumpkin seed, broccoli, sesame seed, and some berries. Lignans have been used for centuries in both food and traditional herbal medicine. Recently, numerous new lignans and lignan derivatives with diverse biological properties have been identified. Lignans are considered promising for human health due to their hydrogen-donating antioxidant activity together with their ability to complex divalent transition metal cations. They have demonstrated beneficial effects for cardiovascular disease, as well as in maintaining blood glucose levels, supporting cardiac health, promoting anti-obesity effects, decreasing the risk of renal diseases, enhancing brain function, improving skin and gut health, among others. This review explores the biosynthesis and biological effects of lignans, with a particular focus on their antihypertensive and anti-obesity properties, as well as the molecular mechanisms involved. It also highlights recent advances in sustainable lignan extraction techniques that are suitable for human use. The mechanisms underlying these bioactivities are thought to involve hormonal metabolism and availability, antioxidant action, modulation of angiogenesis, and more. However, further research is needed to fully elucidate the molecular pathways through which lignans exert their therapeutic effects. Overall, lignans from various plant sources hold significant potential for application in functional foods, dietary supplements, and pharmaceutical products aimed at preventing and managing a range of health conditions, including hypertension and obesity. Full article
Show Figures

Figure 1

32 pages, 2245 KB  
Review
Brown Algae-Derived Polysaccharides: From Sustainable Bioprocessing to Industrial Applications
by Houssem Khammassi, Taheni Bouaziz, Mariam Dammak, Pascal Dubesay, Guillaume Pierre, Philippe Michaud and Slim Abdelkafi
Polysaccharides 2026, 7(1), 10; https://doi.org/10.3390/polysaccharides7010010 - 16 Jan 2026
Viewed by 348
Abstract
Brown seaweeds are marine bioresources rich in bioactive compounds such as carbohydrates, proteins, pigments, fatty acids, polyphenols, vitamins, and minerals. Among these substances, brown algae-derived polysaccharides (alginate, fucoidan, and laminarin) have promising industrial prospects owing to their distinctive structural features and diverse biological [...] Read more.
Brown seaweeds are marine bioresources rich in bioactive compounds such as carbohydrates, proteins, pigments, fatty acids, polyphenols, vitamins, and minerals. Among these substances, brown algae-derived polysaccharides (alginate, fucoidan, and laminarin) have promising industrial prospects owing to their distinctive structural features and diverse biological activities. Consequently, processing technologies have advanced substantially to address industrial requirements for biopolymer quality, cost-effectiveness, and sustainability. Over the years, significant progress has been made in developing various advanced methods for the sake of extracting, purifying, and structurally characterizing polysaccharides. Aside from that, numerous studies reported their broad spectrum of biological activities, such as antioxidant, anti-inflammatory, anticoagulant, and antimicrobial properties. Furthermore, these substances have various industrial, pharmaceutical, bioenergy, food, and other biotechnology applications. The present review systematically outlines the brown algae-derived polysaccharides treatment process, covering the entire value chain from seaweed harvesting to advanced extraction methods, while highlighting their biological activities and industrial potential as well. Full article
Show Figures

Graphical abstract

17 pages, 1703 KB  
Article
β-Cyclodextrin Inclusion Complexes of Cinnamomum camphora Essential Oil: A Comparative Study on Encapsulation Strategies, Physicochemical Stability, and Cytotoxic Profile
by José Adão Carvalho Nascimento Júnior, Anamaria Mendonça Santos, Ana Maria Santos Oliveira, Cláudio Carvalho Santana Júnior, Saravanan Shanmugam, Antonella Osses Toledo, Natalia Juica, Mikele Cândida Sousa de Sant’Anna, Adriano Antunes de Souza Araújo, Luis Constandil, Jeffri S. Retamal and Mairim Russo Serafini
Pharmaceutics 2026, 18(1), 117; https://doi.org/10.3390/pharmaceutics18010117 - 16 Jan 2026
Viewed by 303
Abstract
Background/Objectives: Essential oils (EOs) from plants of the genus Cinnamomum have been widely used based on their antimicrobial, antioxidant, and anti-inflammatory properties. However, their elevated volatility and limited aqueous solubility restrict their use in pharmaceutical and food formulations. Cyclodextrins (CDs) have emerged [...] Read more.
Background/Objectives: Essential oils (EOs) from plants of the genus Cinnamomum have been widely used based on their antimicrobial, antioxidant, and anti-inflammatory properties. However, their elevated volatility and limited aqueous solubility restrict their use in pharmaceutical and food formulations. Cyclodextrins (CDs) have emerged as a promising strategy to overcome these limitations through the formation of inclusion complexes. Methods: In this study, inclusion complexes of essential oil from C. camphora L. (EOCNM) with β-cyclodextrin (β-CD) were developed using physical mixing (PM), ultrasonic treatment (US), and freeze-drying (FD). The inclusion complexes were physicochemically characterized by differential scanning calorimetry (DSC), thermogravimetric analysis (TG/DTG), X-ray diffraction (XRD), and scanning electron microscopy (SEM) to evaluate their physicochemical interactions and complexation efficiency. Results: Our results demonstrated successful complex formation, with the FD and US methods showing greater amorphization and stronger inclusion characteristics compared to the PM method. Thermal analysis confirmed improved physicochemical stability of the essential oil when complexed with β-CD. Furthermore, the cytotoxicity assay of the complexes was assessed using the MTT assay and J774 macrophage cells. The complexes exhibited low cytotoxicity, indicating their potential biocompatibility for biomedical and food applications. Conclusions: Overall, β-CD encapsulation effectively enhanced the physicochemical stability and safety profile of C. camphora essential oil, providing a promising strategy for its controlled delivery and protection against degradation. Full article
(This article belongs to the Special Issue Advanced Drug Delivery Systems for Natural Products)
Show Figures

Graphical abstract

16 pages, 944 KB  
Article
Regulation of Sialidase Biosynthesis by Control Mechanism Induction in Antarctic Strain Penicillium griseofulvum P29
by Radoslav Abrashev, Ekaterina Krumova, Penka Petrova, Rumyana Eneva, Vladislava Dishliyska, Stephan Engibarov, Yana Gocheva, Galina Stoyancheva, Jeny Miteva-Staleva, Lyudmila Yovchevska, Boryana Spasova, Vera Kolyovska and Maria Angelova
Sci 2026, 8(1), 19; https://doi.org/10.3390/sci8010019 - 16 Jan 2026
Viewed by 214
Abstract
In recent years, sialidases (neuraminidases) derived from non-clinical sources have attracted considerable interest due to their potential applications in the food and pharmaceutical industries. A deeper understanding of the mechanisms regulating sialidase synthesis could lead to more efficient enzyme production. Induction is considered [...] Read more.
In recent years, sialidases (neuraminidases) derived from non-clinical sources have attracted considerable interest due to their potential applications in the food and pharmaceutical industries. A deeper understanding of the mechanisms regulating sialidase synthesis could lead to more efficient enzyme production. Induction is considered a key regulatory mechanism. However, there is a lack of data on the regulation of sialidase synthesis in filamentous fungi. This study examines how regulatory mechanisms influence the production of a sialidase enzyme exhibiting high activity at low temperatures in the Antarctic fungal strain Penicillium griseofulvum P29. The inclusion of high- and low-molecular-weight substances possessing terminal non-reducing N-acetylneuramyl groups in the tests led to a marked enhancement of sialidase activity. The strongest induction response was elicited by sialic acid, followed by glycomacropeptide, milk whey, N-acetylglucosamine, N-acetylmannosamine, and colominic acid. RT-qPCR experiments demonstrated that induction occurs at the transcriptional level of the sialidase gene. Biochemical analysis elucidates the function of inducers as triggers in the de novo synthesis of the enzyme protein. To our knowledge, this is the first study to highlight the importance of regulatory mechanism induction in the synthesis of cold-active sialidases. Full article
Show Figures

Figure 1

23 pages, 37010 KB  
Article
Ganoderma lucidum Triterpenoids Suppress Adipogenesis and Obesity via PRKCQ Activation: An Integrated In Vivo, In Vitro, and Systems Pharmacology Study
by Boyi Li, Jianing Chen, Yuanyuan Sun, Jianping Gao, Minyan Hu, Juan Xu, Siying Wang, Na Feng, Haishun Xu, Zhiyan Jiang, Xueqian Wu and Ying Wang
Foods 2026, 15(2), 325; https://doi.org/10.3390/foods15020325 - 15 Jan 2026
Viewed by 213
Abstract
Ganoderma lucidum triterpenoids (GLTs) exhibit potential anti-obesity activity. However, their mechanism remains unclear. In this study, triterpenoids were extracted from G. lucidum via ultrahigh-pressure extraction. Using a high-fat diet (HFD)-induced mouse model, we showed that GLT treatment (100 and 200 mg/kg) significantly reduced [...] Read more.
Ganoderma lucidum triterpenoids (GLTs) exhibit potential anti-obesity activity. However, their mechanism remains unclear. In this study, triterpenoids were extracted from G. lucidum via ultrahigh-pressure extraction. Using a high-fat diet (HFD)-induced mouse model, we showed that GLT treatment (100 and 200 mg/kg) significantly reduced body weight and lipid accumulation without changing food intake. Next, we found that GLT significantly inhibited preadipocyte differentiation and adipogenesis and reduced the expression of adipogenic genes, including PPARγ, C/EBPα, FASN, and SCD-1. Moreover, network pharmacology predicted a total of 306 potential targets, among which FYN, PRKCQ, PTPRF, HRH1, and HCRTR2 were identified as the core targets via a machine learning algorithm. Interestingly, GLT upregulated the expression of PRKCQ, while the deletion of PRKCQ significantly reversed the anti-adipogenic effect of GLT. In addition, we found that neutral GLT may play a dominant role in inhibiting adipogenic differentiation. These findings suggest for the first time that GLT inhibits adipogenesis and lipid accumulation via the induction of PRKCQ in adipocytes. This study provides a scientific basis for the application of GLT in the prevention and treatment of obesity, as both a pharmaceutical agent and a functional food. Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Figure 1

Back to TopTop