Brown Algae-Derived Polysaccharides: From Sustainable Bioprocessing to Industrial Applications
Abstract
1. Introduction
2. Global Seaweed Production
| Cultivation Method | Advantages | Disadvantages | Examples | Species | Most-Used | References |
|---|---|---|---|---|---|---|
| Offshore seaweed farming | High environmental control (nutrients, temperature, light, pH, and pathogens) Stable productivity (yield, growth cycles) Lower physical risks (storms, currents) | Substantial operational costs (water, energy, and ponds) External input dependency (fertilizers, treatments) Limited scalability (available area, cost) | Bottom culture Pond culture Tank culture | Sargassum horneri Cystoseira barbata Himantothallus grandifolius | China Indonesia Philippines South Korea Netherlands USA | [41,42,43,44] |
| Onshore seaweed farming | Lower production costs Natural resources (nutrients) Unlimited space | High environmental risks (storms, waves, and grazing) Yield variability Logistical challenges (monitoring, harvesting, and maintenance) | Floating raft Open water Rope | Sargassum muticum Dictyota menstrualis Turbinaria ornata | Norway France Portugal Canada Japan Chile | [42,45,46] |
3. Sample Processing
3.1. Washing
3.2. Drying
3.3. Milling or Size Reduction
4. Genus and Species Delimitation
5. Marine Brown Algae Polysaccharides: Biodiversity and Chemical Structure
5.1. Alginate
5.2. Fucoidan
5.3. Laminarin
6. Polysaccharides Treatment Process
6.1. Extraction Technologies
6.1.1. Hot Water Extraction
6.1.2. Soxhlet-Assisted Extraction
6.1.3. Maceration
6.1.4. Ultrasound-Assisted Extraction
6.1.5. Enzymatic-Assisted Extraction
6.1.6. Microwave-Assisted Extraction
6.1.7. Pressurized Liquid Extraction
6.1.8. Supercritical Fluid Extraction
| Species | Polysaccharide | Extraction Conditions | Recovery | References |
|---|---|---|---|---|
| Soxhlet Extraction | ||||
| Fucus vesiculosus | Fucoidan | CaCl2 (2%), 85 °C, 2 h | 2.6% | [100] |
| Maceration Extraction | ||||
| Ascophyllum nodosum | Fucoidan | HCl (0.01 M), 70 °C, 3 h | 11.9% | [101] |
| Coccophora langsdorfii | Sodium alginate | Na2CO3, 60 °C, 24 h | 13.3% | [102] |
| Ultrasound-Assisted Extraction | ||||
| Sargassum muticum | Sodium alginate | H2O, 150 W/40 kHz, 25 °C, 30 min | 15% | [76] |
| Sargassum binderi | Fucoidan | HCl (0.1 M), 60 min | 22.40% | [103] |
| Laminaria hyperborea | Laminarin | HCl (0.1 M), 20 kHz, 15 min | 6.24% | [52] |
| Enzymatic-Assisted Extraction | ||||
| Padina gymnospora | Total polysaccharides | Alcalase (0.32% w/w), 60.5 °C, 1.95 h | 87.45% | [104] |
| Ascophyllum nodosum | Fucoidan | Cellulase, pH 4.5, 50 °C, 24 h | 3.89% | [101] |
| Nizamuddinia zanardinii | Fucoidan | Flavourzyme (5% v/v, pH 7), 50 °C, 24 h | 4.36% | [105] |
| Fucus vesiculosus | Neutral sugars | β−glucosidase, Botrytis glucanase, protease (5% w/w), 50 °C, 17 h | 60% | [106] |
| Microwave-Assisted Extraction | ||||
| Sargassum siliquosum | Fucoidan | H2O, 750 W, 10 min | 6.94% | [75] |
| Sargassum pallidum | Sulfated polysaccharides | EtOH (21%), (NH4)2SO4 (22%), 830 W, 95 °C, 15 min | 7.56% | [107] |
| Ascophyllum nodosum | Fucoidan | HCl (0.1 M), 120 °C, 15 min | 16.08% | [16] |
| Pressurized Liquid Extraction | ||||
| Nizamuddinia zanardinii | Fucoidan | H2O, 7.5 bar, 150 °C, 29 min | 25.98% | [108] |
| Saccharina japonica | Fucoidan | NaOH (0.1%), 80 bar, 127.01 °C, 11.98 min | 13.56% | [84] |
6.2. Purification Procedure
6.2.1. Ethanol Precipitation
6.2.2. Membrane-Based Methods
6.2.3. Chromatographic Techniques
6.3. Quantitative and Qualitative Analyses of Polysaccharides
6.3.1. Colorimetric Assay
6.3.2. Methods for Structural and Physicochemical Characterization
Molecular-Weight Determination
Functional Groups Constitution
Chain Conformations Analysis
| Technique | Acronym | Carrier Gas | Stationary Phase | Separation | Reference |
|---|---|---|---|---|---|
| Gas chromatography | GC | Gas (He, H2, and N2) | Solid (silica-based column) | Polarity | [147] |
| High-performance liquid chromatography | HPLC | Liquid (acetonitrile/water) | Solid (C18, NH2, and HILIC) | Polarity | [148] |
| Ion chromatography | IC | Liquid (Na2CO3/NaHCO3) | Solid (ion-exchange resin) | Charge | [149] |
| High-performance anion-exchange chromatography with pulsed amperometric detection | HPAEC-PAD | Liquid (NaOH/KOH) | Solid (polymeric matrices) | Charge Affinity | [150] |
Conformation Analysis
7. Biological Properties of Brown Algae Polysaccharides
7.1. Antioxidant Activity
| Species | Polysaccharide | Antioxidant Activity | Reference |
|---|---|---|---|
| Sargassum policystum | Fucoidan | FRAP: IC50 = 91.3 ppm | [164] |
| Dictyota dichotoma | Fucoidan | Total antioxidant capacity (TAC): 71.76 ± 3.23% DPPH scavenging: 51.13 ± 2.31% H2O2 scavenging: 40.45 ± 1.87% ABTS scavenging: 50.51 ± 2.27% NO scavenging: 38.13 ± 1.72% Ferrous ion chelating: 18.66 ± 0.84% | [162] |
| Cystoseira schiffneri | Fucoidan | DPPH scavenging: IC50 = 104 ± 5 µg/mL (Ref: BHA IC50 = 14 ± 0.2 µg/mL) Ferrous ion chelating: IC50 = 96 ± 3 µg/mL (Ref: EDTA IC50 = 10 ± 0.2 µg/mL) FRAP: IC50 = 63 ± 3 µg/mL (Ref: BHA IC50 = 25 ± 0.1 µg/mL) | [165] |
| Ericaria crinita | Fucoidan | DPPH scavenging: IC50 = 412 µg/mL FRAP: 118.72 µM Trolox Equivalent/g | [166] |
| Padina gymnospora | Fucoidan | DPPH scavenging: IC50 = 0.5256 ± 0.05 mg/mL (Ref: BHA IC50 = 0.31 ± 0.03 mg/mL) ABTS scavenging: IC50 = 2.565 ± 0.02 mg/mL (Ref: ascorbic acid IC50 = 0.2859 ± 0.02 mg/mL) | [167] |
| Padina boryana | Fucoidan | In vitro (reduced intracellular ROS levels, protection against apoptosis) In vivo, zebrafish model (reduced ROS levels, reduced lipid peroxidation) | [159] |
| Colpomenia sinuosa | Fucoidan | DPPH scavenging: IC50 = 46.2 ± 1.4 µg/mL SOD-like activity: IC50 = 23.7 ± 1.1 µg/mL | [152] |
| Sodium alginate | DPPH scavenging: IC50 = 280 ± 1.2 µg/mL SOD-like activity: IC50 = 41.34 ± 1.07 µg/mL |
7.2. Anti-Inflammatory Activity
7.3. Antibacterial Activity
| Polysaccharide | Source | Mode of Action | Target Pathogens | Reference |
|---|---|---|---|---|
| Fucoidan | Sargassum spp. | Antibiofilm activity | Streptococcus mutan Porphyromonas gingivalis Fusobacterium nucleatum | [179] |
| Fucoidan | Sargassum polycystum | Antibacterial activity | Pseudomonas aeruginosa Staphylococcus aureus Escherichia coli Streptococcus mutans | [180] |
| Laminarin, Alginate | Alaria esculenta | Antibacterial activity Anti-yeast activity | Bacillus subtilis Escherichia coli Saccharomyces cerevisiae | [181] |
| Fucoidan | Sargassum wightii | OmpF porin inhibition | Salmonella typhi | [182] |
| Fucoidan | Fucus vesiculosus | Antibacterial activity | Escherichia coli Staphylococcus aureus Bacillus subtilis Pseudomonas aeruginosa | [183] |
7.4. Antidiabetic Activity
7.5. Anticancer Activity
7.6. Others
8. Conclusions and Future Perspectives
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| AC | Affinity chromatography |
| AFM | Atomic force microscopy |
| COX | Cytochrome c oxidase subunit I |
| EAE | Enzyme assisted extraction |
| FTIR | Fourier transform infrared spectroscopy |
| GC | Gas chromatography |
| HPAEC | High performance anion exchange chromatography |
| HPLC | High performance liquid chromatography |
| HWE | Hot water extraction |
| IEC | Ion exchange chromatography |
| ITS | Internal transcribed spacer |
| MAE | Microwave assisted extraction |
| MALLS | Multiangle laser light scattering |
| MS | Mass spectrometry |
| MW | Molecular weight |
| NMR | Nuclear magnetic resonance |
| PAD | Pulsed amperometric detection |
| PLE | Pressurized liquid extraction |
| psaA | Photosystem I P700 chlorophyll a apoprotein A1 |
| psaB | Photosystem I P700 chlorophyll a apoprotein A2 |
| rbcL | Ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit |
| rDNA | Ribosomal DNA |
| RI | Refractive index |
| SAE | Soxhlet assisted extraction |
| SEC | Size exclusion chromatography |
| SEM | Scanning electron microscopy |
| SFE | Supercritical fluid extraction |
| TEM | Transmission electron microscopy |
| UAE | Ultrasound assisted extraction |
References
- Graiff, A.; Ruth, W.; Kragl, U.; Karsten, U. Chemical characterization and quantification of the brown algal storage compound laminarin—A new methodological approach. J. Appl. Phycol. 2016, 28, 533–543. [Google Scholar] [CrossRef]
- Flores-Contreras, E.A.; Araújo, R.G.; Rodríguez-Aguayo, A.A.; Guzmán-Román, M.; García-Venegas, J.C.; Nájera-Martínez, E.F.; Sosa-Hernández, J.E.; Iqbal, H.M.N.; Melchor-Martínez, E.M.; Parra-Saldivar, R. Polysaccharides from the Sargassum and Brown Algae Genus: Extraction, Purification, and Their Potential Therapeutic Applications. Plants 2023, 12, 2445. [Google Scholar] [CrossRef]
- Generalić Mekinić, I.; Skroza, D.; Šimat, V.; Hamed, I.; Čagalj, M.; Popović Perković, Z. Phenolic Content of Brown Algae (Pheophyceae) Species: Extraction, Identification, and Quantification. Biomolecules 2019, 9, 244. [Google Scholar] [CrossRef] [PubMed]
- Schiel, D.R.; Foster, M.S. The Population Biology of Large Brown Seaweeds: Ecological Consequences of Multiphase Life Histories in Dynamic Coastal Environments. Annu. Rev. Ecol. Evol. Syst. 2006, 37, 343–372. [Google Scholar] [CrossRef]
- Neiva, J.; Bermejo, R.; Medrano, A.; Capdevila, P.; Milla-Figueras, D.; Afonso, P.; Ballesteros, E.; Sabour, B.; Serio, D.; Nóbrega, E.; et al. DNA barcoding reveals cryptic diversity, taxonomic conflicts and novel biogeographical insights in Cystoseira s.l. (Phaeophyceae). Eur. J. Phycol. 2023, 58, 351–375. [Google Scholar] [CrossRef]
- Hadjkacem, F.; Elleuch, J.; Pierre, G.; Fendri, I.; Michaud, P.; Abdelkafi, S. Production and purification of fucoxanthins and β-carotenes from Halopteris scoparia and their effects on digestive enzymes and harmful bacteria. Environ. Technol. 2024, 45, 2923–2934. [Google Scholar] [CrossRef] [PubMed]
- Arunkumar, K.; Nalluri, M.; Anjana, K.; Mohan, G.; Raja, R. Fucoxanthin as antioxidant, anti-hyaluronidase and cytotoxic agent: Potential of brown seaweeds decoction for tea supplement. J. Food Meas. Charact. 2023, 17, 3980–3989. [Google Scholar] [CrossRef]
- Spagnuolo, D.; Genovese, G. Macroalgae-Derived Sugars and Polysaccharides: Innovations in Natural Sweeteners and Food Applications; IntechOpen: London, UK, 2025; Volume 6. [Google Scholar] [CrossRef]
- Bahrami, S.; Nateghi, L.; Rashidi, L.; Nobandegani, B.K.; Ghorbanpour, M. Evaluation of the properties of polysaccharides extracted from brown macroalgae (Sargassum ilicifolium) by methods of conventional, microwave, and subcritical water extraction. Innov. Food Sci. Emerg. Technol. 2025, 102, 103975. [Google Scholar] [CrossRef]
- Ben Soltana, O.; Barkallah, M.; Hentati, F.; Elhadef, K.; Ben Hlima, H.; Smaoui, S.; Michaud, P.; Abdelkafi, S.; Fendri, I. Improving the shelf life of minced beef by Cystoseira compressa polysaccharide during storage. Int. J. Biol. Macromol. 2024, 273, 132863. [Google Scholar] [CrossRef]
- Lee, O.K.; Lee, E.Y. Sustainable production of bioethanol from renewable brown algae biomass. Biomass Bioenergy 2016, 92, 70–75. [Google Scholar] [CrossRef]
- Tanna, B.; Choudhary, B.; Mishra, A.; Chauhan, O.P.; Patel, M.K.; Shokralla, S.; El-Abedin, T.K.Z.; Elansary, H.O.; Mahmoud, E.A.; Tanna, B.; et al. Antioxidant, Scavenging, Reducing, and Anti-Proliferative Activities of Selected Tropical Brown Seaweeds Confirm the Nutraceutical Potential of Spatoglossum asperum. Foods 2021, 10, 2482. [Google Scholar] [CrossRef]
- Drira, M.; Ben Mohamed, J.; Ben Hlima, H.; Hentati, F.; Michaud, P.; Abdelkafi, S.; Fendri, I. Improvement of Arabidopsis thaliana salt tolerance using a polysaccharidic extract from the brown algae Padina pavonica. Algal Res. 2021, 56, 102324. [Google Scholar] [CrossRef]
- Hadjkacem, F.; Pierre, G.; Christophe, G.; Elleuch, J.; Fendri, I.; Boual, Z.; Ould El Hadj, M.D.; El Alaoui-Talibi, Z.; El Modafar, C.; Dubessay, P.; et al. Bioconversion of the Brown Tunisian Seaweed Halopteris scoparia: Application to Energy. Energies 2022, 15, 4342. [Google Scholar] [CrossRef]
- Usoltseva, R.V.; Anastyuk, S.D.; Shevchenko, N.M.; Surits, V.V.; Silchenko, A.S.; Isakov, V.V.; Zvyagintseva, T.N.; Thinh, P.D.; Ermakova, S.P. Polysaccharides from brown algae Sargassum duplicatum: The structure and anticancer activity in vitro. Carbohydr. Polym. 2017, 175, 547–556. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Macquarrie, D. Ascophyllum nodosum and its antioxidant activity. Carbohydr. Polym. 2015, 129, 101–107. [Google Scholar] [CrossRef]
- McDevit, D.C.; Saunders, G.W. On the utility of DNA barcoding for species differentiation among brown macroalgae (Phaeophyceae) including a novel extraction protocol. Phycol. Res. 2009, 57, 131–141. [Google Scholar] [CrossRef]
- Miladi, R.; Manghisi, A.; Minicante, S.A.; Genovese, G.; Abdelkafi, S.; Morabito, M. A DNA Barcoding Survey of Ulva (Chlorophyta) in Tunisia and Italy Reveals the Presence of the Overlooked Alien U. ohnoi. Cryptogam. Algol. 2018, 39, 85–107. [Google Scholar] [CrossRef]
- Miladi, R.; Manghisi, A.; Genovese, G.; Abdelkafi, S.; Morabito, M. Red Algal Diversity in Tunisia Revealed Using DNA Barcoding. 2015. Available online: https://iris.unime.it/handle/11570/3119132 (accessed on 21 July 2025).
- Kantachumpoo, A.; Uwai, S.; Noiraksar, T.; Komatsu, T. Systematics of marine brown alga Sargassum from Thailand: A preliminary study based on morphological data and nuclear ribosomal internal transcribed spacer 2 (ITS2) sequences. Ocean Sci. J. 2015, 50, 251–262. [Google Scholar] [CrossRef]
- Zayed, A.; Ulber, R. Fucoidan production: Approval key challenges and opportunities. Carbohydr. Polym. 2019, 211, 289–297. [Google Scholar] [CrossRef]
- Milledge, J.J.; Nielsen, B.V.; Sadek, M.S.; Harvey, P.J. Effect of Freshwater Washing Pretreatment on Sargassum muticum as a Feedstock for Biogas Production. Energies 2018, 11, 1771. [Google Scholar] [CrossRef]
- January, G.G.; Naidoo, R.K.; Kirby-McCullough, B.; Bauer, R. Assessing methodologies for fucoidan extraction from South African brown algae. Algal Res. 2019, 40, 101517. [Google Scholar] [CrossRef]
- Birgersson, P.S.; Oftebro, M.; Strand, W.I.; Aarstad, O.A.; Sætrom, G.I.; Sletta, H.; Arlov, Ø.; Aachmann, F.L. Sequential extraction and fractionation of four polysaccharides from cultivated brown algae Saccharina latissima and Alaria esculenta. Algal Res. 2023, 69, 102928. [Google Scholar] [CrossRef]
- Choudhary, B.; Patel, J.; Mishra, A. Physicochemical, radical–scavenging, and anti-proliferative analyses of enzyme-assisted extracted polysaccharides unravel the potential of tropical green seaweeds. Algal Res. 2025, 87, 103973. [Google Scholar] [CrossRef]
- Sichert, A.; Le Gall, S.; Klau, L.J.; Laillet, B.; Rogniaux, H.; Aachmann, F.L.; Hehemann, J.-H. Ion-exchange purification and structural characterization of five sulfated fucoidans from brown algae. Glycobiology 2021, 31, 352–357. [Google Scholar] [CrossRef]
- Rajauria, G.; Ravindran, R.; Garcia-Vaquero, M.; Rai, D.K.; Sweeney, T.; O’Doherty, J. Purification and Molecular Characterization of Fucoidan Isolated from Ascophyllum nodosum Brown Seaweed Grown in Ireland. Mar. Drugs 2023, 21, 315. [Google Scholar] [CrossRef]
- Chen, S.; Sathuvan, M.; Zhang, X.; Zhang, W.; Tang, S.; Liu, Y.; Cheong, K.-L. Characterization of polysaccharides from different species of brown seaweed using saccharide mapping and chromatographic analysis. BMC Chem. 2021, 15, 1. [Google Scholar] [CrossRef] [PubMed]
- Hentati, F.; Delattre, C.; Ursu, A.V.; Desbrières, J.; Le Cerf, D.; Gardarin, C.; Abdelkafi, S.; Michaud, P.; Pierre, G. Structural characterization and antioxidant activity of water-soluble polysaccharides from the Tunisian brown seaweed Cystoseira compressa. Carbohydr. Polym. 2018, 198, 589–600. [Google Scholar] [CrossRef]
- Remya, R.R.; Samrot, A.V.; Kumar, S.S.; Mohanavel, V.; Karthick, A.; Chinnaiyan, V.K.; Umapathy, D.; Muhibbullah, M. Bioactive Potential of Brown Algae. Adsorpt. Sci. Technol. 2022, 2020, 9104835. [Google Scholar] [CrossRef]
- Anisha, G.S.; Padmakumari, S.; Patel, A.K.; Pandey, A.; Singhania, R.R. Fucoidan from Marine Macroalgae: Biological Actions and Applications in Regenerative Medicine, Drug Delivery Systems and Food Industry. Bioengineering 2022, 9, 472. [Google Scholar] [CrossRef] [PubMed]
- Hentati, F.; Tounsi, L.; Djomdi, D.; Pierre, G.; Delattre, C.; Ursu, A.V.; Fendri, I.; Abdelkafi, S.; Michaud, P. Bioactive Polysaccharides from Seaweeds. Molecules 2020, 25, 3152. [Google Scholar] [CrossRef]
- Yang, L.E.; Lu, Q.Q.; Brodie, J. A review of the bladed Bangiales (Rhodophyta) in China: History, culture and taxonomy. Eur. J. Phycol. 2017, 52, 251–263. [Google Scholar] [CrossRef]
- Hinge, M.; Grilo, V.A.; Jehn, F.U.; Martinez, J.B.G.; Dingal, F.J.; Roleda, M.Y.; Denkenberger, D. Seaweed cultivation: A cost-effective strategy for food production in a global catastrophe. Aquac. Int. 2025, 33, 344. [Google Scholar] [CrossRef]
- FAO. The State of World Fisheries and Aquaculture 2022; FAO: Rome, Italy, 2022. [Google Scholar] [CrossRef]
- Waqas, M.A.; Hashemi, F.; Mogensen, L.; Knudsen, M.T. Environmental performance of seaweed cultivation and use in different industries: A systematic review. Sustain. Prod. Consum. 2024, 48, 123–142. [Google Scholar] [CrossRef]
- Ayala, M.; Thomsen, M.; Pizzol, M. Using quantitative storytelling to identify constraints in resource supply: The case of brown seaweed. J. Ind. Ecol. 2023, 27, 1567–1578. [Google Scholar] [CrossRef]
- Chadwick, M.; Carvalho, L.G.; Vanegas, C.; Dimartino, S. A Comparative Review of Alternative Fucoidan Extraction Techniques from Seaweed. Mar. Drugs 2025, 23, 27. [Google Scholar] [CrossRef]
- Soares, T.A.; Torres, A.H.F.; Dorm, B.C.; Amaral, A.C.; de Souza Nossa, T.; Trovatti, E. Alginate-cysteine conjugate: Antimicrobial hydrogel from natural source. J. Polym. Res. 2024, 31, 333. [Google Scholar] [CrossRef]
- Tullberg, R.; Nguyen, H.; Wang, C.M. Review of the Status and Developments in Seaweed Farming Infrastructure. J. Mar. Sci. Eng. 2022, 10, 1447. [Google Scholar] [CrossRef]
- Largo, D.B.; Diola, A.G.; Rance, G.M.S. Culture of the brown seaweed Sargassum siliquosum J. Agardh (Phaeophyceae, Ochrophyta): From hatchery to out-planting. J. Appl. Phycol. 2020, 32, 4081–4098. [Google Scholar] [CrossRef]
- Kim, J.K.; Yarish, C.; Hwang, E.K.; Park, M.; Kim, Y.; Kim, J.K.; Yarish, C.; Hwang, E.K.; Park, M.; Kim, Y. Seaweed aquaculture: Cultivation technologies, challenges and its ecosystem services. Algae 2017, 32, 1–13. [Google Scholar] [CrossRef]
- Dinesh Kumar, S.; Satish, L.; Dhanya, N.; Malar Vizhi, J.; Nadukkattu Nayagi, N.; Gopala Krishnan, S.; Ganesan, M. Tank cultivation of edible seaweeds: An overview of the Indian perspective for opportunities and challenges. Biomass Convers. Biorefinery 2024, 14, 11757–11767. [Google Scholar] [CrossRef]
- Wichachucherd, B.; Pannak, S.; Saengthong, C.; Koodkaew, I.; Rodcharoen, E. Correlation between Growth, Phenolic Content and Antioxidant Activity in the Edible Seaweed, Caulerpa lentillifera in Open Pond Culture System. J. Fish. Environ. 2019, 43, 66–75. [Google Scholar]
- Macaya, E.C.; López, B.; Tala, F.; Tellier, F.; Thiel, M. Float and Raft: Role of Buoyant Seaweeds in the Phylogeography and Genetic Structure of Non-buoyant Associated Flora. In Seaweed Phylogeography: Adaptation and Evolution of Seaweeds Under Environmental Change; Hu, Z.M., Fraser, C., Eds.; Springer: Dordrecht, The Netherlands, 2016; pp. 97–130. [Google Scholar] [CrossRef]
- Vandendriessche, S.; Vincx, M.; Degraer, S. Floating seaweed and the influences of temperature, grazing and clump size on raft longevity—A microcosm study. J. Exp. Mar. Biol. Ecol. 2007, 343, 64–73. [Google Scholar] [CrossRef]
- Mittal, R.; Ranade, V.V. Intensifying extraction of biomolecules from macroalgae using vortex based hydrodynamic cavitation device. Ultrason. Sonochem. 2023, 94, 106347. [Google Scholar] [CrossRef] [PubMed]
- Poeloengasih, C.D.; Srianisah, M.; Jatmiko, T.H.; Prasetyo, D.J. Postharvest handling of the edible green seaweed Ulva lactuca: Mineral content, microstructure, and appearance associated with rinsing water and drying methods. IOP Conf. Ser. Earth Environ. Sci. 2019, 253, 012006. [Google Scholar] [CrossRef]
- Djaeni, M.; Sari, D.A. Low Temperature Seaweed Drying Using Dehumidified Air. Procedia Environ. Sci. 2015, 23, 2–10. [Google Scholar] [CrossRef]
- Le Loeuff, J.; Boy, V.; Morançais, P.; Hardouin, K.; Bourgougnon, N.; Lanoisellé, J.L. Air drying of brown algae Sargassum: Modelling and recovery of valuable compounds. J. Appl. Phycol. 2023, 35, 1879–1892. [Google Scholar] [CrossRef]
- Dang, T.T.; Vuong, Q.V.; Schreider, M.J.; Bowyer, M.C.; Altena, I.A.V.; Scarlett, C.J. The Effects of Drying on Physico-Chemical Properties and Antioxidant Capacity of the Brown Alga (Hormosira banksii (Turner) Decaisne): The effect of drying on properties of the alga. J. Food Process. Preserv. 2016, 41, e13025. [Google Scholar] [CrossRef]
- Kadam, S.U.; O’Donnell, C.P.; Rai, D.K.; Hossain, M.B.; Burgess, C.M.; Walsh, D.; Tiwari, B.K. Laminarin from Irish Brown Seaweeds Ascophyllum nodosum and Laminaria hyperborea: Ultrasound Assisted Extraction, Characterization and Bioactivity. Mar. Drugs 2015, 13, 4270–4280. [Google Scholar] [CrossRef]
- Obluchinskaya, E.D.; Pozharitskaya, O.N.; Lapina, I.M.; Kulminskaya, A.A.; Zhurishkina, E.V.; Shikov, A.N. Comparative Evaluation of Dynamic Maceration and Ultrasonic Assisted Extraction of Fucoidan from Four Arctic Brown Algae on Its Antioxidant and Anticancer Properties. Mar. Drugs 2025, 23, 230. [Google Scholar] [CrossRef]
- Moreira, R.; Sineiro, J.; Chenlo, F.; Arufe, S.; Díaz-Varela, D. Aqueous extracts of Ascophyllum nodosum obtained by ultrasound-assisted extraction: Effects of drying temperature of seaweed on the properties of extracts. J. Appl. Phycol. 2017, 29, 3191–3200. [Google Scholar] [CrossRef]
- Bahari, A.; Moelants, K.; Kloeck, M.; Wallecan, J.; Mangiante, G.; Mazoyer, J.; Hendrickx, M.; Grauwet, T. Mechanical Disintegration and Particle Size Sieving of Chondrus crispus (Irish Moss) Gametophytes and Their Effect on Carrageenan and Phycoerythrin Extraction. Foods 2021, 10, 2928. [Google Scholar] [CrossRef]
- Tsarpali, M.; Arora, N.; Kuhn, J.N.; Philippidis, G.P. Lipid-extracted algae as a source of biomaterials for algae biorefineries. Algal Res. 2021, 57, 102354. [Google Scholar] [CrossRef]
- Cerqueira, T.; Oliveira, A.M.L.; Lemos, M.F.L. DNA barcoding and phylogenetic relationships of ecologically and commercially important seaweed species from the Azores (NE Atlantic). Aquat. Bot. 2024, 195, 103793. [Google Scholar] [CrossRef]
- Kim, S.; Choi, S.K.; Van, S.; Kim, S.T.; Kang, Y.H.; Park, S.R. Geographic Differentiation of Morphological Characteristics in the Brown Seaweed Sargassum thunbergii along the Korean Coast: A Response to Local Environmental Conditions. J. Mar. Sci. Eng. 2022, 10, 549. [Google Scholar] [CrossRef]
- Alshehri, M.; Aziza, A.; Alzahrani, O.; Alasmari, A.; Ibrahim, S.; Osman, G.; Bahattab, O. DNA-barcoding and species identification for some Saudi Arabia seaweeds using rbcL gene. J. Pure Appl. Microbiol. 2019, 13, 2035–2044. [Google Scholar] [CrossRef]
- Machín Sánchez, M. Phylogeography of the Red Algal Laurencia Complex in the Macaronesia Region and Nearby Coastal Areas: Recent Advances and Future Perspectives. Diversity 2018, 10, 10. [Google Scholar] [CrossRef]
- Zuccarello, G.; Paul, N.A. A beginner’s Guide to Molecular Identification of Seaweed. SQUALEN Bull. Mar. Fish. Postharvest Biotechnol. 2019, 14, 43. [Google Scholar] [CrossRef]
- Rožić, S.; Puizina, J.; Šamanić, I.; Žuljević, A.; Antolić, B. Molecular identification of the brown algae, Cystoseira spp. (Phaeophycae, Fucales) from the Adriatic Sea—Preliminary results. Acta Adriat. 2012, 53, 447–456. [Google Scholar]
- Cuong, D. Laminarin (Beta-glucan) of Brown Algae Sargassum mcclurei: Extraction, Antioxidant Activity, Lipoxygenase Inhibition Activity, and Physicochemistry Properties. World J. Food Sci. Technol. 2020, 4, 31. [Google Scholar] [CrossRef]
- Rupérez, P.; Ahrazem, O.; Leal, J.A. Potential Antioxidant Capacity of Sulfated Polysaccharides from the Edible Marine Brown Seaweed Fucus vesiculosus. J. Agric. Food Chem. 2002, 50, 840–845. [Google Scholar] [CrossRef]
- Norouzi, A.; Mehrgan, M.S.; Roomiani, L.; Islami, H.R.; Raissy, M. Ultrasound-assisted extraction of polysaccharides from brown alga (Sargassum angustifolium): Structural characterization, antioxidant, and antitumor activities. J. Food Meas. Charact. 2023, 17, 6330–6340. [Google Scholar] [CrossRef]
- Rashedy, S.H.; Abd El Hafez, M.S.M.; Dar, M.A.; Cotas, J.; Pereira, L. Evaluation and Characterization of Alginate Extracted from Brown Seaweed Collected in the Red Sea. Appl. Sci. 2021, 11, 6290. [Google Scholar] [CrossRef]
- Hentati, F.; Pierre, G.; Ursu, A.V.; Vial, C.; Delattre, C.; Abdelkafi, S.; Michaud, P. Rheological investigations of water-soluble polysaccharides from the Tunisian brown seaweed Cystoseira compressa. Food Hydrocoll. 2020, 103, 105631. [Google Scholar] [CrossRef]
- Ye, S.; Xie, C.; Agar, O.T.; Barrow, C.J.; Dunshea, F.R.; Suleria, H.A.R. Alginates from Brown Seaweeds as a Promising Natural Source: A Review of Its Properties and Health Benefits. Food Rev. Int. 2024, 40, 2682–2710. [Google Scholar] [CrossRef]
- Abka-khajouei, R.; Tounsi, L.; Shahabi, N.; Patel, A.K.; Abdelkafi, S.; Michaud, P. Structures, Properties and Applications of Alginates. Mar. Drugs 2022, 20, 364. [Google Scholar] [CrossRef] [PubMed]
- Demircan, H.; Oral, R.A. Parameters affecting calcium-alginate bead characteristics: Viscosity of hydrocolloids and water solubility of core material. Int. J. Biol. Macromol. 2023, 236, 124011. [Google Scholar] [CrossRef]
- Rodriguez-Jasso, R.M.; Mussatto, S.I.; Pastrana, L.; Aguilar, C.N.; Teixeira, J.A. Microwave-assisted extraction of sulfated polysaccharides (fucoidan) from brown seaweed. Carbohydr. Polym. 2011, 86, 1137–1144. [Google Scholar] [CrossRef]
- Zvyagintseva, T.N.; Shevchenko, N.M.; Chizhov, A.O.; Krupnova, T.N.; Sundukova, E.V.; Isakov, V.V. Water-soluble polysaccharides of some far-eastern brown seaweeds. Distribution, structure, and their dependence on the developmental conditions. J. Exp. Mar. Biol. Ecol. 2003, 294, 1–13. [Google Scholar] [CrossRef]
- Rioux, L.E.; Turgeon, S.L.; Beaulieu, M. Effect of season on the composition of bioactive polysaccharides from the brown seaweed Saccharina longicruris. Phytochemistry 2009, 70, 1069–1075. [Google Scholar] [CrossRef]
- de Oliveira Queiroz, L.P.; Aroucha, E.M.M.; Santos, F.K.G.D.; da Silva e Souza, R.L.; Nunes, R.I.; de Lima Leite, R.H. Influence of alginate extraction conditions from the brown seaweed Dictyota mertensii on the functional properties of a novel glycerol plasticized alginate film. Carbohydr. Polym. 2025, 352, 123225. [Google Scholar] [CrossRef]
- Wang, S.-H.; Huang, C.-Y.; Chen, C.-Y.; Chang, C.-C.; Huang, C.-Y.; Dong, C.-D.; Chang, J.-S. Isolation and purification of brown algae fucoidan from Sargassum siliquosum and the analysis of anti-lipogenesis activity. Biochem. Eng. J. 2021, 165, 107798. [Google Scholar] [CrossRef]
- Flórez-Fernández, N.; Domínguez, H.; Torres, M.D. A green approach for alginate extraction from Sargassum muticum brown seaweed using ultrasound-assisted technique. Int. J. Biol. Macromol. 2019, 124, 451–459. [Google Scholar] [CrossRef]
- Ha, H.A.; Aloufi, A.S.; Parveen, B. Essential bioactive competence of laminarin (β-glucan)/laminaran extracted from Padina tetrastromatica and Sargassum cinereum biomass. Environ. Res. 2024, 252, 118836. [Google Scholar] [CrossRef]
- Cui, Y.; Zhu, L.; Li, Y.; Jiang, S.; Sun, Q.; Xie, E.; Chen, H.; Zhao, Z.; Qiao, W.; Xu, J.; et al. Structure of a laminarin-type β-(1→3)-glucan from brown algae Sargassum henslowianum and its potential on regulating gut microbiota. Carbohydr. Polym. 2021, 255, 117389. [Google Scholar] [CrossRef]
- Kenny, H.M.; Reynolds, C.M.; Garcia-Vaquero, M.; Feeney, E.L. Keeping an eye on alginate: Innovations and opportunities for sustainable production and diverse applications. Carbohydr. Polym. 2025, 366, 123902. [Google Scholar] [CrossRef] [PubMed]
- Cheong, K.L.; Sabir, A.; Wang, M.; Zhong, S.; Tan, K. Advancements in the Extraction, Characterization, and Bioactive Potential of Laminaran: A Review. Foods 2025, 14, 1683. [Google Scholar] [CrossRef]
- Lorbeer, A.J.; Lahnstein, J.; Fincher, G.B.; Su, P.; Zhang, W. Kinetics of conventional and microwave-assisted fucoidan extractions from the brown alga, Ecklonia radiata. J. Appl. Phycol. 2015, 27, 2079–2087. [Google Scholar] [CrossRef]
- Rodríguez-Jasso, R.M.; Mussatto, S.I.; Pastrana, L.; Aguilar, C.N.; Teixeira, J.A. Extraction of sulfated polysaccharides by autohydrolysis of brown seaweed Fucus vesiculosus. J. Appl. Phycol. 2013, 25, 31–39. [Google Scholar] [CrossRef]
- Liu, X.; Liu, B.; Wei, X.L.; Sun, Z.L.; Wang, C.Y. Extraction, fractionation, and chemical characterisation of fucoidans from the brown seaweed Sargassum pallidum. J. Food Sci. 2016, 34, 406–413. [Google Scholar] [CrossRef]
- Saravana, P.S.; Choi, J.H.; Park, Y.B.; Woo, H.C.; Chun, B.S. Evaluation of the chemical composition of brown seaweed (Saccharina japonica) hydrolysate by pressurized hot water extraction. Algal Res. 2016, 13, 246–254. [Google Scholar] [CrossRef]
- Krishnan, L.; Ravi, N.; Mondal, A.K.; Akter, F.; Kumar, M.; Ralph, P.; Kuzhiumparambil, U. Seaweed-based polysaccharides—Review of extraction, characterization, and bioplastic application. Green. Chem. 2024, 26, 5790–5823. [Google Scholar] [CrossRef]
- Otero, P.; Carpena, M.; Garcia-Oliveira, P.; Echave, J.; Soria-Lopez, A.; Garcia-Perez, P.; Fraga-Corral, M.; Cao, H.; Nie, S.; Xiao, J.; et al. Seaweed polysaccharides: Emerging extraction technologies, chemical modifications and bioactive properties. Crit. Rev. Food Sci. Nutr. 2021, 63, 1901–1929. [Google Scholar] [CrossRef]
- Shi, L. Bioactivities, isolation and purification methods of polysaccharides from natural products: A review. Int. J. Biol. Macromol. 2016, 92, 37–48. [Google Scholar] [CrossRef]
- Rodrigues, D.; Sousa, S.; Silva, A.; Amorim, M.; Pereira, L.; Rocha-Santos, T.A.P.; Gomes, A.M.P.; Duarte, A.C.; Freitas, A.C. Impact of Enzyme- and Ultrasound-Assisted Extraction Methods on Biological Properties of Red, Brown, and Green Seaweeds from the Central West Coast of Portugal. J. Agric. Food Chem. 2015, 63, 3177–3188. [Google Scholar] [CrossRef] [PubMed]
- McGurrin, A.; Suchintita Das, R.; Soro, A.B.; Maguire, J.; Flórez Fernández, N.; Dominguez, H.; Torres, M.D.; Tiwari, B.K.; Garcia-Vaquero, M. Antimicrobial Activities of Polysaccharide-Rich Extracts from the Irish Seaweed Alaria esculenta, Generated Using Green and Conventional Extraction Technologies, Against Foodborne Pathogens. Mar. Drugs 2025, 23, 46. [Google Scholar] [CrossRef] [PubMed]
- Wijesinghe, W.A.J.P.; Jeon, Y.J. Exploiting biological activities of brown seaweed Ecklonia cava for potential industrial applications: A review. Int. J. Food Sci. Nutr. 2012, 63, 225–235. [Google Scholar] [CrossRef]
- Jönsson, M.; Allahgholi, L.; Sardari, R.R.R.; Hreggviðsson, G.O.; Nordberg Karlsson, E. Extraction and Modification of Macroalgal Polysaccharides for Current and Next-Generation Applications. Molecules 2020, 25, 930. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z. Solubility of Polysaccharides; BoD–Books on Demand: Hamburg, Germany, 2017; p. 140. [Google Scholar]
- Garcia-Vaquero, M.; Rajauria, G.; O’Doherty, J.V.; Sweeney, T. Polysaccharides from macroalgae: Recent advances, innovative technologies and challenges in extraction and purification. Food Res. Int. 2017, 99, 1011–1020. [Google Scholar] [CrossRef]
- Dobrinčić, A.; Balbino, S.; Zorić, Z.; Pedisić, S.; Bursać Kovačević, D.; Elez Garofulić, I.; Dragović-Uzelac, V. Advanced Technologies for the Extraction of Marine Brown Algal Polysaccharides. Mar. Drugs 2020, 18, 168. [Google Scholar] [CrossRef]
- Hammed, A.; Jaswir, I.; Simsek, S.; Alam, Z. Enzyme aided extraction of sulfated polysaccharides from Turbinaria turbinata brown seaweed. Int. Food Res. J. 2017, 24, 1660–1666. [Google Scholar]
- Michalak, I.; Chojnacka, K. Algal extracts: Technology and advances. Eng. Life Sci. 2014, 14, 581–591. [Google Scholar] [CrossRef]
- Da Silva, J.; dos Santos, L.C.; Ibañez, E.; Ferreira, S.R.S. Green Extraction Methods Applied to the Brown Macroalga Saccharina latissima: Assessing Yield, Total Phenolics, Phlorotannins and Antioxidant Capacity. Foods 2025, 14, 1017. [Google Scholar] [CrossRef] [PubMed]
- Ptak Signe, H.; Knud, C.; Rafael, M.; Xavier, F. Improving Fucoidan Yield from Fucus Brown Algae by Microwave Extraction. Chem. Eng. Trans. 2019, 74, 109–114. [Google Scholar]
- Sánchez-Camargo, A.D.P.; Ibáñez, E.; Cifuentes, A.; Herrero, M. Bioactives Obtained From Plants, Seaweeds, Microalgae and Food By-Products Using Pressurized Liquid Extraction and Supercritical Fluid Extraction. In Comprehensive Analytical Chemistry; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar] [CrossRef]
- Bittkau, K.S.; Neupane, S.; Alban, S. Initial evaluation of six different brown algae species as source for crude bioactive fucoidans. Algal Res. 2020, 45, 101759. [Google Scholar] [CrossRef]
- Okolie, C.L.; Mason, B.; Mohan, A.; Pitts, N.; Udenigwe, C.C. The comparative influence of novel extraction technologies on in vitro prebiotic-inducing chemical properties of fucoidan extracts from Ascophyllum nodosum. Food Hydrocoll. 2019, 90, 462–471. [Google Scholar] [CrossRef]
- Imbs, T.I.; Ermakova, S.P.; Malyarenko (Vishchuk), O.S.; Isakov, V.V.; Zvyagintseva, T.N. Structural elucidation of polysaccharide fractions from the brown alga Coccophora langsdorfii and in vitro investigation of their anticancer activity. Carbohydr. Polym. 2016, 135, 162–168. [Google Scholar] [CrossRef] [PubMed]
- Sinurat, E.; Marraskuranto, E.; Sihono Artanti, N.; Zakaria, Z.A.; Randy, A. Ultrasound extraction of fucoidan and its antioxidant activities from tropical brown seaweeds. Int. J. Biol. Macromol. 2025, 311, 143592. [Google Scholar] [CrossRef]
- Nguyen, H.C.; Ngo, K.N.; Tran, H.K.; Barrow, C.J. Enzyme-Assisted Coextraction of Phenolics and Polysaccharides from Padina gymnospora. Mar. Drugs 2024, 22, 42. [Google Scholar] [CrossRef] [PubMed]
- Alboofetileh, M.; Rezaei, M.; Tabarsa, M.; You, S.; Mariatti, F.; Cravotto, G. Subcritical water extraction as an efficient technique to isolate biologically-active fucoidans from Nizamuddinia zanardinii. Int. J. Biol. Macromol. 2019, 128, 244–253. [Google Scholar] [CrossRef]
- Choulot, M.; Jabbour, C.; Burlot, A.-S.; Jing, L.; Welna, M.; Szymczycha-Madeja, A.; Le Guillard, C.; Michalak, I.; Bourgougnon, N. Application of enzyme-assisted extraction on the brown seaweed Fucus vesiculosus Linnaeus (Ochrophyta, Fucaceae) to produce extracts for a sustainable agriculture. J. Appl. Phycol. 2025, 37, 1325–1340. [Google Scholar] [CrossRef]
- Cao, C.; Huang, Q.; Zhang, B.; Li, C.; Fu, X. Physicochemical characterization and in vitro hypoglycemic activities of polysaccharides from Sargassum pallidum by microwave-assisted aqueous two-phase extraction. Int. J. Biol. Macromol. 2018, 109, 357–368. [Google Scholar] [CrossRef]
- Alboofetileh, M.; Rezaei, M.; Tabarsa, M. Enzyme-assisted extraction of Nizamuddinia zanardinii for the recovery of sulfated polysaccharides with anticancer and immune-enhancing activities. J. Appl. Phycol. 2019, 31, 1391–1402. [Google Scholar] [CrossRef]
- Garcia-Vaquero, M.; Ravindran, R.; Walsh, O.; O’Doherty, J.; Jaiswal, A.K.; Tiwari, B.K.; Rajauria, G. Evaluation of Ultrasound, Microwave, Ultrasound–Microwave, Hydrothermal and High Pressure Assisted Extraction Technologies for the Recovery of Phytochemicals and Antioxidants from Brown Macroalgae. Mar. Drugs 2021, 19, 309. [Google Scholar] [CrossRef] [PubMed]
- Ale, M.T.; Mikkelsen, J.D.; Meyer, A.S. Important Determinants for Fucoidan Bioactivity: A Critical Review of Structure-Function Relations and Extraction Methods for Fucose-Containing Sulfated Polysaccharides from Brown Seaweeds. Mar. Drugs 2011, 9, 2106–2130. [Google Scholar] [CrossRef]
- Lee, J.-H.; Kim, J.-H.; Kim, S.-M.; Kim, J.-Y.; Kim, J.-H.; Eom, S.-J.; Kang, M.-C.; Song, K.-M. The Antioxidant Activity of Undaria pinnatifida Sporophyll Extract Obtained Using Ultrasonication: A Focus on Crude Polysaccharide Extraction Using Ethanol Precipitation. Antioxidants 2023, 12, 1904. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Yue, R.-Q.; Liu, J.; Ho, H.-M.; Yi, T.; Chen, H.-B.; Han, Q.-B. Structural diversity requires individual optimization of ethanol concentration in polysaccharide precipitation. Int. J. Biol. Macromol. 2014, 67, 205–209. [Google Scholar] [CrossRef] [PubMed]
- Hadjkacem, F.; Elleuch, J.; Aitouguinane, M.; Chakou, F.Z.; Ursu, A.V.; Dubessay, P.; Bourgougnon, N.; Traikia, M.; Le Cerf, D.; El Alaoui-Talibi, Z.; et al. Primary structural features, physicochemical and biological properties of two water-soluble polysaccharides extracted from the brown Tunisian seaweed Halopteris scoparia. Int. J. Biol. Macromol. 2023, 253, 126757. [Google Scholar] [CrossRef]
- Shao, W.; Zhang, H.; Duan, R.; Xie, Q.; Hong, Z.; Xiao, Z. A rapid and scalable integrated membrane separation process for purification of polysaccharides from Enteromorpha prolifera. Nat. Prod. Res. 2018, 33, 3109–3119. [Google Scholar] [CrossRef]
- Hjelland, F.; Andersen, A.H.; Yang, H.S. Process for Isolating Fucoidan and Laminarin from Live, Harvested Seaweed. US10590207B2, 17 March 2020. Available online: https://patents.google.com/patent/US10590207B2/en (accessed on 21 August 2025).
- Praveen, M.A.; Parvathy, K.R.K.; Balasubramanian, P.; Jayabalan, R. An overview of extraction and purification techniques of seaweed dietary fibers for immunomodulation on gut microbiota. Trends Food Sci. Technol. 2019, 92, 46–64. [Google Scholar] [CrossRef]
- Marcati, A.; Ursu, A.V.; Laroche, C.; Soanen, N.; Marchal, L.; Jubeau, S.; Djelveh, G.; Michaud, P. Extraction and fractionation of polysaccharides and B-phycoerythrin from the microalga Porphyridium cruentum by membrane technology. Algal Res. 2014, 5, 258–263. [Google Scholar] [CrossRef]
- Huang, X.; Ai, C.; Yao, H.; Zhao, C.; Xiang, C.; Hong, T.; Xiao, J. Guideline for the extraction, isolation, purification, and structural characterization of polysaccharides from natural resources. Food 2022, 3, e37. [Google Scholar] [CrossRef]
- Zheng, Y.; Yan, J.; Cao, C.; Liu, Y.; Yu, D.; Liang, X. Application of chromatography in purification and structural analysis of natural polysaccharides: A review. J. Sep. Sci. 2023, 46, 2300368. [Google Scholar] [CrossRef]
- Xiao, Q.; Fan, X. The Guideline for the Extraction, Purification and Structural Characterization of Sulfated Polysaccharides from Macroalgae. Food Chem. Int. 2025, 1, 61–71. [Google Scholar] [CrossRef]
- Zhang, H.; Row, K.H. Extraction and Separation of Polysaccharides from Laminaria japonica by Size-Exclusion Chromatography. J. Chromatogr. Sci. 2014, 53, 498–502. [Google Scholar] [CrossRef]
- Gómez-Ordóñez, E.; Jiménez-Escrig, A.; Rupérez, P. Molecular weight distribution of polysaccharides from edible seaweeds by high-performance size-exclusion chromatography (HPSEC). Talanta 2012, 93, 153–159. [Google Scholar] [CrossRef] [PubMed]
- Hahn, T.; Zayed, A.; Kovacheva, M.; Stadtmüller, R.; Lang, S.; Muffler, K.; Ulber, R. Dye affinity chromatography for fast and simple purification of fucoidan from marine brown algae. Eng. Life Sci. 2016, 16, 78–87. [Google Scholar] [CrossRef]
- Je, J.G.; Lee, H.G.; Fernando, K.H.N.; Jeon, Y.J.; Ryu, B. Purification and Structural Characterization of Sulfated Polysaccharides Derived from Brown Algae, Sargassum binderi: Inhibitory Mechanism of iNOS and COX-2 Pathway Interaction. Antioxidants 2021, 10, 822. [Google Scholar] [CrossRef]
- Singh, A.; Jagtap, A.S.; Rajpurohit, K.; Singh, K.S. Chemical characteristics and bioactivity potential of polysaccharide extracts and purified fractions from Arctic brown macroalgae. Carbohydr. Polym. 2025, 352, 123222. [Google Scholar] [CrossRef]
- Li, A.; Liu, C.; Xing, R.; Liu, S.; Li, K. Investigation of Monosaccharide Colorimetric Efficiency by Phenol-Sulfuric Acid Method and Optimization of Quantitative Models for Polysaccharides; Elsevier B.V.: Amsterdam, The Netherlands, 2025; Available online: https://ouci.dntb.gov.ua/en/works/9ZPVXXW8/ (accessed on 11 September 2025).
- Rondel, C.; Marcato-Romain, C.E.; Girbal-Neuhauser, E. Development and validation of a colorimetric assay for simultaneous quantification of neutral and uronic sugars. Water Res. 2013, 47, 2901–2908. [Google Scholar] [CrossRef]
- Dubois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric Method for Determination of Sugars and Related Substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Dreywood, R. Qualitative Test for Carbohydrate Material. Ind. Eng. Chem. Anal. Ed. 1946, 18, 499. [Google Scholar] [CrossRef]
- Monsigny, M.; Petit, C.; Roche, A.C. Colorimetric determination of neutral sugars by a resorcinol sulfuric acid micromethod. Anal. Biochem. 1988, 175, 525–530. [Google Scholar] [CrossRef] [PubMed]
- Blumenkrantz, N.; Asboe-Hansen, G. New method for quantitative determination of uronic acids. Anal. Biochem. 1973, 54, 484–489. [Google Scholar] [CrossRef] [PubMed]
- Dodgson, K.S.; Price, R.G. A note on the determination of the ester sulphate content of sulphated polysaccharides. Biochem. J. 1962, 84, 106–110. [Google Scholar] [CrossRef] [PubMed]
- Farndale, R.W.; Buttle, D.J.; Barrett, A.J. Improved quantitation and discrimination of sulphated glycosaminoglycans by use of dimethylmethylene blue. Biochim. Biophys. Acta BBA-Gen. Subj. 1986, 883, 173–177. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with the folin phenol reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. [14] Analysis of Total Phenols and Other Oxidation Substrates and Antioxidants by Means of Folin-Ciocalteu Reagent. In Methods in Enzymology; Oxidants and Antioxidants Part A; Academic Press: Cambridge, MA, USA, 1999; Volume 299, pp. 152–178. [Google Scholar]
- Liu, B.; Zhang, L.; Zhu, T.; Liu, Y.; Chu, J.; Chen, N. Structural characterization of polysaccharides of marine origin: A review. Int. J. Biol. Macromol. 2025, 317, 144797. [Google Scholar] [CrossRef]
- Beratto-Ramos, A.; Agurto-Muñoz, C.; Pablo Vargas-Montalba, J.; Castillo Rdel, P. Fourier-transform infrared imaging and multivariate analysis for direct identification of principal polysaccharides in brown seaweeds. Carbohydr. Polym. 2020, 230, 115561. [Google Scholar] [CrossRef]
- Vandanjon, L.; Burlot, A.-S.; Zamanileha, E.F.; Douzenel, P.; Ravelonandro, P.H.; Bourgougnon, N.; Bedoux, G. The Use of FTIR Spectroscopy as a Tool for the Seasonal Variation Analysis and for the Quality Control of Polysaccharides from Seaweeds. Mar. Drugs 2023, 21, 482. [Google Scholar] [CrossRef]
- Morya, V.K.; Kim, J.; Kim, E.K. Algal fucoidan: Structural and size-dependent bioactivities and their perspectives. Appl. Microbiol. Biotechnol. 2012, 93, 71–82. [Google Scholar] [CrossRef]
- Wei, X.; Cai, L.; Liu, H.; Tu, H.; Xu, X.; Zhou, F.; Zhang, L. Chain conformation and biological activities of hyperbranched fucoidan derived from brown algae and its desulfated derivative. Carbohydr. Polym. 2019, 208, 86–96. [Google Scholar] [CrossRef]
- Hu, D.J.; Cheong, K.L.; Zhao, J.; Li, S.P. Chromatography in characterization of polysaccharides from medicinal plants and fungi. J. Sep. Sci. 2013, 36, 1–19. [Google Scholar] [CrossRef]
- Niemi, C.; Takahashi, J.; Gorzsás, A.; Gentili, F.G. Quantitative and qualitative saccharide analysis of North Atlantic brown seaweed by gas chromatography/mass spectrometry and infrared spectroscopy. Int. J. Biol. Macromol. 2024, 254, 127870. [Google Scholar] [CrossRef]
- Fu, Y.; Jiao, H.; Sun, J.; Okoye, C.O.; Zhang, H.; Li, Y.; Lu, X.; Wang, Q.; Liu, J. Structure-activity relationships of bioactive polysaccharides extracted from macroalgae towards biomedical application: A review. Carbohydr. Polym. 2024, 324, 121533. [Google Scholar] [CrossRef] [PubMed]
- Hoang, T.V.; Alshiekheid, M.A.; K, P. A study on anticancer and antioxidant ability of selected brown algae biomass yielded polysaccharide and their chemical and structural properties analysis by FT-IR and NMR analyses. Environ. Res. 2024, 260, 119567. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Yao, J.; Wang, Z.; Xie, S.; Ou, J.; Wang, B. A Methylation-Assisted Gc-Ms Strategy for Comprehensive Monosaccharide Profiling in Polygonatum Polysaccharides: Overcoming Limitations of Conventional Chromatographic Techniques. J. Chromatogr. A 2025, 1759, 466253. [Google Scholar] [CrossRef] [PubMed]
- James, A.T.; Martin, A.J.P. Gas-liquid partition chromatography: The separation and micro-estimation of volatile fatty acids from formic acid to dodecanoic acid. Biochem. J. 1952, 50, 679–690. [Google Scholar] [CrossRef]
- Horvath, C.G.; Preiss, B.A.; Lipsky, S.R. Fast liquid chromatography. Investigation of operating parameters and the separation of nucleotides on pellicular ion exchangers. Anal. Chem. 1967, 39, 1422–1428. [Google Scholar] [CrossRef]
- Small Hamish Stevens, T.S.; Bauman, W.C. Novel ion exchange chromatographic method using conductimetric detection. Anal. Chem. 1975, 47, 1801–1809. [Google Scholar] [CrossRef]
- Townsend, R.R.; Hardy, M.R.; Hindsgaul, O.; Lee, Y.C. High-performance anion-exchange chromatography of oligosaccharides using pellicular resins and pulsed amperometric detection. Anal. Biochem. 1988, 174, 459–470. [Google Scholar] [CrossRef]
- Du, B.; Nie, S.; Peng, F.; Yang, Y.; Xu, B. A narrative review on conformational structure characterization of natural polysaccharides. Food Front. 2022, 3, 631–640. [Google Scholar] [CrossRef]
- Al Monla, R.; Dassouki, Z.; Sari-Chmayssem, N.; Mawlawi, H.; Gali-Muhtasib, H. Fucoidan and Alginate from the Brown Algae Colpomenia sinuosa and Their Combination with Vitamin C Trigger Apoptosis in Colon Cancer. Molecules 2022, 27, 358. [Google Scholar] [CrossRef]
- Sadeghi-Shapourabadi, M.; Robert, M.; Elkoun, S.; Sadeghi-Shapourabadi, M.; Robert, M.; Elkoun, S. A Study of the Influence of Sodium Alginate Molecular Weight and Its Crosslinking on the Properties of Potato Peel Waste-Based Films. Appl. Sci. 2025, 15, 6385. [Google Scholar] [CrossRef]
- Akbarzadeh Solbu, A.; Koernig, A.; Kjesbu, J.S.; Zaytseva-Zotova, D.; Sletmoen, M.; Strand, B.L. High resolution imaging of soft alginate hydrogels by atomic force microscopy. Carbohydr. Polym. 2022, 276, 118804. [Google Scholar] [CrossRef] [PubMed]
- Mrázová, K.; Černayová, D.; Havlíčková, A.; Hrubanová, K.; Obruča, S.; Sedláček, P.; Krzyžánek, V. Enhanced electron microscopy imaging for a detailed structural study of alginate hydrogel containing the encapsulated cells. Carbohydr. Polym. 2025, 368, 124239. [Google Scholar] [CrossRef]
- Nguyen, A.N.; Van Ngo, Q.; Quach, T.T.M.; Ueda, S.; Yuguchi, Y.; Matsumoto, Y.; Kitamura, S.; Ho, C.D.; Thanh, T.T.T. Fucoidan from brown seaweed Tubinaria decurrens: Structure and structure—Anticancer activity relationship. Int. J. Biol. Macromol. 2024, 259, 129326. [Google Scholar] [CrossRef]
- Chudasama, N.A.; Sequeira, R.A.; Moradiya, K.; Prasad, K. Seaweed Polysaccharide Based Products and Materials: An Assessment on Their Production from a Sustainability Point of View. Molecules 2021, 26, 2608. [Google Scholar] [CrossRef] [PubMed]
- Lushchak, V.I. Classification of oxidative stress based on its intensity. EXCLI J. 2014, 13, 922–937. [Google Scholar]
- Jayawardena, T.U.; Wang, L.; Sanjeewa, K.K.A.; Kang, S.I.; Lee, J.S.; Jeon, Y.J. Antioxidant Potential of Sulfated Polysaccharides from Padina boryana; Protective Effect against Oxidative Stress in In Vitro and In Vivo Zebrafish Model. Mar. Drugs 2020, 18, 212. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Deng, Q.; Chen, R.; Sun, Y.; Zhou, X.; Chen, H. Extraction, Purification, Structural Characteristics, and Biological Activities of Seaweed Polysaccharides: A Review. Starch 2024, 77, 2400029. [Google Scholar] [CrossRef]
- Zhou, Q.-L.; Wang, Z.; Chen, W.-T.; Liu, X.-F.; Cheong, K.-L.; Zou, Y.-X.; Zhong, S.-Y.; Li, R. The structural characteristics, biological activities and mechanisms of bioactive brown seaweed polysaccharides: A review. J. Funct. Foods 2024, 119, 106303. [Google Scholar] [CrossRef]
- El-Sheekh, M.M.; Ward, F.; Deyab, M.A.; Al-Zahrani, M.; Touliabah, H.E. Chemical Composition, Antioxidant, and Antitumor Activity of Fucoidan from the Brown Alga Dictyota dichotoma. Molecules 2023, 28, 7175. [Google Scholar] [CrossRef]
- Shahidi, F.; Ambigaipalan, P. Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects—A review. J. Funct. Foods 2015, 18, 820–897. [Google Scholar] [CrossRef]
- Manggau, M.; Kasim, S.; Fitri, N.; Aulia, N.S.; Agustiani, A.N.; Raihan, M.; Nurdin, W.B. Antioxidant, anti-inflammatory and anticoagulant activities of sulfate polysaccharide isolate from brown alga Sargassum policystum. IOP Conf. Ser. Earth Environ. Sci. 2022, 967, 012029. [Google Scholar] [CrossRef]
- Benslima, A.; Sellimi, S.; Hamdi, M.; Nasri, R.; Jridi, M.; Cot, D.; Li, S.; Nasri, M.; Zouari, N. Brown seaweed Cystoseira schiffneri as a promising source of sulfated fucans: Seasonal variability of structural, chemical, and antioxidant properties. Food Sci. Nutr. 2021, 9, 1551–1563. [Google Scholar] [CrossRef]
- Lukova, P.; Apostolova, E.; Baldzhieva, A.; Murdjeva, M.; Kokova, V. Fucoidan from Ericaria crinita Alleviates Inflammation in Rat Paw Edema, Downregulates Pro-Inflammatory Cytokine Levels, and Shows Antioxidant Activity. Biomedicines 2023, 11, 2511. [Google Scholar] [CrossRef]
- Bhuyar, P.; Sundararaju, S.; Rahim MHAb Unpaprom, Y.; Maniam, G.P.; Govindan, N. Antioxidative study of polysaccharides extracted from red (Kappaphycus alvarezii), green (Kappaphycus striatus) and brown (Padina gymnospora) marine macroalgae/seaweed. SN Appl. Sci. 2021, 3, 485. [Google Scholar] [CrossRef]
- Balde, A.; Nazeer, R.A. In vitro anti-inflammatory effects of alginate sulfate and optimization of alginate sulfate/PVA/CA-based microneedle system. Colloids Surf. B Biointerfaces 2025, 256, 115064. [Google Scholar] [CrossRef] [PubMed]
- Lukova, P.; Kokova, V.; Baldzhieva, A.; Murdjeva, M.; Katsarov, P.; Delattre, C.; Apostolova, E. Alginate from Ericaria crinita Possesses Antioxidant Activity and Attenuates Systemic Inflammation via Downregulation of Pro-Inflammatory Cytokines. Mar. Drugs 2024, 22, 482. [Google Scholar] [CrossRef]
- Boujhoud, Z.; Feki, A.; Eleroui, M.; Lakhram, M.; Kraiem, M.; Dghim, A.; Zeroual, A.; Youlyouz Marfak, I.; Essayagh, S.; Hilali, S.; et al. The anti-angiogenic, anti-inflammatory and anticoagulant potential of a polysaccharide extracted from the brown alga Cystoseira humilis. Eur. Polym. J. 2024, 220, 113461. [Google Scholar] [CrossRef]
- Wang, L.; Wang, L.; Yan, C.; Ai, C.; Wen, C.; Guo, X.; Song, S. Two Ascophyllum nodosum Fucoidans with Different Molecular Weights Inhibit Inflammation via Blocking of TLR/NF-κB Signaling Pathway Discriminately. Foods 2022, 11, 2381. [Google Scholar] [CrossRef]
- Usov, A.I.; Bilan, M.I.; Ustyuzhanina, N.E.; Nifantiev, N.E. Fucoidans of Brown Algae: Comparison of Sulfated Polysaccharides from Fucus vesiculosus and Ascophyllum nodosum. Mar. Drugs 2022, 20, 638. [Google Scholar] [CrossRef]
- Jayawardhana, H.H.A.C.K.; Lee, H.G.; Liyanage, N.M.; Nagahawatta, D.P.; Ryu, B.; Jeon, Y.J. Structural characterization and anti-inflammatory potential of sulfated polysaccharides from Scytosiphon lomentaria; attenuate inflammatory signaling pathways. J. Funct. Foods 2023, 102, 105446. [Google Scholar] [CrossRef]
- Hyun, J.; Lee, H.-G.; Je, J.-G.; Choi, Y.-S.; Song, K.-M.; Kim, T.-K.; Ryu, B.; Kang, M.-C.; Jeon, Y.-J. L-Fucose-Rich Sulfated Glycans from Edible Brown Seaweed: A Promising Functional Food for Obesity and Energy Expenditure Improvement. Int. J. Mol. Sci. 2024, 25, 9738. [Google Scholar] [CrossRef] [PubMed]
- Roy, A.; Roy, P.K.; Cho, S.R.; Park, S.Y. Effects of Fucoidan on the Inhibition of Biofilm Formation of Salmonella enterica Subsp. enterica Serovar Typhimurium on Seafoods and Its Molecular Antibiofilm Mechanisms. Microorganisms 2025, 13, 914. [Google Scholar] [CrossRef] [PubMed]
- Rajasekaran, J.; Viswanathan, P. Anti-bacterial and antibiofilm properties of seaweed polysaccharide-based nanoparticles. Aquac. Int. 2023, 31, 2799–2823. [Google Scholar] [CrossRef]
- Pérez, M.J.; Falqué, E.; Domínguez, H. Antimicrobial Action of Compounds from Marine Seaweed. Mar. Drugs 2016, 14, 52. [Google Scholar] [CrossRef]
- Khan, F.; Manivasagan, P.; Pham, D.T.N.; Oh, J.; Kim, S.K.; Kim, Y.M. Antibiofilm and antivirulence properties of chitosan-polypyrrole nanocomposites to Pseudomonas aeruginosa. Microb. Pathog. 2019, 128, 363–373. [Google Scholar] [CrossRef]
- Hamrun, N.; Oktawati, S.; Haryo, H.M.; Syafar, I.F.; Almaidah, N. Effectiveness of Fucoidan Extract from Brown Algae to Inhibit Bacteria Causes of Oral Cavity Damage. Syst. Rev. Pharm. 2020, 11, 686–693. [Google Scholar]
- Palanisamy, S.; Vinosha, M.; Rajasekar, P.; Anjali, R.; Sathiyaraj, G.; Marudhupandi, T.; Selvam, S.; Prabhu, N.M.; You, S. Antibacterial efficacy of a fucoidan fraction (Fu-F2) extracted from Sargassum polycystum. Int. J. Biol. Macromol. 2019, 125, 485–495. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Healy, L.; Das, R.S.; Bhavya, M.L.; Karuppusamy, S.; Sun, D.-W.; O’Donnell, C.; Tiwari, B.K. Novel biorefinery process for extraction of laminarin, alginate and protein from brown seaweed using hydrodynamic cavitation. Algal Res. 2023, 74, 103243. [Google Scholar] [CrossRef]
- Arunkumar, M.; Mahalakshmi, M.; Ashokkumar, V.; Aravind, M.K.; Gunaseelan, S.; Mohankumar, V.; Ashokkumar, B.; Varalakshmi, P. Evaluation of seaweed sulfated polysaccharides as natural antagonists targeting Salmonella typhi OmpF: Molecular docking and pharmacokinetic profiling. J. Basic Appl. Sci. 2022, 11, 8. [Google Scholar] [CrossRef]
- Ayrapetyan, O.N.; Obluchinskaya, E.D.; Zhurishkina, E.V.; Skorik, Y.A.; Lebedev, D.V.; Kulminskaya, A.A.; Lapina, I.M. Antibacterial Properties of Fucoidans from the Brown Algae Fucus vesiculosus L. of the Barents Sea. Biology 2021, 10, 67. [Google Scholar] [CrossRef]
- WHO. Leading Causes of Death. 2025. Available online: https://www.who.int/data/gho/data/themes/mortality-and-global-health-estimates/ghe-leading-causes-of-death (accessed on 25 September 2025).
- Li, Y.; Zheng, Y.; Zhang, Y.; Yang, Y.; Wang, P.; Imre, B.; Wong, A.C.Y.; Hsieh, Y.S.Y.; Wang, D. Brown Algae Carbohydrates: Structures, Pharmaceutical Properties, and Research Challenges. Mar. Drugs 2021, 19, 620. [Google Scholar] [CrossRef]
- Zhong, Q.-W.; Zhou, T.-S.; Qiu, W.-H.; Wang, Y.-K.; Xu, Q.-L.; Ke, S.-Z.; Wang, S.-J.; Jin, W.-H.; Chen, J.-W.; Zhang, H.-W.; et al. Characterization and hypoglycemic effects of sulfated polysaccharides derived from brown seaweed Undaria pinnatifida. Food Chem. 2021, 341, 128148. [Google Scholar] [CrossRef]
- Zaharudin, N.; Salmeán, A.A.; Dragsted, L.O. Inhibitory effects of edible seaweeds, polyphenolics and alginates on the activities of porcine pancreatic α-amylase. Food Chem. 2018, 245, 1196–1203. [Google Scholar] [CrossRef]
- Daub, C.D.; Mabate, B.; Malgas, S.; Pletschke, B.I. Fucoidan from Ecklonia maxima is a powerful inhibitor of the diabetes-related enzyme, α-glucosidase. Int. J. Biol. Macromol. 2020, 151, 412–420. [Google Scholar] [CrossRef]
- Yue, Q.; Liu, Y.; Li, F.; Hong, T.; Guo, S.; Cai, M.; Zhao, L.; Su, L.; Zhang, S.; Zhao, C.; et al. Antioxidant and anticancer properties of fucoidan isolated from Saccharina Japonica brown algae. Sci. Rep. 2025, 15, 8962. [Google Scholar] [CrossRef]
- Trung, D.T.; Surits, V.V.; Zueva, A.O.; Cao, H.T.T.; Shevchenko, N.M.; Ermakova, S.P.; Thinh, P.D. Anticancer Activity In Vitro of Sulfated Polysaccharides from the Brown Alga Spatoglossum vietnamense. Molecules 2024, 29, 4982. [Google Scholar] [CrossRef]
- Bae, H.; Song, G.; Lee, J.Y.; Hong, T.; Chang, M.J.; Lim, W. Laminarin-Derived from Brown Algae Suppresses the Growth of Ovarian Cancer Cells via Mitochondrial Dysfunction and ER Stress. Mar. Drugs 2020, 18, 152. [Google Scholar] [CrossRef]
- Sanniyasi, E.; Gopal, R.K.; Damodharan, R.; Arumugam, A.; Sampath Kumar, M.; Senthilkumar, N.; Anbalagan, M. In vitro anticancer potential of laminarin and fucoidan from Brown seaweeds. Sci. Rep. 2023, 13, 14452. [Google Scholar] [CrossRef]
- Carvalhal, F.; Cristelo, R.R.; Resende, D.I.S.P.; Pinto, M.M.M.; Sousa, E.; Correia-da-Silva, M. Antithrombotics from the Sea: Polysaccharides and Beyond. Mar. Drugs 2019, 17, 170. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.-C.; Qin, X.; Xiong, N.; Lin, L.; Wu, Y.; Li, Q.; Sun, D.; Xiong, D.-C.; Callmann, C.E.; Wu, M.; et al. Comprehensive synthesis and anticoagulant evaluation of a diverse fucoidan library. Nat. Commun. 2025, 16, 4364. [Google Scholar] [CrossRef] [PubMed]
- Hannan, M.A.; Dash, R.; Haque, M.N.; Mohibbullah, M.; Sohag, A.A.M.; Rahman, M.A.; Uddin, M.J.; Alam, M.; Moon, I.S. Neuroprotective Potentials of Marine Algae and Their Bioactive Metabolites: Pharmacological Insights and Therapeutic Advances. Mar. Drugs 2020, 18, 347. [Google Scholar] [CrossRef] [PubMed]









Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Khammassi, H.; Bouaziz, T.; Dammak, M.; Dubesay, P.; Pierre, G.; Michaud, P.; Abdelkafi, S. Brown Algae-Derived Polysaccharides: From Sustainable Bioprocessing to Industrial Applications. Polysaccharides 2026, 7, 10. https://doi.org/10.3390/polysaccharides7010010
Khammassi H, Bouaziz T, Dammak M, Dubesay P, Pierre G, Michaud P, Abdelkafi S. Brown Algae-Derived Polysaccharides: From Sustainable Bioprocessing to Industrial Applications. Polysaccharides. 2026; 7(1):10. https://doi.org/10.3390/polysaccharides7010010
Chicago/Turabian StyleKhammassi, Houssem, Taheni Bouaziz, Mariam Dammak, Pascal Dubesay, Guillaume Pierre, Philippe Michaud, and Slim Abdelkafi. 2026. "Brown Algae-Derived Polysaccharides: From Sustainable Bioprocessing to Industrial Applications" Polysaccharides 7, no. 1: 10. https://doi.org/10.3390/polysaccharides7010010
APA StyleKhammassi, H., Bouaziz, T., Dammak, M., Dubesay, P., Pierre, G., Michaud, P., & Abdelkafi, S. (2026). Brown Algae-Derived Polysaccharides: From Sustainable Bioprocessing to Industrial Applications. Polysaccharides, 7(1), 10. https://doi.org/10.3390/polysaccharides7010010

