Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (457)

Search Parameters:
Keywords = focal plane

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1784 KB  
Review
Research on Wavefront Sensing Applications Based on Photonic Lanterns
by Zhengkang Zhao, Hangyu Zheng, Lianghua Xie, Jie Zhang, Zhuoyun Feng, Kaige Liu, Bin Zhu, Deen Wang, Ju Wang, Wei Liu and Qiang Yuan
Sensors 2025, 25(23), 7300; https://doi.org/10.3390/s25237300 - 1 Dec 2025
Viewed by 277
Abstract
The Photonic Lantern (PL) is a novel fiber optic device emerging in wavefront sensing, which converts multimode fiber light fields into single-mode fields. By decomposing complex multimode fields into simple fundamental modes, the PL maps wavefront aberrations to light intensity. The Photonic Lantern [...] Read more.
The Photonic Lantern (PL) is a novel fiber optic device emerging in wavefront sensing, which converts multimode fiber light fields into single-mode fields. By decomposing complex multimode fields into simple fundamental modes, the PL maps wavefront aberrations to light intensity. The Photonic Lantern Wavefront Sensor (PLWFS) functions as an ideal focal-plane sensor. It aligns the focal and imaging planes to coincide completely. This configuration mitigates Non-Common Path Aberrations (NCPAs), which traditional sensors struggle to resolve. This paper reviews the research history of the PLWFS. It first introduces the fabrication methods for PL, then focuses on illustrating the theoretical and experimental developments of the PLWFS. PLWFS research began with the initial realization of sensing simple tip/tilt aberrations, moved to establishing linear response models for small aberrations, and subsequently introduced methods such as neural network algorithms and broadband polychromatic light sources to achieve large aberration sensing and correction. This paper highlights significant research achievements from each stage, summarizes the current limitations in the research, and finally discusses the future potential of the PLWFS as an excellent focal-plane wavefront sensor. Full article
(This article belongs to the Special Issue Feature Review Papers in Optical Sensors)
Show Figures

Figure 1

11 pages, 2094 KB  
Article
Spatially Filtered Back Focal Plane Imaging for Directional Fluorescence Lifetime Study of Polaritonic States
by Povilas Jurkšaitis, Justina Anulytė, Evita Spalinskaitė, Ernesta Bužavaitė-Vertelienė, Vytautas Žičkus, Ieva Plikusienė and Zigmas Balevičius
Photonics 2025, 12(12), 1165; https://doi.org/10.3390/photonics12121165 - 27 Nov 2025
Viewed by 331
Abstract
Back focal plane (BFP) imaging has emerged as a widely used technique for investigating various nanoscale optical devices. The ability to provide the full angular distribution of emitted light has enabled the engineering of precise radiation patterns, enabling new advances in nanophotonics. Continuous [...] Read more.
Back focal plane (BFP) imaging has emerged as a widely used technique for investigating various nanoscale optical devices. The ability to provide the full angular distribution of emitted light has enabled the engineering of precise radiation patterns, enabling new advances in nanophotonics. Continuous improvements in the BFP imaging technique, including wavelength, polarization, and phase-resolved signal detection, have allowed us to gain crucial insights into the various optical and material properties of nanophotonic devices. In this study, we introduce a fluorescence lifetime-resolved BFP imaging configuration, which uses a spatial filtering technique in the Fourier plane to discriminate between different emission directions. Uniform silver film (45 nm) with a PMMA matrix layer of about 20 nm containing Rhodamine 6G fluorescent molecular dye was prepared and measured using total internal reflection ellipsometry (TIRE). A coupled oscillator model was used, and strong coupling was observed with a coupling strength of 160 meV. Time-correlated single-photon counting was used for the estimation of fluorescence lifetime in the sub-nanosecond regime, and a direction-dependent lifetime was observed in the BFP imaging configuration. This modified fluorescence-lifetime-resolved BFP microscopy method is essential for directly correlating the collective quantum dynamics (lifetime/decay rate) with the far-field radiation pattern (angle/coherence). It offers a critical tool for designing and optimizing quantum nanophotonic devices, such as polariton-based components and highly directional single-photon emitters, where controlling both excited-state dynamics and spatial coherence is paramount. Full article
Show Figures

Figure 1

26 pages, 24775 KB  
Article
Main Structure of the Survey Camera for CSST: A Paradigm for Structural Design of Large-Scale Complex Space Optical Instruments
by Renkui Jiang, Ang Zhang, Zhaoyang Li, Enhai Liu, Libin Wang, Sixian Le, Yongchao Zhang, Haini Zhang, Hongyu Wang, Shaohua Guan, Qian Luo, Yufeng Mao, Weiqi Xu, Panke Chen, Haibing Su, Yanqing Zhang, Junfeng Du, Junming Shao, Mingzhu Huang and Wei Liang
Aerospace 2025, 12(12), 1036; https://doi.org/10.3390/aerospace12121036 - 21 Nov 2025
Viewed by 303
Abstract
As the core observation instrument of the China Space Station Telescope (CSST), the Survey Camera (SC) features large volume, heavy weight and high complexity, which poses considerable challenges to the development of its Main Structure (MST). Focusing on the design, optimization and verification [...] Read more.
As the core observation instrument of the China Space Station Telescope (CSST), the Survey Camera (SC) features large volume, heavy weight and high complexity, which poses considerable challenges to the development of its Main Structure (MST). Focusing on the design, optimization and verification of the MST, this study aims to meet the technical requirements of lightweight, high stiffness, high strength and mechanical stability, and provide high-precision Measurement References (MRs) for components such as the Focal Plane Array (FPA). The MST is an M55J carbon fiber/cyanate ester resin composite framework and incorporates titanium alloy inserts for thread machining. The thickness of carbon fiber plies was optimized using size optimization techniques to maximize structural efficiency. The carbon fiber plies and embedded parts along the structural force transmission path were strengthened to improve structural strength. A spherically mounted retroreflector (SMR)–cube mirror composite MR system was employed, along with a contact–non-contact integrated measurement scheme, achieving a position and angle measurement uncertainty of 5.26 μm/5.53″ (3σ). Through experimental verification, the final mass of the MST was controlled at 66.8 kg, and the fundamental frequency reached 120.6 Hz. After assessment via vibration tests and thermovacuum tests, the strength, mechanical stability, and thermal stability of the structure all met the mission requirements. Full article
(This article belongs to the Section Astronautics & Space Science)
Show Figures

Figure 1

10 pages, 1110 KB  
Article
Far-Infrared Imaging Lens Based on Dual-Plane Diffractive Optics
by Chao Yan, Zhongzhou Tian, Xiaoli Gao, Xuezhou Yang, Qingshan Xu, Ligang Tan, Kai Li, Xiuzheng Wang and Yi Zhou
Photonics 2025, 12(11), 1117; https://doi.org/10.3390/photonics12111117 - 13 Nov 2025
Viewed by 356
Abstract
Far-infrared imaging is a powerful tool in night vision and temperature measurement, with broad applications in military, astronomy, meteorology, industrial, and medical fields. However, conventional imaging lenses face challenges such as large size, heavy weight, and difficulties in miniaturization, which hinder their integration [...] Read more.
Far-infrared imaging is a powerful tool in night vision and temperature measurement, with broad applications in military, astronomy, meteorology, industrial, and medical fields. However, conventional imaging lenses face challenges such as large size, heavy weight, and difficulties in miniaturization, which hinder their integration and use in applications with strict requirements for mass and volume, such as drone-based observation and imaging. To address these limitations, we designed a dual-plane diffractive optical lens optimized for the 10.9–11.1 μm wavelength band with a 0.2 μm bandwidth. By optimizing parameters including focal length, spot size, and field of view, we derived the phase distribution of the lens and converted it into the surface sag. To enhance diffraction efficiency and minimize energy loss, the lens was fabricated using a continuous phase surface on single-crystal Germanium. Finally, an imaging system was constructed to achieve clear imaging of various samples, demonstrating the feasibility of both the device and the system. This approach shows great potential for applications requiring lightweight and miniaturized solutions, such as infrared imaging, machine vision, remote sensing, biological imaging, and materials science. Full article
(This article belongs to the Special Issue Advancements in Optical Metrology and Imaging)
Show Figures

Figure 1

9 pages, 1165 KB  
Article
Nonparaxial Exploding Cylindrical Vector Beams
by Marcos G. Barriopedro, Manuel Holguín and Miguel A. Porras
Photonics 2025, 12(11), 1083; https://doi.org/10.3390/photonics12111083 - 2 Nov 2025
Viewed by 311
Abstract
Exploding or concentrating beams, vortex beams, and cylindrical vector beams have a precisely shaped transversal amplitude profile such that they produce a continuously concentrating and intensifying focal spot upon focusing as the lens aperture is opened. This effect is the physical manifestation of [...] Read more.
Exploding or concentrating beams, vortex beams, and cylindrical vector beams have a precisely shaped transversal amplitude profile such that they produce a continuously concentrating and intensifying focal spot upon focusing as the lens aperture is opened. This effect is the physical manifestation of the mathematical fact that Fresnel diffraction integral predicts an infinite intensity at the focus when the aperture effects are ignored. Here, using a full electromagnetic, nonparaxial focusing model, we show that the singularity in exploding cylindrical vector beams is an artifact of the paraxial approximation. Nevertheless, the exploding or concentrating effect, alien to any other light beam with finite power, keeps going up to unit numerical aperture, equivalent to infinite aperture radius. This unique feature enables a dynamic control of the focal intensity and spot size down to the sub-wavelength scale using a single light beam, imitating similar control when focusing an ideal plane wave, but requiring a finite amount of power. Full article
Show Figures

Figure 1

12 pages, 7957 KB  
Article
Athermal Design of Star Tracker Optics with Factor Analysis on Lens Power Distribution and Glass Thermal Property
by Kuo-Chuan Wang and Cheng-Huan Chen
Photonics 2025, 12(11), 1057; https://doi.org/10.3390/photonics12111057 - 25 Oct 2025
Viewed by 452
Abstract
A star tracker lens works in the environment with the temperatures ranging from −40 °C to 80 °C (a range of 120 °C), which makes athermalization a crucial step in the design. Traditional approaches could spend quite an amount of iterative process in [...] Read more.
A star tracker lens works in the environment with the temperatures ranging from −40 °C to 80 °C (a range of 120 °C), which makes athermalization a crucial step in the design. Traditional approaches could spend quite an amount of iterative process in between the optimization for nominal condition and athermalization. It is highly desired that the optimization can start with a thermally robust layout to improve the design efficiency. This study takes the star tracker lens module with seven elements as the base for investigating the possible layout variation on dioptric power distribution and thermo-optic coefficient dn/dT of the material, which are the two major factors of the layout interacting with each other to influence the thermal stability of the overall lens module. All the possible layouts are optimized firstly for the nominal condition at T = 20 °C, and only those meeting the optical performance specifications are selected for thermal performance evaluation. A merit function based on a thin lens model which represents the focal plane drift over a temperature range of 120 °C is then used as the criteria for ranking the layout variations passing the first stage. The layouts at top ranking exhibiting low focal plane drift become potential candidates as the final solution. The proposed methodology provides an efficient approach for designing thermally resilient star tracker optics, especially addressing the harsh thermal conditions encountered in Low Earth Orbit missions. Full article
(This article belongs to the Special Issue Optical Systems and Design)
Show Figures

Figure 1

18 pages, 1807 KB  
Article
An NETD-Based Optimization Model for the Operating Range of a Staring Infrared System
by Chunsheng Sun, Bowen Yang and Jingbo Sun
Appl. Sci. 2025, 15(19), 10746; https://doi.org/10.3390/app151910746 - 6 Oct 2025
Viewed by 543
Abstract
Operating range is an important indicator for determining the detection capability of an infrared search and track (IRST) system. To address the deficiencies of a traditional range model, such as excessive parameters and calculations, a noise-equivalent temperature difference (NETD)-based range optimization model for [...] Read more.
Operating range is an important indicator for determining the detection capability of an infrared search and track (IRST) system. To address the deficiencies of a traditional range model, such as excessive parameters and calculations, a noise-equivalent temperature difference (NETD)-based range optimization model for staring IRST systems is derived, offering a new solution method. Compared with traditional range models, the proposed model uses fewer parameters, fully considers the spectral radiation characteristics of the object and background and separately fits the integral part into a function related only to the range, which simplifies calculation and improves accuracy. The proposed operating range model is applied to a flying object for sample calculation, and the accuracy of the model is verified by field experiments. Full article
Show Figures

Figure 1

21 pages, 6275 KB  
Article
Influence of Bedding Angle on Mechanical Behavior and Grouting Reinforcement in Argillaceous Slate: Insights from Laboratory Tests and Field Experiments
by Xinfa Zeng, Chao Deng, Quan Yin, Yi Chen, Junying Rao, Yi Zhou and Wenqin Yan
Appl. Sci. 2025, 15(19), 10415; https://doi.org/10.3390/app151910415 - 25 Sep 2025
Viewed by 513
Abstract
Argillaceous slate (AS) is a typical metamorphic rock with well-developed bedding, widely distributed globally. Its bedding structure significantly impacts slope stability assessment, and the challenges associated with slope anchoring and support arising from bedding characteristics have become a focal point in the engineering [...] Read more.
Argillaceous slate (AS) is a typical metamorphic rock with well-developed bedding, widely distributed globally. Its bedding structure significantly impacts slope stability assessment, and the challenges associated with slope anchoring and support arising from bedding characteristics have become a focal point in the engineering field. In this study, with bedding dip angle as the key variable, mechanical tests such as uniaxial compression, triaxial compression, direct shear, and Brazilian splitting tests were conducted on AS. Additionally, field anchoring grouting diffusion tests on AS slopes were carried out. The aim is to investigate the basic mechanical properties of AS and the grout diffusion law under different bedding dip angles. The research results indicate that the bedding dip angle has a remarkable influence on the failure mode, stress–strain curve, and mechanical indices such as compressive strength and elastic modulus of AS specimens. The stress–strain curves in uniaxial and triaxial tests, as well as the stress-displacement curve in the Brazilian splitting test, all undergo four stages: crack closure, elastic deformation, crack propagation, and post-peak failure. As the bedding dip angle increases, the uniaxial and triaxial compressive strengths and elastic modulus first decrease and then increase, while the splitting tensile strength continuously decreases. The consistency of the bedding in AS causes the grout to diffuse in a near-circular pattern on the bedding plane centered around the borehole. Among the factors affecting the diffusion range of the grout, the bedding dip angle and grouting angle have a relatively minor impact, while the grouting pressure has a significant impact. A correct understanding and grasp of the anisotropic characteristics of AS and the anchoring grouting diffusion law are of great significance for slope stability assessment and anchoring design in AS areas. Full article
(This article belongs to the Special Issue Advances in Slope Stability and Rock Fracture Mechanisms)
Show Figures

Figure 1

15 pages, 7089 KB  
Article
Investigation on the Effect of Dynamic Focus Feeding and Widening Path in Nanosecond Laser Drilling
by Jianke Di and Jian Li
Micromachines 2025, 16(10), 1081; https://doi.org/10.3390/mi16101081 - 25 Sep 2025
Viewed by 485
Abstract
Laser trepan drilling and laser helical drilling are typical methods for fabrication of micro through-holes through scanning laser beam. In the drilling process, the subsequent laser pulse may be occluded by the edge and the sputter deposition at the edge of the previous [...] Read more.
Laser trepan drilling and laser helical drilling are typical methods for fabrication of micro through-holes through scanning laser beam. In the drilling process, the subsequent laser pulse may be occluded by the edge and the sputter deposition at the edge of the previous drilled trench. Dynamic focus feeding and widening path can be employed to lessen the occlusion effect and both of them are always employed in laser helical drilling. However, Widening the trench needs to remove more volume of material and may bring certain negative effects such as lowering the recoil pressure as well as less splashing melt due to the limited constraint of trench wall. The effects of dynamic feeding the focal plane and widening the scanning path on the quality and efficiency in the nanosecond laser drilling process were investigated through laser drilling holes with diameter of 500 μm on a 300 μm thick GH4169 plate. Results show that dynamic focus feeding is beneficial in both drilling efficiency and drilling quality. Through laser helical drilling with dynamic focus feeding, micro through-hole can be fabricated in 5 s, and both smaller tilting angle of 0.073 rad and smaller heat-affected zone of 0.63 mm in radius can be obtained. Widening scanning path is helpful to perforating rapidly but leads to much more recast layer coating. the quality of the micro through-holes depends not only on the utilization efficiency of the laser energy, but also on high temperature spatter deposition, which is the source of the difference between different drilling strategies. Due to the low cost in equipment and the better hole quality, the laser drilling, especially laser helical drilling, has potential applications ranging from aerospace fields to normal fields such as the agricultural machinery industry. Full article
(This article belongs to the Special Issue Recent Advances in Micro/Nanofabrication, 2nd Edition)
Show Figures

Figure 1

12 pages, 10672 KB  
Article
Optical Trapping by Aperiodic Kinoform Lenses Based on the Baum–Sweet Sequence
by Arlen B. Pérez-Hernández, Adrián Garmendía-Martínez, Vicente Ferrando, Vanesa P. Cuenca-Gotor, Walter D. Furlan, Juan A. Monsoriu and Francisco M. Muñoz-Pérez
Photonics 2025, 12(9), 938; https://doi.org/10.3390/photonics12090938 - 19 Sep 2025
Viewed by 656
Abstract
This work presents a new family of aperiodic diffractive lenses based on the Baum–Sweet sequence. To the best of our knowledge, this is the first report of a diffractive lens derived from this sequence. The study of their focusing properties reveals two focal [...] Read more.
This work presents a new family of aperiodic diffractive lenses based on the Baum–Sweet sequence. To the best of our knowledge, this is the first report of a diffractive lens derived from this sequence. The study of their focusing properties reveals two focal points with similar intensities along the optical axis. Both the main focal distances and the axial irradiance distribution are correlated with the aperiodic Baum–Sweet sequence. An approximate 60% increase in diffraction efficiency is observed when employing kinoform profiles instead of binary phase lenses. The integration of the Baum–Sweet-based kinoform lens into an optical tweezers system demonstrates its ability to simultaneously trap multiple particles at two distinct focal planes, highlighting its potential for applications in more advanced optical devices. Full article
(This article belongs to the Special Issue Advances in Optical Imaging)
Show Figures

Figure 1

4 pages, 1052 KB  
Abstract
LWIR InAs/InAsSb Superlattice Detector for Cooled FPA
by Małgorzata Kopytko, Grzegorz Kołodziej, Piotr Baranowski, Krzysztof Murawski, Łukasz Kubiszyn, Krystian Michalczewski, Bartłomiej Seredyński, Kamil Szlachetko, Jarosław Jureńczyk and Waldemar Gawron
Proceedings 2025, 129(1), 28; https://doi.org/10.3390/proceedings2025129028 - 12 Sep 2025
Viewed by 478
Abstract
Long-wavelength infrared (LWIR) focal plane arrays (FPAs) are of particular importance in thermal imaging, remote sensing, and defense applications due to their ability to detect thermal signatures in the 8–12 μm spectral range [...] Full article
Show Figures

Figure 1

10 pages, 2404 KB  
Article
Rapid Measurement of Concentration-Dependent Viscosity Based on the Imagery of Liquid-Core Cylindrical Lens
by Li Wei, Shuocong Zhang, Bo Dai and Dawei Zhang
Photonics 2025, 12(9), 872; https://doi.org/10.3390/photonics12090872 - 29 Aug 2025
Viewed by 1203
Abstract
Viscosity is an inherent frictional characteristic of fluids that enables them to resist flow or deformation, thereby reflecting their flow resistance. It is significantly affected by concentration, but traditional viscosity measurements are limited to discrete concentrations, and multiple experiments are required for different [...] Read more.
Viscosity is an inherent frictional characteristic of fluids that enables them to resist flow or deformation, thereby reflecting their flow resistance. It is significantly affected by concentration, but traditional viscosity measurements are limited to discrete concentrations, and multiple experiments are required for different concentrations, so the process is time-consuming. To overcome this limitation, this study presents a “viscosity–diffusion coupling” measurement system using a liquid-core cylindrical lens (LCL) as both the diffusion chamber and imaging element. It captures concentration profiles via focal plane imaging and solves Fick’s second law and Stokes–Einstein relation numerically to determine the viscosity at varying concentrations. Experiments on the viscosity of glycerol solutions (0–50% mass fraction) at three temperatures were conducted and showed strong agreement with literature values. The method enables continuous viscosity measurement across varying concentrations within a single experiment, demonstrating reliability, accuracy, and stability in the rapid assessment of concentration-dependent viscosity. Full article
(This article belongs to the Special Issue Optical Sensing Technologies, Devices and Their Data Applications)
Show Figures

Figure 1

24 pages, 8777 KB  
Article
Athermalization Design for the On-Orbit Geometric Calibration System of Space Cameras
by Hongxin Liu, Xuedi Chen, Chunyu Liu, Fei Xing, Peng Xie, Shuai Liu, Xun Wang, Yuxin Zhang, Weiyang Song and Yanfang Zhao
Remote Sens. 2025, 17(17), 2978; https://doi.org/10.3390/rs17172978 - 27 Aug 2025
Viewed by 887
Abstract
The on-orbit geometric calibration accuracy of high-resolution space cameras directly affects the application value of Earth observation data. Conventional on-orbit geometric calibration methods primarily rely on ground calibration fields, making it difficult to simultaneously achieve high precision and real-time monitoring. To address this [...] Read more.
The on-orbit geometric calibration accuracy of high-resolution space cameras directly affects the application value of Earth observation data. Conventional on-orbit geometric calibration methods primarily rely on ground calibration fields, making it difficult to simultaneously achieve high precision and real-time monitoring. To address this limitation, we, in collaboration with Tsinghua University, propose a high-precision, real-time, on-orbit geometric calibration system based on active optical monitoring. The proposed system employs reference lasers to integrate the space camera and the star tracker into a unified optical system, enabling real-time monitoring and correction of the camera’s exterior orientation parameters. However, during on-orbit operation, the space camera is subjected to a complex thermal environment, which induces thermal deformation of optical elements and their supporting structures, thereby degrading the measurement accuracy of the geometric calibration system. To address this issue, this article analyzes the impact of temperature fluctuations on the focal plane, the reference laser unit, and the laser relay folding unit and proposes athermalization design optimization schemes. Through the implementation of a thermal-compensated design for the collimation optical system, the pointing stability and divergence angle control of the reference laser are effectively enhanced. To address the thermal sensitivity of the laser relay folding unit, a right-angle cone mirror scheme is proposed, and its structural materials are optimized through thermo–mechanical–optical coupling analysis. Finite element analysis is conducted to evaluate the thermal stability of the on-orbit geometric calibration system, and the impact of temperature variations on measurement accuracy is quantified using an optical error assessment method. The results show that, under temperature fluctuations of 5 °C for the focal plane and the reference laser unit, 1 °C for the laser relay folding unit, and 2 °C for the star tracker, the maximum deviation of the system’s measurement reference does not exceed 0.57″ (3σ). This enables long-term, stable, high-precision monitoring of exterior orientation parameter variations and improves image positioning accuracy. Full article
Show Figures

Figure 1

46 pages, 7349 KB  
Review
Convergence of Thermistor Materials and Focal Plane Arrays in Uncooled Microbolometers: Trends and Perspectives
by Bo Wang, Xuewei Zhao, Tianyu Dong, Ben Li, Fan Zhang, Jiale Su, Yuhui Ren, Xiangliang Duan, Hongxiao Lin, Yuanhao Miao and Henry H. Radamson
Nanomaterials 2025, 15(17), 1316; https://doi.org/10.3390/nano15171316 - 27 Aug 2025
Cited by 1 | Viewed by 1743
Abstract
Uncooled microbolometers play a pivotal role in infrared detection owing to their compactness, low power consumption, and cost-effectiveness. This review comprehensively summarizes recent progress in thermistor materials and focal plane arrays (FPAs), highlighting improvements in sensitivity and integration. Vanadium oxide (VOx) [...] Read more.
Uncooled microbolometers play a pivotal role in infrared detection owing to their compactness, low power consumption, and cost-effectiveness. This review comprehensively summarizes recent progress in thermistor materials and focal plane arrays (FPAs), highlighting improvements in sensitivity and integration. Vanadium oxide (VOx) remains predominant, with Al-doped films via atomic layer deposition (ALD) achieving a temperature coefficient of resistance (TCR) of −4.2%/K and significant 1/f noise reduction when combined with single-walled carbon nanotubes (SWCNTs). Silicon-based materials, such as phosphorus-doped hydrogenated amorphous silicon (α-Si:H), exhibit a TCR exceeding −5%/K, while titanium oxide (TiOx) attains TCR values up to −7.2%/K through ALD and annealing. Emerging materials including GeSn alloys and semiconducting SWCNT networks show promise, with SWCNTs achieving a TCR of −6.5%/K and noise equivalent power (NEP) as low as 1.2 mW/√Hz. Advances in FPA technology feature pixel pitches reduced to 6 μm enabled by vertical nanotube thermal isolation, alongside the 3D heterogeneous integration of single-crystalline Si-based materials with readout circuits, yielding improved fill factors and responsivity. State-of-the-art VOx-based FPAs demonstrate noise equivalent temperature differences (NETD) below 30 mK and specific detectivity (D*) near 2 × 1010 cm⋅Hz 1/2/W. Future advancements will leverage materials-driven innovation (e.g., GeSn/SWCNT composites) and process optimization (e.g., plasma-enhanced ALD) to enable ultra-high-resolution imaging in both civil and military applications. This review underscores the central role of material innovation and system optimization in propelling microbolometer technology toward ultra-high resolution, high sensitivity, high reliability, and broad applicability. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

16 pages, 8310 KB  
Article
An Economically Viable Minimalistic Solution for 3D Display Discomfort in Virtual Reality Headsets Using Vibrating Varifocal Fluidic Lenses
by Tridib Ghosh, Mohit Karkhanis and Carlos H. Mastrangelo
Virtual Worlds 2025, 4(3), 38; https://doi.org/10.3390/virtualworlds4030038 - 26 Aug 2025
Viewed by 1416
Abstract
Herein, we report a USB-powered VR-HMD prototype integrated with our 33 mm aperture varifocal liquid lenses and electronic drive components, all assembled in a conventional VR-HMD form-factor. In this volumetric-display-based VR system, a sequence of virtual images are rapidly flash-projected at different plane [...] Read more.
Herein, we report a USB-powered VR-HMD prototype integrated with our 33 mm aperture varifocal liquid lenses and electronic drive components, all assembled in a conventional VR-HMD form-factor. In this volumetric-display-based VR system, a sequence of virtual images are rapidly flash-projected at different plane depths in front of the observer and are synchronized with the correct accommodations provided by the varifocal lenses for depth-matched focusing at chosen sweep frequency. This projection mechanism aids in resolving the VAC that is present in conventional fixed-depth VR. Additionally, this system can address refractive error corrections like myopia and hyperopia for prescription users and do not require any eye-tracking systems. We experimentally demonstrate these lenses can vibrate up to frequencies approaching 100 Hz and report the frequency response of the varifocal lenses and their focal characteristics in real time as a function of the drive frequency. When integrated with the prototype’s 120 fps VR display system, these lenses produce a net diopter change of 2.3 D at a sweep frequency of 45 Hz while operating at ~70% of its maximum actuation voltage. The components add a total weight of around 50 g to the off-the-shelf VR set, making it a cost-effective but lightweight minimal solution. Full article
Show Figures

Figure 1

Back to TopTop