Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (892)

Search Parameters:
Keywords = fluidized beds

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
45 pages, 3643 KiB  
Review
Systematic Review on Fluidized Bed Fault Diagnosis: From Fault Characteristics to Data-Driven Methods
by Jinjin Liu, Yibin Huang, Yandi Ai, Gang Wang and Jenisha Singh
Electronics 2025, 14(15), 3043; https://doi.org/10.3390/electronics14153043 - 30 Jul 2025
Abstract
In recent times, circulating fluidized beds have become increasingly important in various industries, such as in the metallurgy, pharmaceuticals, and food-processing industries, due to their excellent fuel adaptability and environmental friendliness. Therefore, how to diagnose fluidized bed flow faults more efficiently and handle [...] Read more.
In recent times, circulating fluidized beds have become increasingly important in various industries, such as in the metallurgy, pharmaceuticals, and food-processing industries, due to their excellent fuel adaptability and environmental friendliness. Therefore, how to diagnose fluidized bed flow faults more efficiently and handle them earlier are important issues that cannot be ignored. This article starts with an introduction to fluidized beds and their common fault phenomena, and then integrates the research of scholars on fluidized bed characteristic-monitoring methods and fault diagnosis methods in recent years and summarizes the shortcomings of each method. Subsequently, a summary and induction of data-driven fault diagnosis methods for circulating fluidized beds are conducted, and the applicability, advantages, and disadvantages of each method are pointed out. Finally, this article presents some of the main challenges currently faced and suggests several possible future development directions. Full article
(This article belongs to the Special Issue Digital Intelligence Technology and Applications)
Show Figures

Figure 1

20 pages, 6964 KiB  
Article
Mineralogical Analysis of Factors Affecting the Grade of High-Gradient Magnetic Separation Concentrates and Experimental Study on TiO2 Enrichment Using ARC
by Yifei Liu, Zhenqiang Liu, Yuhua Wang, Yuxin Zhang and Dongfang Lu
Minerals 2025, 15(8), 799; https://doi.org/10.3390/min15080799 - 30 Jul 2025
Viewed by 121
Abstract
High-gradient magnetic separation is a key step in the pre-concentration of ilmenite before flotation, particularly in the gravity separation process. However, as the amount of weakly magnetic gangue minerals increases, the grade of the coarse concentrate from high-gradient magnetic separation decreases. This paper [...] Read more.
High-gradient magnetic separation is a key step in the pre-concentration of ilmenite before flotation, particularly in the gravity separation process. However, as the amount of weakly magnetic gangue minerals increases, the grade of the coarse concentrate from high-gradient magnetic separation decreases. This paper investigates the mineralogical factors affecting the enrichment efficiency of high-gradient magnetic separation. Additionally, a newly developed stirred fluidized bed device, an agitated reflux classifier (ARC), was successfully applied to remove weakly magnetic gangue minerals that are difficult to separate by high-gradient magnetic separation (HGMS). For low-grade ilmenite with a feed grade of 3.97%, a combined process of magnetic separation and gravity separation was employed, achieving a concentrate with a grade of 16.50% and a recovery rate of 54.11%. This concentrate meets the requirements for flotation feed. This study provides a new approach for the beneficiation of low-grade ilmenite. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

22 pages, 8896 KiB  
Article
Synergistic Sequestration and Hydroxyapatite-Based Recovery of Phosphorus by the Coupling Process of CaCl2/Modified Oyster Shell and Circulating Fluidized Bed Reactor
by Xuejun Long, Nanshan Yang, Huiqi Wang, Jun Fang, Rui Wang, Zhenxing Zhong, Peng Yu, Xuelian Xu, Hao Huang, Jun Wan, Xiejuan Lu and Xiaohui Wu
Catalysts 2025, 15(8), 706; https://doi.org/10.3390/catal15080706 - 24 Jul 2025
Viewed by 292
Abstract
A novel modified oyster shell (MOS-800) was developed to enhance phosphorus sequestration and recovery from wastewater. Approximately 33.3% of phosphate was eliminated by the MOS-800, which also exhibited excellent pH regulation capabilities. In semicontinuous tests, a synergistic phosphorus separation was achieved through the [...] Read more.
A novel modified oyster shell (MOS-800) was developed to enhance phosphorus sequestration and recovery from wastewater. Approximately 33.3% of phosphate was eliminated by the MOS-800, which also exhibited excellent pH regulation capabilities. In semicontinuous tests, a synergistic phosphorus separation was achieved through the coupling process of CaCl2/MOS-800 and a circulating fluidized bed (CFB), resulting in an 86.5% phosphate separation. In continuous flow experiments, phosphorus elimination reached 98.2%. Material characterization revealed that hydroxyapatite (HAP) was the primary component of the crystallized products. Additionally, MOS-800 released 506.5–572.2 mg/g Ca2+ and 98.1 mg/g OH. A four-stage heterogeneous crystallization mechanism was proposed for the coupling process. In the first stage, Ca2+ quickly reacted with phosphate to form Ca-P ion clusters, etc. In the second stage, these clusters packed randomly to form spherical amorphous calcium phosphate (ACP). In the third stage, the ACP spheres were transformed and rearranged into sheet-like HAP crystallites, Finally, in the fourth stage, the HAP crystallites aggregated on the surface of crystal seeds, also with the addition of crystal seeds and undissolved MOS-800, potentially catalyzing the heterogeneous crystallization. These findings suggest that the CaCl2/MOS-800/CFB system is a promising technique for phosphate recovery from wastewater. Full article
Show Figures

Figure 1

49 pages, 4131 KiB  
Review
Municipal Solid Waste Gasification: Technologies, Process Parameters, and Sustainable Valorization of By-Products in a Circular Economy
by Nicoleta Ungureanu, Nicolae-Valentin Vlăduț, Sorin-Ștefan Biriș, Mariana Ionescu and Neluș-Evelin Gheorghiță
Sustainability 2025, 17(15), 6704; https://doi.org/10.3390/su17156704 - 23 Jul 2025
Viewed by 324
Abstract
Gasification of municipal solid waste and other biogenic residues (e.g., biomass and biowaste) is increasingly recognized as a promising thermochemical pathway for converting non-recyclable fractions into valuable energy carriers, with applications in electricity generation, district heating, hydrogen production, and synthetic fuels. This paper [...] Read more.
Gasification of municipal solid waste and other biogenic residues (e.g., biomass and biowaste) is increasingly recognized as a promising thermochemical pathway for converting non-recyclable fractions into valuable energy carriers, with applications in electricity generation, district heating, hydrogen production, and synthetic fuels. This paper provides a comprehensive analysis of major gasification technologies, including fixed bed, fluidized bed, entrained flow, plasma, supercritical water, microwave-assisted, high-temperature steam, and rotary kiln systems. Key aspects such as feedstock compatibility, operating parameters, technology readiness level, and integration within circular economy frameworks are critically evaluated. A comparative assessment of incineration and pyrolysis highlights the environmental and energetic advantages of gasification. The valorization pathways for main product (syngas) and by-products (syngas, ash, tar, and biochar) are also explored, emphasizing their reuse in environmental, agricultural, and industrial applications. Despite progress, large-scale adoption in Europe is constrained by economic, legislative, and technical barriers. Future research should prioritize scaling emerging systems, optimizing by-product recovery, and improving integration with carbon capture and circular energy infrastructures. Supported by recent European policy frameworks, gasification is positioned to play a key role in sustainable waste-to-energy strategies, biomass valorization, and the transition to a low-emission economy. Full article
(This article belongs to the Special Issue Sustainable Waste Process Engineering and Biomass Valorization)
Show Figures

Figure 1

36 pages, 8968 KiB  
Article
Stabilization of High-Volume Circulating Fluidized Bed Fly Ash Composite Gravels via Gypsum-Enhanced Pressurized Flue Gas Heat Curing
by Nuo Xu, Rentuoya Sa, Yuqing He, Jun Guo, Yiheng Chen, Nana Wang, Yuchuan Feng and Suxia Ma
Materials 2025, 18(15), 3436; https://doi.org/10.3390/ma18153436 - 22 Jul 2025
Viewed by 174
Abstract
Circulating fluidized bed fly ash (CFBFA) stockpiles release alkaline dust, high-pH leachate, and secondary CO2/SO2—an environmental burden that exceeds 240 Mt yr−1 in China alone. Yet, barely 25% is recycled, because the high f-CaO/SO3 contents destabilize conventional [...] Read more.
Circulating fluidized bed fly ash (CFBFA) stockpiles release alkaline dust, high-pH leachate, and secondary CO2/SO2—an environmental burden that exceeds 240 Mt yr−1 in China alone. Yet, barely 25% is recycled, because the high f-CaO/SO3 contents destabilize conventional cementitious products. Here, we presents a pressurized flue gas heat curing (FHC) route to bridge this scientific deficit, converting up to 85 wt% CFBFA into structural lightweight gravel. The gypsum dosage was optimized, and a 1:16 (gypsum/CFBFA) ratio delivered the best compromise between early ettringite nucleation and CO2-uptake capacity, yielding the highest overall quality. The optimal mix reaches 9.13 MPa 28-day crushing strength, 4.27% in situ CO2 uptake, 1.75 g cm−3 bulk density, and 3.59% water absorption. Multi-technique analyses (SEM, XRD, FTIR, TG-DTG, and MIP) show that FHC rapidly consumes expansive phases, suppresses undesirable granular-ettringite formation, and produces a dense calcite/needle-AFt skeleton. The FHC-treated CFBFA composite gravel demonstrates 30.43% higher crushing strength than JTG/TF20-2015 standards, accompanied by a water absorption rate 28.2% lower than recent studies. Its superior strength and durability highlight its potential as a low-carbon lightweight aggregate for structural engineering. A life-cycle inventory gives a cradle-to-gate energy demand of 1128 MJ t−1 and a process GWP of 226 kg CO2-eq t−1. Consequently, higher point-source emissions paired with immediate mineral sequestration translate into a low overall climate footprint and eliminate the need for CFBFA landfilling. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Graphical abstract

15 pages, 6549 KiB  
Article
Carbonation Deactivation of Limestone in a Micro-Fluidized Bed Reactor
by P. Asiedu-Boateng, N. Y. Asiedu, G. S. Patience, J. R. McDonough and V. Zivkovic
Catalysts 2025, 15(8), 697; https://doi.org/10.3390/catal15080697 - 22 Jul 2025
Viewed by 303
Abstract
Carbonation–calcination looping using CaO-based natural sorbents such as limestone is a promising technology for the capture of CO2 from fossil fuel-based power plants. In this study, the CO2 capture capacities of Buipe, Oterpkolu, and Nauli limestones from quarries in Ghana were [...] Read more.
Carbonation–calcination looping using CaO-based natural sorbents such as limestone is a promising technology for the capture of CO2 from fossil fuel-based power plants. In this study, the CO2 capture capacities of Buipe, Oterpkolu, and Nauli limestones from quarries in Ghana were measured in a laboratory-scale micro-fluidized bed reactor through multiple carbonation–calcination cycles. The changes in CO2 capture capacity and conversion with the number of cycles mostly correlated with the changes in the physico-chemical properties: Capture capacity dropped from >60% to <15% after 15 cycles and the surface area dropped to below 5 m2 g−1 from as much as 20 m2 g−1 (for the Oterkpolu). The pore volume of the Nauli limestone was essentially invariant with the number of cycles while it increased for the Buipe limestone, and initially increased and then dropped for the Oterpkolu limestone. This decrease was likely due to sintering and a reduction in the number of micropores. The unusual increase in pore volume after multiple cycles was due to the formation of mesopores with smaller pore diameters. Full article
(This article belongs to the Special Issue Fluidizable Catalysts for Novel Chemical Processes)
Show Figures

Figure 1

14 pages, 2161 KiB  
Article
Inferential Online Measurement of 3D Fractal Dimension of Spray Fluidized Bed Agglomerates
by Jialin Men, Aisel Ajalova, Evangelos Tsotsas and Andreas Bück
Processes 2025, 13(7), 2316; https://doi.org/10.3390/pr13072316 - 21 Jul 2025
Viewed by 253
Abstract
In this work, a model-based approach to inferentially obtaining information about the 3D fractal dimension of agglomerates produced in spray fluidized beds is presented. The method utilizes high-detail but scarce offline information from X-ray microcomputed tomography for establishing and training an inferential relationship [...] Read more.
In this work, a model-based approach to inferentially obtaining information about the 3D fractal dimension of agglomerates produced in spray fluidized beds is presented. The method utilizes high-detail but scarce offline information from X-ray microcomputed tomography for establishing and training an inferential relationship with online information that is easy and fast to obtain. The online measurement information is the geometric roundness of the single agglomerate. To investigate the interpolation capability of the inferential approach, three different strategies are evaluated: correlation with individual process conditions; correlation with parameters adjusted to process parameters; and correlation with respect to a range of process conditions. It is shown that the approach incorporating process conditions provides sufficient accuracy over a wide range of conditions. The inferential evaluation of single agglomerate 3D fractal dimension is achieved in 5 ms on average. This enables the measurement of the distribution of 3D fractal dimension in an online setting for product quality monitoring and control. Several examples illustrate the capabilities of the approach, as well as current limitations. Full article
(This article belongs to the Section Particle Processes)
Show Figures

Figure 1

21 pages, 5207 KiB  
Article
Experimental Study on Co-Firing of Coal and Biomass in Industrial-Scale Circulating Fluidized Bed Boilers
by Haoteng Zhang and Chunjiang Yu
Energies 2025, 18(14), 3832; https://doi.org/10.3390/en18143832 - 18 Jul 2025
Viewed by 291
Abstract
Based on the low-carbon transition needs of coal-fired boilers, this study conducted industrial trials of direct biomass co-firing on a 620 t/h high-temperature, high-pressure circulating fluidized bed (CFB) boiler, gradually increasing the co-firing ratio. It used compressed biomass pellets, achieving stable 20 wt% [...] Read more.
Based on the low-carbon transition needs of coal-fired boilers, this study conducted industrial trials of direct biomass co-firing on a 620 t/h high-temperature, high-pressure circulating fluidized bed (CFB) boiler, gradually increasing the co-firing ratio. It used compressed biomass pellets, achieving stable 20 wt% (weight percent) operation. By analyzing boiler parameters and post-shutdown samples, the comprehensive impact of biomass co-firing on the boiler system was assessed. The results indicate that biomass pellets were blended with coal at the last conveyor belt section before the furnace, successfully ensuring operational continuity during co-firing. Further, co-firing biomass up rates of to 20 wt% do not significantly impact the fuel combustion efficiency (gaseous and solid phases) or boiler thermal efficiency and also have positive effects in reducing the bottom ash and SOx and NOx emissions and lowering the risk of low-temperature corrosion. The biomass co-firing slightly increases the combustion share in the dense phase zone and raises the bed temperature. The strong ash adhesion characteristics of the biomass were observed, which were overcome by increasing the ash blowing frequency. Under 20 wt% co-firing, the annual CO2 emissions reductions can reach 130,000 tons. This study provides technical references and practical experience for the engineering application of direct biomass co-firing in industrial-scale CFB boilers. Full article
(This article belongs to the Section A4: Bio-Energy)
Show Figures

Figure 1

12 pages, 5245 KiB  
Article
Evaluation of Fly Ash Composition from Municipal Solid Waste Incinerators: The Role of the Incinerator Type and Flue Gas Deacidification Process
by Xuetong Qu, Yanan Wang, Feifei Chen, Chuqiao Li, Yunfei He, Jibo Dou, Shuai Zhang, Jiafeng Ding, Hangjun Zhang and Yuchi Zhong
Toxics 2025, 13(7), 588; https://doi.org/10.3390/toxics13070588 - 14 Jul 2025
Viewed by 296
Abstract
The resource utilization potential and environmental impact of fly ash from municipal solid waste incinerators (MSWIs) have attracted wide attention. In this study, four MSWIs in Hangzhou, Zhejiang Province were selected to systematically evaluate the effects of different incinerator types and flue gas [...] Read more.
The resource utilization potential and environmental impact of fly ash from municipal solid waste incinerators (MSWIs) have attracted wide attention. In this study, four MSWIs in Hangzhou, Zhejiang Province were selected to systematically evaluate the effects of different incinerator types and flue gas deacidification processes on fly ash’s oxide and heavy metal components and their temporal changes as well as conduct risk assessment. The results showed that the contents of MgO, Al2O3, SiO2, and Fe2O3 in the grate furnace fly ash were significantly lower than those in the fluidized bed fly ash, but the compressive strength of its fly ash was high. Chemicals added during the flue gas deacidification process such as CaO and NaHCO3 significantly affected the contents of CaO and Na2O. In addition, heavy metals such as Cu, Mn, Cr, and Ni were mainly distributed in the fluidized bed fly ash, while heavy metals such as Pb and Cd were mainly collected in the grate furnace fly ash. The concentrations of various components in the fly ash fluctuated but were not significant under different time dimensions. Risk assessment indicated that heavy metals such as Cd, Pb, and Sb posed a high risk. This study is expected to provide theoretical support for the safe management and resource utilization of fly ash. Full article
Show Figures

Graphical abstract

26 pages, 9003 KiB  
Article
A Pilot-Scale Gasifier Freeboard Equipped with Catalytic Filter Candles for Particulate Abatement and Tar Conversion: 3D-CFD Simulations and Experimental Tests
by Alessandra Tacconi, Pier Ugo Foscolo, Sergio Rapagnà, Andrea Di Carlo and Alessandro Antonio Papa
Processes 2025, 13(7), 2233; https://doi.org/10.3390/pr13072233 - 12 Jul 2025
Viewed by 422
Abstract
This work deals with the catalytic steam reforming of raw syngas to increase the efficiency of coupling gasification with downstream processes (such as fuel cells and catalytic chemical syntheses) by producing high-temperature, ready-to-use syngas without cooling it for cleaning and conditioning. Such a [...] Read more.
This work deals with the catalytic steam reforming of raw syngas to increase the efficiency of coupling gasification with downstream processes (such as fuel cells and catalytic chemical syntheses) by producing high-temperature, ready-to-use syngas without cooling it for cleaning and conditioning. Such a combination is considered a key point for the future exploitation of syngas produced by steam gasification of biogenic solid fuel. The design and construction of an integrated gasification and gas conditioning system were proposed approximately 20 years ago; however, they still require further in-depth study for practical applications. A 3D model of the freeboard of a pilot-scale, fluidized bed gasification plant equipped with catalytic ceramic candles was used to investigate the optimal operating conditions for in situ syngas upgrading. The global kinetic parameters for methane and tar reforming reactions were determined experimentally. A fluidized bed gasification reactor (~5 kWth) equipped with a 45 cm long segment of a fully commercial filter candle in its freeboard was used for a series of tests at different temperatures. Using a computational fluid dynamics (CFD) description, the relevant parameters for apparent kinetic equations were obtained in the frame of a first-order reaction model to describe the steam reforming of key tar species. As a further step, a CFD model of the freeboard of a 100 kWth gasification plant, equipped with six catalytic ceramic candles, was developed in ANSYS FLUENT®. The composition of the syngas input into the gasifier freeboard was obtained from experimental results based on the pilot-scale plant. Simulations showed tar catalytic conversions of 80% for toluene and 41% for naphthalene, still insufficient compared to the threshold limits required for operating solid oxide fuel cells (SOFCs). An overly low freeboard temperature level was identified as the bottleneck for enhancing gas catalytic conversions, so further simulations were performed by injecting an auxiliary stream of O2/steam (50/50 wt.%) through a series of nozzles at different heights. The best simulation results were obtained when the O2/steam stream was fed entirely at the bottom of the freeboard, achieving temperatures high enough to achieve a tar content below the safe operating conditions for SOFCs, with minimal loss of hydrogen content or LHV in the fuel gas. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

24 pages, 13937 KiB  
Article
Investigation into the Strength, Hydration, and Microstructural Characteristics of Clinker-Free Cement Composed of Phosphorus Slag, Fluidized Bed Combustion Bottom Ash, and Lime
by Yanzhou Peng, Haitian Li, Hefei Yin, Ji Xiao and Gang Xu
Materials 2025, 18(14), 3266; https://doi.org/10.3390/ma18143266 - 10 Jul 2025
Viewed by 371
Abstract
This study focuses on developing a novel clinker-free cement, specifically comprising phosphorus slag-based cementitious materials (PSCMs), by utilizing lime and industrial byproducts, including granulated electric furnace phosphorus slag and fluidized bed combustion bottom ash. The optimal composition of PSCM was determined by investigating [...] Read more.
This study focuses on developing a novel clinker-free cement, specifically comprising phosphorus slag-based cementitious materials (PSCMs), by utilizing lime and industrial byproducts, including granulated electric furnace phosphorus slag and fluidized bed combustion bottom ash. The optimal composition of PSCM was determined by investigating the effects of different proportions of activators (water glass and sodium sulfate) and retarder (potassium fluoride) on the setting time and the mechanical strength of PSCMs. Performance evaluations demonstrated that the compressive and flexural strengths of the optimal PSCM formulation at 28 days were 64.1 MPa and 7.5 MPa, respectively. Notably, concrete prepared with the optimal PSCM exhibited superior freeze–thaw resistance and sulfate resistance compared to Portland cement concrete of equivalent strength grades. The comprehensive characterization of selected PSCM compositions, conducted using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and scanning electron microscope–energy-dispersive spectrometry (SEM-EDS), provided in-depth insights into the interrelationship among mechanical properties, durability, and microstructural characteristics. SEM-EDS analysis confirmed that calcium aluminosilicate hydrate and sodium aluminosilicate hydrate are the predominant hydration products of PSCMs. FTIR and TG analyses elucidated the continuous hydration behavior of PSCMs during the curing process, while SEM observations revealed a densely compact microstructure in the hardened PSCM paste. Full article
(This article belongs to the Topic Novel Cementitious Materials)
Show Figures

Figure 1

18 pages, 2872 KiB  
Article
Numerical Simulation and Optimization of Industrial-Scale Fluidized Bed Reactor Coupling Biomass Catalytic Pyrolysis Kinetics
by Ruobing Lin, Siyu Wang, Yujie Tao, Xiujuan Feng and Huiyan Zhang
Energies 2025, 18(14), 3601; https://doi.org/10.3390/en18143601 - 8 Jul 2025
Viewed by 227
Abstract
The application of fluidized bed reactors to biomass fast pyrolysis is regarded as a promising technology for enabling high-value utilization of biomass. This work established a three-dimensional numerical model of an industrial-scale fluidized bed reactor for biomass catalytic pyrolysis, employing the multiphase particle-in-cell [...] Read more.
The application of fluidized bed reactors to biomass fast pyrolysis is regarded as a promising technology for enabling high-value utilization of biomass. This work established a three-dimensional numerical model of an industrial-scale fluidized bed reactor for biomass catalytic pyrolysis, employing the multiphase particle-in-cell method (MP-PIC) and coupling catalytic pyrolysis kinetics. Primary gas flow rate and biomass–catalyst injection modes were optimized to further improve the performance of the reactor. The model received additional validation from experimental data, primarily to ensure prediction accuracy. The results revealed that an optimal primary gas flow rate of 4 kg/s achieved a peak catalytic efficiency of 71.3%. Using maximum high-quality liquid fuels and adopting a relatively dispersed inlet mode with opposite jetting for biomass and catalyst promoted uniform particle distribution and thermal homogeneity in the dense phase zone, further increasing the catalytic efficiency to 75.6%. With the integration of the multiphase particle-in-cell (MP-PIC) method with catalytic pyrolysis kinetics at the industrial-scale, this work could provide theoretical guidance for designing fluidized bed catalytic pyrolysis reactors and optimizing biomass catalytic pyrolysis processes. Full article
(This article belongs to the Section A4: Bio-Energy)
Show Figures

Figure 1

16 pages, 726 KiB  
Article
Incorporation of Agglomerated Spirulina platensis Powder in Yogurt: A Strategy for Enhancing Nutritional Quality and Bioactive Compounds
by Rosana Correia Vieira Albuquerque, Carlos Eduardo de Farias Silva, Margarete Cabral dos Santos Silva, Wanderson dos Santos Carneiro, Kaciane Andreola, Brígida Maria Villar da Gama, Marcos Vinicius Azevedo Figueiredo, Albanise Enide da Silva and João Victor Oliveira Nascimento da Silva
Fermentation 2025, 11(7), 389; https://doi.org/10.3390/fermentation11070389 - 8 Jul 2025
Viewed by 476
Abstract
The incorporation of Spirulina platensis has been studied as a strategy to enrich food with bioactive compounds. Recent studies have expanded the use of Spirulina in yogurts, seeking to combine its nutritional value with the practicality of functional foods. This study evaluated the [...] Read more.
The incorporation of Spirulina platensis has been studied as a strategy to enrich food with bioactive compounds. Recent studies have expanded the use of Spirulina in yogurts, seeking to combine its nutritional value with the practicality of functional foods. This study evaluated the physicochemical and bioactive compounds characteristics of yogurt incorporating commercial and agglomerated (with 30% maltodextrin, efficient carrier agent, in a fluidized bed) Spirulina platensis powder, at concentrations of 0.5–2.0% (w/v) prior to fermentation. This study is novel as it is the first to report the incorporation of S. platensis agglomerated in a fluidized bed into yogurt. Fermentations were carried out at 42 °C for 5 h and then the stirred yogurts were stored at 4 °C for 28 days for stabilization. All yogurts obtained achieved characteristic values according to the Brazilian Normative Instruction 46/2007 with total acidity (0.6–1.5%), pH (3.5–4.6), and viable lactic bacteria of at least 106 CFU.g−1, without significantly affecting the quality of the final product or the activity of lactic acid bacteria. For the nutritional composition, it was observed that the greater the amount of cyanobacteria incorporated, the higher the concentrations of proteins (4.2–5.6%) and ashes (1.3–1.8%) in the product, and for the bioactive compounds, the phenolic compounds ranged between 2.98 and 14.96 mg.100 g−1 and significantly enriched the yogurt with phycocyanin (2.19–3.65 mg.100 g−1), β-carotene (4.73–6.37 mg.100 g−1), and chlorophyll a (12.39–13.77 mg.100 g−1), for the formulations using commercial and agglomerated S. platensis powder. Agglomeration improved the stability of bioactive compounds after fermentation and stabilization processes of the yogurts. Also, it was found that the agglomerated S. platensis powder preserved a higher amount of bioactive compounds in the yogurt, which fulfills one of the main objectives of incorporating this cyanobacterium. Full article
(This article belongs to the Special Issue Cyanobacteria and Eukaryotic Microalgae)
Show Figures

Figure 1

18 pages, 4473 KiB  
Article
Comparison of Dry and Wet Torrefaction for Biochar Production from Olive Leaves and Olive Pomace
by Rafail Isemin, Alexander Mikhalev, Sergey Kuzmin, Mathieu Brulé, Tarik Ainane, Oleg Milovanov, Dmitry Klimov and Kirill Milovanov
Processes 2025, 13(7), 2155; https://doi.org/10.3390/pr13072155 - 7 Jul 2025
Cited by 1 | Viewed by 368
Abstract
This work investigated the effect of experimental conditions of dry and wet torrefaction on the properties of olive leaves and olive pomace. Torrefaction improved the fuel properties of olive waste. According to Van Krevelen parameters (O/C and H/C ratios), torrefied biomass, tested as [...] Read more.
This work investigated the effect of experimental conditions of dry and wet torrefaction on the properties of olive leaves and olive pomace. Torrefaction improved the fuel properties of olive waste. According to Van Krevelen parameters (O/C and H/C ratios), torrefied biomass, tested as solid biofuel, achieved a similar quality threshold to lignite. For example, dry torrefaction conducted at 230 °C for 80 min reduced the O/C and H/C ratios of olive leaves from 0.51 and 1.51 for raw biomass to 0.25 and 1.17 for torrefied biomass, respectively. Under the same conditions, the O/C and H/C ratios of olive pomace were also reduced from 0.34 and 1.60 to 0.27 and 1.36, respectively. Calorific values of raw olive leaves and olive pomace amounted to 18.0 and 23.2 MJ/kg, respectively. Following dry torrefaction and biomass conversion into biochar, calorific values of olive leaves and olive pomace increased by 24% and 14% up to 22.2 and 26.3 MJ/kg through dry torrefaction, compared with 17% and 23% increments up to 21.1 and 28.5 MJ/kg through wet torrefaction, respectively. Interestingly, biomass processing through wet torrefaction performed in a fluidized bed powered by superheated steam could be completed 8- to 12-fold more rapidly than dry torrefaction. SEM analysis indicated a breakdown of the surface structure of olive waste following the torrefaction process. According to the Brunauer–Emmett–Teller (BET) method, total pore surface areas of biochar obtained from wet torrefaction of olive pomace and olive leaves amounted to 3.6 m2/g and 0.8 m2/g, with total pore volumes amounting to 0.0225 cm3/g and 0.0103 cm3/g, respectively. Maximal contents of 5-hydroxymethylfurfural and furfural in liquid by-products from dry torrefaction amounted to 1930 and 1880 mg/1 kg, respectively. Alternately, in liquid by-products from wet torrefaction, concentrations of these high-value compounds remained very low. Full article
(This article belongs to the Special Issue Biomass Pretreatment for Thermochemical Conversion)
Show Figures

Figure 1

32 pages, 1477 KiB  
Review
Photochemical Catalysts for Hydrocarbons and Biomass Derivates Reforming in Intensified Processes
by Mattia Boscherini and Francesco Miccio
Processes 2025, 13(7), 2150; https://doi.org/10.3390/pr13072150 - 6 Jul 2025
Viewed by 310
Abstract
Photocatalysts for applications in different sectors, e.g., civil and environmental, are already developed to a mature extent and allow, for example, the purification of gaseous and liquid streams or the self−cleaning surfaces. The application of photocatalysts in the industrial sector is, however, quite [...] Read more.
Photocatalysts for applications in different sectors, e.g., civil and environmental, are already developed to a mature extent and allow, for example, the purification of gaseous and liquid streams or the self−cleaning surfaces. The application of photocatalysts in the industrial sector is, however, quite limited. The review addresses the specific topic of the photocatalytic reforming of methane and biomass derivates. In this regard, recent advances in materials science are reported and discussed, in particular regarding doped and modified oxides (TiO2 and ZrO2) or non−oxidic ceramics. Concerning process integration, a comparison between traditional two−dimensional photoreactors and fluidized bed systems is proposed and design guidelines are drawn, with indications of the possible benefits. Photocatalytic fluidized beds appear more suitable for small− and medium−scale integrated processes of reforming, operating at lower temperatures than traditional ones for distributed hydrogen generation. Full article
(This article belongs to the Special Issue Mechanisms, Devices and Applications of Photocatalytic Processes)
Show Figures

Figure 1

Back to TopTop