Mineralogical Analysis of Factors Affecting the Grade of High-Gradient Magnetic Separation Concentrates and Experimental Study on TiO2 Enrichment Using ARC
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Equipment
2.3. Analysis Methods
3. Results and Discussion
3.1. Process Mineralogical Analysis of Ore Samples
3.1.1. Elemental Composition of Ore Samples
3.1.2. Distribution State of Valuable Elements
3.1.3. Primary Mineral Distribution Relationships
3.1.4. Analysis of Particle Size Composition and Metal Distribution of Ore Samples
3.1.5. Intergrowth Relationship and Degree of Liberation of Mineral Samples
3.2. Exploratory Experiment
3.3. Response Surface Interaction Effects Test
3.3.1. Effects of Factors on the TiO2 Grade
3.3.2. Effects of Factors on the TiO2 Recovery
3.3.3. Influence of Factors on Separating Efficiency
3.4. Results of Experiments
Chemical Multi-Element Analysis of Concentrate and Tailings of ARC
4. Conclusions
- (1)
- In the ARC system, after optimizing through response surface methodology, when the feed concentration is 40%, the feed flow rate is 105 mL/min, the fluidization water flow is 225 mL/min, and the underflow rate is 30 mL/min. A feed grade of TiO2 at 8.39% can achieve a TiO2 concentrate grade of 19.61%, with a recovery of 58.69% for the roughing concentrate. For the low-grade ilmenite ore with a TiO2 grade of 3.97%, a combined magnetic-gravity separation process was used, resulting in a concentrate with a TiO2 grade of 16.50% and a recovery of 54.11% to sample. These results highlight the ARC’s potential for significantly upgrading TiO2 grade while maintaining reasonable recovery.
- (2)
- Chemical multi-element analysis confirmed that the concentrate was highly enriched in titanium and iron, whereas the tailings were rich in gangue components such as SiO2, MgO, and Al2O3. This indicates that the ARC effectively separates valuable minerals from unwanted materials based on density differences. The low TiO2 grade in the tailings further demonstrates the ARC’s selective enrichment capability.
- (3)
- Magnetic separation can effectively remove non-magnetic gangue minerals such as quartz and feldspar, but it is challenging to efficiently remove weakly magnetic gangue minerals like ilmenite and chlorite. Because of that, the use of the ARC can achieve cost-effective and efficient removal of weakly magnetic gangue minerals. Specifically, the application of the ARC can effectively enhance the grade of the concentrate obtained from high-gradient magnetic separation.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Wu, F.; Li, X.; Wang, Z.; Wu, L.; Guo, H.J.; Xiong, X.H.; Zhang, X.P.; Wang, X.J. Hydrogen peroxide leaching of hydrolyzed titania residue prepared from mechanically activated Panzhihua ilmenite leached by hydrochloric acid. Int. J. Miner. Process. 2011, 98, 106–112. [Google Scholar] [CrossRef]
- Liu, S.-S.; Guo, Y.-F.; Qiu, G.-Z.; Jiang, T.; Chen, F. Solid-state reduction kinetics and mechanism of pre-oxidized vanadium-titanium magnetite concentrate. Trans. Nonferrous Met. Soc. China 2014, 24, 3372–3377. [Google Scholar] [CrossRef]
- El Khalloufi, M.; Drevelle, O.; Soucy, G. Titanium: An overview of resources and production methods. Minerals 2021, 11, 1425. [Google Scholar] [CrossRef]
- Pang, K.N.; Zhou, M.F.; Lindsley, D.; Zhao, D.; Malpas, J. Origin of Fe–Ti Oxide Ores in Mafic Intrusions: Evidence from the Panzhihua Intrusion, SW China. J. Petrol. 2008, 49, 295–313. [Google Scholar] [CrossRef]
- Yan, W.; Li, W.; Yang, Y.; Zeng, X.; Deng, J.; Li, L. Research on mineral processing technology of ultrafine ilmenite resources in Panzhihua-Xichang area. Multipurp. Util. Miner. Resour. 2023, 8, 55–61. [Google Scholar]
- Cong, Y.; Dong, Q.; Bagas, L.; Xiao, K.; Wang, K. Integrated GIS-based modelling for the quantitative prediction of magmatic Ti-V-Fe deposits: A case study in the Panzhihua-Xichang area of southwest China. Ore Geol. Rev. 2017, 91, 1102–1118. [Google Scholar] [CrossRef]
- Zhai, J.; Chen, P.; Sun, W.; Chen, W.; Wan, S. A review of mineral processing of ilmenite by flotation. Miner. Eng. 2020, 157, 106558. [Google Scholar] [CrossRef]
- Salmani Nuri, O.; Irannajad, M.; Mehdilo, A. Effect of surface dissolution by oxalic acid on flotation behavior of minerals. J. Mater. Res. Technol. 2019, 8, 2336–2349. [Google Scholar] [CrossRef]
- Bulatovic, S.M. Flotation of Titanium Minerals. In Handbook of Flotation Reagents: Chemistry, Theory and Practice; Elsevier: Amsterdam, The Netherlands, 2010; Volume 3, pp. 175–207. [Google Scholar] [CrossRef]
- Yuan, Z.; Zhao, X.; Lu, J.; Lv, H.; Li, L. Innovative pre-concentration technology for recovering ultrafine ilmenite using superconducting high gradient magnetic separator. Int. J. Min. Sci. Technol. 2021, 31, 1043–1052. [Google Scholar] [CrossRef]
- Zeng, J.; Chen, L.; Yang, R.; Tong, X.; Ren, P.; Zheng, Y. Centrifugal high gradient magnetic separation of fine ilmenite. Int. J. Miner. Process. 2017, 168, 48–54. [Google Scholar] [CrossRef]
- Chen, L.; Liao, G.; Qian, Z.; Chen, J. Vibrating high gradient magnetic separation for purification of iron impurities under dry condition. Int. J. Miner. Process. 2012, 102–103, 136–140. [Google Scholar] [CrossRef]
- Nguyentranlam, G.; Galvin, K.P. The development of an innovative classifier. In Proceedings of the 28th Australasian Chemical Engineering Conference, Perth, Australia, 9–12 July 2000; pp. 290–296. [Google Scholar]
- Galvin, K.P.; Doroodchi, E.; Callen, A.M.; Lambert, N.; Pratten, S.J. Pilot plant trial of the reflux classifier. Miner. Eng. 2002, 15, 19–25. [Google Scholar] [CrossRef]
- Galvin, K.P.; Zhou, J.; Dickinson, J.E.; Ramadhani, H. Desliming of dense minerals in fluidized beds. Miner. Eng. 2012, 39, 9–18. [Google Scholar] [CrossRef]
- Galvin, K.P.; Zhou, J.; van Netten, K. Dense medium separation in an inverted fluidised bed system. Miner. Eng. 2018, 126, 101–104. [Google Scholar] [CrossRef]
- Galvin, K.P.; Callen, A.; Zhou, J.; Doroodchi, E. Performance of the reflux classifier for gravity separation at full scale. Miner. Eng. 2005, 18, 19–24. [Google Scholar] [CrossRef]
- Liu, Z.; Su, Z.; Liu, B.; Wang, Y.; Zhang, Y.; Zhong, X.; Chen, K.; Hu, X.; Lu, D. Preconcentrating ultrafine ilmenite tailings using a laboratory-scale reflux classifier. Minerals 2024, 14, 1125. [Google Scholar] [CrossRef]
- Chu, H.; Liu, Z.; Wang, Y.; Lu, D.; Zheng, X.; Zhao, Y. Agitation effect on particle dispersion and separation in an agitated reflux classifier. Miner. Eng. 2022, 187, 107804. [Google Scholar] [CrossRef]
- Liu, Z.; Lu, D.; Wang, Y.; Zhang, Y.; Liu, Y. Processing of fine-grained low-grade antimony oxide tailings using a trapezoidal inclined channel agitated reflux classifier. Min. Metall. Explor. 2025, 42, 421–432. [Google Scholar] [CrossRef]
- Chen, F.; Gao, Y.; Lu, D.; Liu, Z.; Zhao, Y. Study on the application of a reflux classifier in the classification of ultrafine ilmenite. Minerals 2023, 13, 304. [Google Scholar] [CrossRef]
Project | Yield (%) | TiO2 Grade (%) | TiO2 Recovery (%) |
---|---|---|---|
Concentrate | 32.17 | 8.92 | 72.28 |
Chemical | TiO2 | Total Fe | SiO2 | CaO | MgO | Al2O3 |
Content% | 8.92 | 19.80 | 31.16 | 3.92 | 20.44 | 4.80 |
Chemical | S | P | Cr2O3 | Ni | Co | |
Content% | 0.761 | <0.01 | <0.01 | 0.024 | 0.016 |
Chemical | Olivine | Tremolite | Hornblende | Ilmenite | Labradorite | Pyrrhotite | Others |
---|---|---|---|---|---|---|---|
Content% | 40.54 | 19.41 | 12.86 | 15.69 | 5.07 | 1.22 | 1.83 |
Chemical | Ilmenite | Tremolite | Titanite | Titanium Magnetite | Olivine | Biotite |
---|---|---|---|---|---|---|
Content% | 92.23 | 3.06 | 1.73 | 1.69 | 1.15 | 0.14 |
Chemical | Olivine | Ilmenite | Hornblende | Tremolite | pyrrhotite | Titanium Magnetite | Biotite |
---|---|---|---|---|---|---|---|
Content% | 53.73 | 15.06 | 12.82 | 10.34 | 3.64 | 2.95 | 0.67 |
Minerals | Free Surface (%) | Others (%) |
---|---|---|
Ilmenite-magnetite | 76.12 | 23.88 |
Ilmenite | 85.38 | 14.62 |
Olivine | 89.97 | 10.03 |
Hornblende | 88.09 | 11.91 |
Tremolite | 88.93 | 11.07 |
Labradorite | 84.21 | 15.79 |
Titanite | 50.58 | 49.42 |
Pyrrhotite | 82.61 | 17.39 |
Apatite | 52.58 | 47.42 |
Hercynite | 86.62 | 13.38 |
Biotite | 84.93 | 15.07 |
Chalcopyrite | 66.77 | 33.23 |
Sphalerite | 0 | 100 |
Calcite | 62.12 | 37.88 |
Potassium feldspar | 73.58 | 26.42 |
Chromite | 0 | 100 |
Cobalt-nickel pyrite | 82.55 | 17.45 |
Calcium feldspar | 85.36 | 14.64 |
Dolomite | 55.4 | 44.60 |
Sapphire | 100 | 0 |
Sodium feldspar | 74.4 | 25.60 |
Siderite-perovskite | 0 | 100 |
Nickel pyrite | 58.55 | 41.45 |
Porosity | 1.58 | 98.42 |
Low count rate | 44.07 | 55.93 |
Dissociation Level | 0% | 0% < x ≤ 10% | 10% < x ≤ 20% | 20% < x ≤ 30% | 30% < x ≤ 40% | 40% < x ≤ 50% |
Distribution of ilmenite | 0 | 1.54 | 0.69 | 0.98 | 0.68 | 0.47 |
Accumulation of ilmenite | 0 | 100 | 98.46 | 97.77 | 96.79 | 96.11 |
Dissociation Level | 50% < x ≤ 60% | 60% < x ≤ 70% | 70% < x ≤ 80% | 80% < x ≤ 90% | 90% < x < 100% | 100% |
Distribution of ilmenite | 1.36 | 1.66 | 2.91 | 5.32 | 54.45 | 29.93 |
Accumulation of ilmenite | 95.64 | 94.28 | 92.62 | 89.7 | 84.38 | 29.93 |
Project | Stirring Speed (%) | Feed Rate (mL/min) | Fluidized Flow (mL/min) | Underflow Rate (mL/min) |
---|---|---|---|---|
1 | 100 | 60 | 100 | 25 |
2 | 150 | 60 | 100 | 25 |
3 | 200 | 60 | 100 | 25 |
4 | 250 | 60 | 100 | 25 |
Variables | Symbol | Coded Variable Level | ||
---|---|---|---|---|
Low −1 | Center 0 | High +1 | ||
Feed concentration (FC) (%) | Fcon | 15 | 30 | 45 |
Feed flow rate (mL/min) | Fflow | 50 | 100 | 150 |
Fluidization water flow (mL/min) | Fluidflow | 75 | 150 | 225 |
Underflow rate (mL/min) | UFflow | 15 | 22.5 | 30 |
Coded Variable Levels | Response | ||||||
---|---|---|---|---|---|---|---|
Fcon | Fflow | Fluidflow | UFflow | Grade (%) | Recovery (%) | Efficiency (%) | |
1 | −1 | −1 | 0 | 0 | 8.76 | 86.07 | 5.09 |
2 | +1 | −1 | 0 | 0 | 17.49 | 58.02 | 35.97 |
3 | −1 | +1 | 0 | 0 | 12.61 | 50.65 | 20.33 |
4 | +1 | +1 | 0 | 0 | 25.11 | 26.03 | 20.68 |
5 | 0 | 0 | −1 | −1 | 24.21 | 31.60 | 24.57 |
6 | 0 | 0 | +1 | −1 | 23.24 | 40.07 | 30.47 |
7 | 0 | 0 | −1 | +1 | 17.85 | 68.00 | 42.89 |
8 | 0 | 0 | +1 | +1 | 18.18 | 60.49 | 39.04 |
9 | −1 | 0 | 0 | −1 | 17.13 | 52.08 | 31.78 |
10 | +1 | 0 | 0 | −1 | 24.61 | 28.93 | 22.74 |
11 | −1 | 0 | 0 | +1 | 9.48 | 81.45 | 11.69 |
12 | +1 | 0 | 0 | +1 | 19.86 | 50.73 | 34.88 |
13 | 0 | −1 | −1 | 0 | 17.01 | 66.23 | 39.91 |
14 | 0 | +1 | −1 | 0 | 21.48 | 33.40 | 24.23 |
15 | 0 | −1 | +1 | 0 | 17.55 | 60.31 | 37.67 |
16 | 0 | +1 | +1 | 0 | 21.87 | 47.46 | 34.90 |
17 | −1 | 0 | −1 | 0 | 13.9 | 69.44 | 32.79 |
18 | +1 | 0 | −1 | 0 | 21.73 | 42.76 | 31.23 |
19 | −1 | 0 | +1 | 0 | 11.76 | 72.70 | 25.03 |
20 | +1 | 0 | +1 | 0 | 23.08 | 37.02 | 28.13 |
21 | 0 | −1 | 0 | −1 | 21.04 | 41.21 | 29.49 |
22 | 0 | +1 | 0 | −1 | 24.77 | 20.30 | 15.98 |
23 | 0 | −1 | 0 | +1 | 11.99 | 76.42 | 27.41 |
24 | 0 | +1 | 0 | +1 | 19.23 | 56.24 | 37.71 |
25 | 0 | 0 | 0 | 0 | 18.87 | 54.92 | 36.50 |
26 | 0 | 0 | 0 | 0 | 19.17 | 56.86 | 38.20 |
Source | Sequential Sums of Squares | Adjusted Mean Squares | F | p-Value | Coefficients | t-Value |
---|---|---|---|---|---|---|
Model | 558.92 | 46.58 | 126.07 | <0.0001 | 19.02 | 31.29 |
Fcon | 282.72 | 282.72 | 765.23 | <0.0001 | 4.85 | 7.98 |
Fflow | 81.27 | 81.27 | 219.97 | <0.0001 | 2.60 | 4.28 |
Fluidflow | 0.0212 | 0.0212 | 0.0574 | 0.8141 | −0.04 | −0.07 |
UFflow | 122.93 | 122.93 | 332.75 | <0.0001 | −3.20 | −5.27 |
FconFflow | 3.56 | 3.56 | 9.62 | 0.0078 | 0.94 | 1.55 |
FconFluidflow | 3.04 | 3.04 | 8.24 | 0.0124 | 0.87 | 1.44 |
FconUFflow | 2.11 | 2.11 | 5.71 | 0.0314 | 0.72 | 1.19 |
FflowUFflow | 3.07 | 3.07 | 8.32 | 0.0120 | 0.87 | 1.44 |
31.32 | 31.32 | 84.78 | <0.0001 | −2.31 | −3.81 | |
3.01 | 3.01 | 8.14 | 0.0128 | −0.64 | −1.06 | |
4.01 | 4.01 | 10.85 | 0.0053 | 0.97 | 1.6 | |
3.72 | 3.72 | 10.06 | 0.0068 | 0.94 | 1.55 | |
Residual | 5.17 | 0.3695 | ||||
Lack of fit | 4.84 | 0.4033 | 2.42 | 0.3292 | ||
Pure error | 0.3330 | 0.1665 | ||||
Total error | 564.09 | 46.58 | 126.07 | <0.0001 |
Source | Sequential Sums of Squares | Adjusted Mean Squares | F | p-Value | Coefficients | t-Value | |
---|---|---|---|---|---|---|---|
Model | 7228.88 | 1204.81 | 62.07 | <0.0001 | 54.70 | 12.42 | |
Fcon | 2377.27 | 2377.27 | 122.48 | <0.0001 | −14.07 | −3.19 | |
Fflow | 1980.96 | 1980.96 | 102.06 | <0.0001 | −12.85 | −2.92 | |
Fluidflow | 3.65 | 3.65 | 0.1882 | 0.6693 | 0.5404 | 0.12 | |
UFflow | 2674.26 | 2674.26 | 137.78 | <0.0001 | 14.93 | 3.39 | |
FflowFluidflow | 99.80 | 99.80 | 5.14 | 0.0352 | 5.00 | 1.13 | |
FluidflowUFflow | 63.85 | 63.85 | 3.77 | 0.0672 | −4.00 | −0.91 | |
92.94 | 92.94 | 4.79 | 0.0413 | −4.08 | −0.93 | ||
Residual | 368.79 | 19.41 | |||||
Lack of fit | 366.90 | 20.38 | 10.83 | 0.2353 | |||
Pure error | 1.88 | 1.88 |
Source | Sequential Sums of Squares | Adjusted Mean Squares | F | p-Value | Coefficients | t-Value |
---|---|---|---|---|---|---|
Model | 1369.90 | 195.70 | 4.59 | 0.0042 | 36.34 | 5.57 |
Fcon | 183.46 | 183.46 | 4.31 | 0.0526 | 3.91 | 0.6 |
Fflow | 39.28 | 39.28 | 0.9218 | 0.3497 | −1.81 | −0.28 |
UFflow | 124.10 | 124.10 | 2.91 | 0.1051 | 3.22 | 0.49 |
FconFflow | 233.02 | 233.02 | 5.47 | 0.0311 | −7.63 | −1.17 |
FconUFflow | 259.69 | 259.69 | 6.09 | 0.0238 | 8.06 | 1.23 |
FflowUFflow | 141.73 | 141.73 | 3.33 | 0.0848 | 5.95 | 0.91 |
388.62 | 388.62 | 9.12 | 0.0074 | −9.39 | −1.44 | |
Fflow2 | 212.86 | 212.86 | 6.35 | 0.0214 | −5.77 | −0.88 |
Residual | 766.98 | 42.61 | ||||
Lack of fit | 765.54 | 45.03 | 31.16 | 0.1400 | ||
Pure error | 1.45 | 1.45 |
Feed Concentration (%) | Feed Rate (mL/min) | Fluidized Flow (mL/min) | Underflow Rate (mL/min) | Separation Efficiency (%) | TiO2 Grade (%) | Recovery (%) |
---|---|---|---|---|---|---|
40 | 105 | 225 | 30 | 39.16 | 19.41 | 58.69 |
Project | Yield (%) | TiO2 Grade (%) | Recovery (%) |
---|---|---|---|
Concentrate | 25.11 | 19.61 | 58.69 |
Tailings | 74.89 | 4.62 | 41.31 |
Total | 100.00 | 8.39 | 100.00 |
Project | Yield (%) | TiO2 Grade (%) | TiO2 Recovery (%) |
---|---|---|---|
ARC concentrate | 13.02 | 16.50 | 54.11 |
ARC tailings | 19.03 | 3.81 | 18.26 |
HGMS tailings | 67.95 | 1.62 | 27.63 |
Total | 100.00 | 3.97 | 100.00 |
TiO2 | TFe | SiO2 | CaO | MgO | Al2O3 | |
Concentrate | 16.50 | 24.30 | 24.63 | 2.80 | 18.64 | 2.72 |
Tailings | 3.81 | 16.60 | 35.50 | 4.68 | 21.63 | 6.22 |
Constituent | Cr2O3 | Ni | Co | |||
Concentrate | <0.01 | 0.031 | 0.020 | |||
Tailings | <0.01 | 0.023 | 0.015 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Liu, Z.; Wang, Y.; Zhang, Y.; Lu, D. Mineralogical Analysis of Factors Affecting the Grade of High-Gradient Magnetic Separation Concentrates and Experimental Study on TiO2 Enrichment Using ARC. Minerals 2025, 15, 799. https://doi.org/10.3390/min15080799
Liu Y, Liu Z, Wang Y, Zhang Y, Lu D. Mineralogical Analysis of Factors Affecting the Grade of High-Gradient Magnetic Separation Concentrates and Experimental Study on TiO2 Enrichment Using ARC. Minerals. 2025; 15(8):799. https://doi.org/10.3390/min15080799
Chicago/Turabian StyleLiu, Yifei, Zhenqiang Liu, Yuhua Wang, Yuxin Zhang, and Dongfang Lu. 2025. "Mineralogical Analysis of Factors Affecting the Grade of High-Gradient Magnetic Separation Concentrates and Experimental Study on TiO2 Enrichment Using ARC" Minerals 15, no. 8: 799. https://doi.org/10.3390/min15080799
APA StyleLiu, Y., Liu, Z., Wang, Y., Zhang, Y., & Lu, D. (2025). Mineralogical Analysis of Factors Affecting the Grade of High-Gradient Magnetic Separation Concentrates and Experimental Study on TiO2 Enrichment Using ARC. Minerals, 15(8), 799. https://doi.org/10.3390/min15080799