Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,384)

Search Parameters:
Keywords = fluid loss

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3755 KiB  
Article
Thermal and Expansion Analysis of the Lebanese Flatbread Baking Process Using a High-Temperature Tunnel Oven
by Yves Mansour, Pierre Rahmé, Nemr El Hajj and Olivier Rouaud
Appl. Sci. 2025, 15(15), 8611; https://doi.org/10.3390/app15158611 (registering DOI) - 4 Aug 2025
Abstract
This study investigates the thermal dynamics and material behavior involved in the baking process for Lebanese flatbread, focusing on the heat transfer mechanisms, water loss, and dough expansion under high-temperature conditions. Despite previous studies on flatbread baking using impingement or conventional ovens, this [...] Read more.
This study investigates the thermal dynamics and material behavior involved in the baking process for Lebanese flatbread, focusing on the heat transfer mechanisms, water loss, and dough expansion under high-temperature conditions. Despite previous studies on flatbread baking using impingement or conventional ovens, this work presents the first experimental investigation of the traditional Lebanese flatbread baking process under realistic industrial conditions, specifically using a high-temperature tunnel oven with direct flame heating, extremely short baking times (~10–12 s), and peak temperatures reaching ~650 °C, which are essential to achieving the characteristic pocket formation and texture of Lebanese bread. This experimental study characterizes the baking kinetics of traditional Lebanese flatbread, recording mass loss pre- and post-baking, thermal profiles, and dough expansion through real-time temperature measurements and video recordings, providing insights into the dough’s thermal response and expansion behavior under high-temperature conditions. A custom-designed instrumented oven with a steel conveyor and a direct flame burner was employed. The dough, prepared following a traditional recipe, was analyzed during the baking process using K-type thermocouples and visual monitoring. Results revealed that Lebanese bread undergoes significant water loss due to high baking temperatures (~650 °C), leading to rapid crust formation and pocket development. Empirical equations modeling the relationship between baking time, temperature, and expansion were developed with high predictive accuracy. Additionally, an energy analysis revealed that the total energy required to bake Lebanese bread is approximately 667 kJ/kg, with an overall thermal efficiency of only 21%, dropping to 16% when preheating is included. According to previous CFD (Computational Fluid Dynamics) simulations, most heat loss in similar tunnel ovens occurs via the chimney (50%) and oven walls (29%). These findings contribute to understanding the broader thermophysical principles that can be applied to the development of more efficient baking processes for various types of bread. The empirical models developed in this study can be applied to automating and refining the industrial production of Lebanese flatbread, ensuring consistent product quality across different baking environments. Future studies will extend this work to alternative oven designs and dough formulations. Full article
(This article belongs to the Special Issue Chemical and Physical Properties in Food Processing: Second Edition)
Show Figures

Figure 1

15 pages, 1706 KiB  
Article
Study on a High-Temperature-Resistant Foam Drilling Fluid System
by Yunliang Zhao, Dongxue Li, Fusen Zhao, Yanchao Song, Chengyun Ma, Weijun Ji and Wenjun Shan
Processes 2025, 13(8), 2456; https://doi.org/10.3390/pr13082456 - 3 Aug 2025
Abstract
Developing ultra-high-temperature geothermal resources is challenging, as traditional drilling fluids, including foam systems, lack thermal stability above 160 °C. To address this key technical bottleneck, this study delves into the screening principles for high-temperature-resistant foaming agents and foam stabilizers. Through high-temperature aging experiments [...] Read more.
Developing ultra-high-temperature geothermal resources is challenging, as traditional drilling fluids, including foam systems, lack thermal stability above 160 °C. To address this key technical bottleneck, this study delves into the screening principles for high-temperature-resistant foaming agents and foam stabilizers. Through high-temperature aging experiments (foaming performance evaluated up to 240 °C and rheological/filtration properties evaluated after aging at 200 °C), specific additives were selected that still exhibit good foaming and foam-stabilizing performance under high-temperature and high-salinity conditions. Building on this, the foam drilling fluid system formulation was optimized using an orthogonal experimental design. The optimized formulations were systematically evaluated for their density, volume, rheological properties (apparent viscosity and plastic viscosity), and filtration properties (API fluid loss and HTHP fluid loss) before and after high-temperature aging (at 200 °C). The research results indicate that specific formulation systems exhibit excellent high-temperature stability and particularly outstanding performance in filtration control, with the selected foaming agent FP-1 maintaining good performance up to 240 °C and optimized formulations demonstrating excellent HTHP fluid loss control at 200 °C. This provides an important theoretical basis and technical support for further research and field application of foam drilling fluid systems for deep high-temperature geothermal energy development. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

42 pages, 5770 KiB  
Review
Echoes from Below: A Systematic Review of Cement Bond Log Innovations Through Global Patent Analysis
by Lim Shing Wang, Muhammad Haarith Firdaous and Pg Emeroylariffion Abas
Inventions 2025, 10(4), 67; https://doi.org/10.3390/inventions10040067 (registering DOI) - 2 Aug 2025
Viewed by 33
Abstract
Maintaining well integrity is essential in the oil and gas industry to prevent environmental hazards, operational risks, and economic losses. Cement bond log (CBL) tools are essential in evaluating cement bonding and ensuring wellbore stability. This study presents a patent landscape review of [...] Read more.
Maintaining well integrity is essential in the oil and gas industry to prevent environmental hazards, operational risks, and economic losses. Cement bond log (CBL) tools are essential in evaluating cement bonding and ensuring wellbore stability. This study presents a patent landscape review of CBL technologies, based on 3473 patent documents from the Lens.org database. After eliminating duplicates and irrelevant entries, 167 granted patents were selected for in-depth analysis. These were categorized by technology type (wave, electrical, radiation, neutron, and other tools) and by material focus (formation, casing, cement, and borehole fluid). The findings reveal a dominant focus on formation evaluation (59.9%) and a growing reliance on wave-based (22.2%) and other advanced tools (25.1%), indicating a shift toward high-precision diagnostics. Geographically, 75% of granted patents were filed through the U.S. Patent and Trademark Office, and 97.6% were held by companies, underscoring the dominance of corporate innovation and the minimal presence of academia and individuals. The review also identifies notable patents that reflect significant technical innovations and discusses their role in advancing diagnostic capabilities. These insights emphasize the need for broader collaboration and targeted research to advance well integrity technologies in line with industry goals for operational performance and safety. Full article
Show Figures

Figure 1

37 pages, 7429 KiB  
Article
Study on the Influence of Window Size on the Thermal Comfort of Traditional One-Seal Dwellings (Yikeyin) in Kunming Under Natural Wind
by Yaoning Yang, Junfeng Yin, Jixiang Cai, Xinping Wang and Juncheng Zeng
Buildings 2025, 15(15), 2714; https://doi.org/10.3390/buildings15152714 - 1 Aug 2025
Viewed by 137
Abstract
Under the dual challenges of global energy crisis and climate change, the building sector, as a major carbon emitter consuming 33% of global primary energy, has seen its energy efficiency optimization become a critical pathway towards achieving carbon neutrality goals. The Window-to-Wall Ratio [...] Read more.
Under the dual challenges of global energy crisis and climate change, the building sector, as a major carbon emitter consuming 33% of global primary energy, has seen its energy efficiency optimization become a critical pathway towards achieving carbon neutrality goals. The Window-to-Wall Ratio (WWR), serving as a core parameter in building envelope design, directly influences building energy consumption, with its optimized design playing a decisive role in balancing natural daylighting, ventilation efficiency, and thermal comfort. This study focuses on the traditional One-Seal dwellings (Yikeyin) in Kunming, China, establishing a dynamic wind field-thermal environment coupled analysis framework to investigate the impact mechanism of window dimensions (WWR and aspect ratio) on indoor thermal comfort under natural wind conditions in transitional climate zones. Utilizing the Grasshopper platform integrated with Ladybug, Honeybee, and Butterfly plugins, we developed parametric models incorporating Kunming’s Energy Plus Weather meteorological data. EnergyPlus and OpenFOAM were employed, respectively, for building heat-moisture balance calculations and Computational Fluid Dynamic (CFD) simulations, with particular emphasis on analyzing the effects of varying WWR (0.05–0.20) on temperature-humidity, air velocity, and ventilation efficiency during typical winter and summer weeks. Key findings include, (1) in summer, the baseline scenario with WWR = 0.1 achieves a dynamic thermal-humidity balance (20.89–24.27 °C, 65.35–74.22%) through a “air-permeable but non-ventilative” strategy, though wing rooms show humidity-heat accumulation risks; increasing WWR to 0.15–0.2 enhances ventilation efficiency (2–3 times higher air changes) but causes a 4.5% humidity surge; (2) winter conditions with WWR ≥ 0.15 reduce wing room temperatures to 17.32 °C, approaching cold thresholds, while WWR = 0.05 mitigates heat loss but exacerbates humidity accumulation; (3) a symmetrical layout structurally constrains central ventilation, maintaining main halls air changes below one Air Change per Hour (ACH). The study proposes an optimized WWR range of 0.1–0.15 combined with asymmetric window opening strategies, providing quantitative guidance for validating the scientific value of vernacular architectural wisdom in low-energy design. Full article
Show Figures

Figure 1

23 pages, 4322 KiB  
Article
Fly-Ash-Based Microbial Self-Healing Cement: A Sustainable Solution for Oil Well Integrity
by Lixia Li, Yanjiang Yu, Qianyong Liang, Tianle Liu, Guosheng Jiang, Guokun Yang and Chengxiang Tang
Sustainability 2025, 17(15), 6989; https://doi.org/10.3390/su17156989 (registering DOI) - 1 Aug 2025
Viewed by 157
Abstract
The cement sheath is critical for ensuring the long-term safety and operational efficiency of oil and gas wells. However, complex geological conditions and operational stresses during production can induce cement sheath deterioration and cracking, leading to reduced zonal isolation, diminished hydrocarbon recovery, and [...] Read more.
The cement sheath is critical for ensuring the long-term safety and operational efficiency of oil and gas wells. However, complex geological conditions and operational stresses during production can induce cement sheath deterioration and cracking, leading to reduced zonal isolation, diminished hydrocarbon recovery, and elevated operational expenditures. This study investigates the development of a novel microbial self-healing well cement slurry system, employing fly ash as microbial carriers and sustained-release microcapsules encapsulating calcium sources and nutrients. Systematic evaluations were conducted, encompassing microbial viability, cement slurry rheology, fluid loss control, anti-channeling capability, and the mechanical strength, permeability, and microstructural characteristics of set cement stones. Results demonstrated that fly ash outperformed blast furnace slag and nano-silica as a carrier, exhibiting superior microbial loading capacity and viability. Optimal performance was observed with additions of 3% microorganisms and 3% microcapsules to the cement slurry. Microscopic analysis further revealed effective calcium carbonate precipitation within and around micro-pores, indicating a self-healing mechanism. These findings highlight the significant potential of the proposed system to enhance cement sheath integrity through localized self-healing, offering valuable insights for the development of advanced, durable well-cementing materials tailored for challenging downhole environments. Full article
(This article belongs to the Section Environmental Sustainability and Applications)
Show Figures

Figure 1

20 pages, 3380 KiB  
Article
The Effect of Airfoil Geometry Variation on the Efficiency of a Small Wind Turbine
by José Rafael Dorrego Portela, Orlando Lastres Danguillecurt, Víctor Iván Moreno Oliva, Eduardo Torres Moreno, Cristofer Aguilar Jimenez, Liliana Hechavarría Difur, Quetzalcoatl Hernandez-Escobedo and Jesus Alejandro Franco
Technologies 2025, 13(8), 328; https://doi.org/10.3390/technologies13080328 - 1 Aug 2025
Viewed by 141
Abstract
This study analyzes the impact of geometric variations induced by the manufacturing process on the aerodynamic efficiency of an airfoil used in the design of a 3 kW wind turbine blade. For this purpose, a computational fluid dynamics (CFD) analysis was implemented, and [...] Read more.
This study analyzes the impact of geometric variations induced by the manufacturing process on the aerodynamic efficiency of an airfoil used in the design of a 3 kW wind turbine blade. For this purpose, a computational fluid dynamics (CFD) analysis was implemented, and the results were compared with those obtained using QBlade software. After blade fabrication, experimental evaluation was performed using the laser triangulation technique, enabling the reconstruction of the deformed airfoils and their comparison with the original geometry. Additional CFD simulations were carried out on the manufactured airfoil to quantify the loss of aerodynamic efficiency due to geometrical deformations. The results show that the geometric deviations significantly affect the aerodynamic coefficients, generating a decrease in the lift coefficient and an increase in the drag coefficient, which negatively impacts the airfoil aerodynamic efficiency. A 14.9% reduction in the rotor power coefficient was observed with the deformed airfoils compared to the original design. This study emphasizes the importance of quality control in wind turbine blade manufacturing processes and its impact on turbine power performance. In addition, the findings can contribute to the development of design compensation strategies to mitigate the adverse effects of geometric imperfections on the aerodynamic performance of wind turbines. Full article
Show Figures

Figure 1

30 pages, 59872 KiB  
Article
Advancing 3D Seismic Fault Identification with SwiftSeis-AWNet: A Lightweight Architecture Featuring Attention-Weighted Multi-Scale Semantics and Detail Infusion
by Ang Li, Rui Li, Yuhao Zhang, Shanyi Li, Yali Guo, Liyan Zhang and Yuqing Shi
Electronics 2025, 14(15), 3078; https://doi.org/10.3390/electronics14153078 - 31 Jul 2025
Viewed by 145
Abstract
The accurate identification of seismic faults, which serve as crucial fluid migration pathways in hydrocarbon reservoirs, is of paramount importance for reservoir characterization. Traditional interpretation is inefficient. It also struggles with complex geometries, failing to meet the current exploration demands. Deep learning boosts [...] Read more.
The accurate identification of seismic faults, which serve as crucial fluid migration pathways in hydrocarbon reservoirs, is of paramount importance for reservoir characterization. Traditional interpretation is inefficient. It also struggles with complex geometries, failing to meet the current exploration demands. Deep learning boosts fault identification significantly but struggles with edge accuracy and noise robustness. To overcome these limitations, this research introduces SwiftSeis-AWNet, a novel lightweight and high-precision network. The network is based on an optimized MedNeXt architecture for better fault edge detection. To address the noise from simple feature fusion, a Semantics and Detail Infusion (SDI) module is integrated. Since the Hadamard product in SDI can cause information loss, we engineer an Attention-Weighted Semantics and Detail Infusion (AWSDI) module that uses dynamic multi-scale feature fusion to preserve details. Validation on field seismic datasets from the Netherlands F3 and New Zealand Kerry blocks shows that SwiftSeis-AWNet mitigates challenges like the loss of small-scale fault features and misidentification of fault intersection zones, enhancing the accuracy and geological reliability of automated fault identification. Full article
Show Figures

Figure 1

33 pages, 1782 KiB  
Review
Synthalin, Buformin, Phenformin, and Metformin: A Century of Intestinal “Glucose Excretion” as Oral Antidiabetic Strategy in Overweight/Obese Patients
by Giuliano Pasquale Ramadori
Livers 2025, 5(3), 35; https://doi.org/10.3390/livers5030035 (registering DOI) - 31 Jul 2025
Viewed by 75
Abstract
After the first release of synthalin B (dodecamethylenbiguanide) in 1928 and its later retraction in the 1940s in Germany, the retraction of phenformin (N-Phenethylbiguanide) and of Buformin in the USA (but not outside) because of the lethal complication of acidosis seemed to have [...] Read more.
After the first release of synthalin B (dodecamethylenbiguanide) in 1928 and its later retraction in the 1940s in Germany, the retraction of phenformin (N-Phenethylbiguanide) and of Buformin in the USA (but not outside) because of the lethal complication of acidosis seemed to have put an end to the era of the biguanides as oral antidiabetics. The strongly hygroscopic metformin (1-1-dimethylbiguanide), first synthesized 1922 and resuscitated as an oral antidiabetic (type 2 of the elderly) compound first released in 1959 in France and in other European countries, was used in the first large multicenter prospective long-term trial in England in the UKPDS (1977–1997). It was then released in the USA after a short-term prospective trial in healthy overweight “young” type 2 diabetics (mean age 53 years) in 1995 for oral treatment of type 2 diabetes. It was, however, prescribed to mostly multimorbid older patients (above 60–65 years of age). Metformin is now the most used oral drug for type 2 diabetes worldwide. While intravenous administration of biguanides does not have any glucose-lowering effect, their oral administration leads to enormous increase in their intestinal concentration (up to 300-fold compared to that measured in the blood), to reduced absorption of glucose from the diet, to increased excretion of glucose through the stool, and to decrease in insulin serum level through increased hepatic uptake and decreased production. Intravenously injected F18-labeled glucose in metformin-treated type 2 diabetics accumulates in the small and even more in the large intestine. The densitometry picture observed in metformin-treated overweight diabetics is like that observed in patients after bowel-cleansing or chronically taking different types of laxatives, where the accumulated radioactivity can even reach values observed in colon cancer. The glucose-lowering mechanism of action of metformin is therefore not only due to inhibition of glucose uptake in the small intestine but also to “attraction” of glucose from the hepatocyte into the intestine, possibly through the insulin-mediated uptake in the hepatocyte and its secretion into the bile. Furthermore, these compounds have also a diuretic effect (loss of sodium and water in the urine) Acute gastrointestinal side effects accompanied by fluid loss often lead to the drugs’ dose reduction and strongly limit adherence to therapy. Main long-term consequences are “chronic” dehydration, deficiency of vitamin B12 and of iron, and, as observed for all the biguanides, to “chronic” increase in fasting and postprandial lactate plasma level as a laboratory marker of a clinical condition characterized by hypotension, oliguria, adynamia, and evident lactic acidosis. Metformin is not different from the other biguanides: synthalin B, buformin, and phenformin. The mechanism of action of the biguanides as antihyperglycemic substances and their side effects are comparable if not even stronger (abdominal pain, nausea, vomiting, diarrhea, fluid loss) to those of laxatives. Full article
Show Figures

Figure 1

21 pages, 3327 KiB  
Article
Numerical Analysis of Heat Transfer and Flow Characteristics in Porous Media During Phase-Change Process of Transpiration Cooling for Aerospace Thermal Management
by Junhyeon Bae, Jukyoung Shin and Tae Young Kim
Energies 2025, 18(15), 4070; https://doi.org/10.3390/en18154070 (registering DOI) - 31 Jul 2025
Viewed by 179
Abstract
Transpiration cooling that utilizes the phase change of a liquid coolant is recognized as an effective thermal protection technique for extreme environments. However, the introduction of phase change within the porous structure brings about challenges, such as vapor blockage, pressure fluctuations, and temperature [...] Read more.
Transpiration cooling that utilizes the phase change of a liquid coolant is recognized as an effective thermal protection technique for extreme environments. However, the introduction of phase change within the porous structure brings about challenges, such as vapor blockage, pressure fluctuations, and temperature inversion, which critically influence system reliability. This study conducts numerical analyses of coupled processes of heat transfer, flow, and phase change in transpiration cooling using a Two-Phase Mixture Model. The simulation incorporates a Local Thermal Non-Equilibrium approach to capture the distinct temperature fields of the solid and fluid phases, enabling accurate prediction of the thermal response within two-phase and single-phase regions. The results reveal that under low heat flux, dominant capillary action suppresses dry-out and expands the two-phase region. Conversely, high heat flux causes vaporization to overwhelm the capillary supply, forming a superheated vapor layer and constricting the two-phase zone. The analysis also explains a paradoxical pressure drop, where an initial increase in flow rate reduces pressure loss by suppressing the high-viscosity vapor phase. Furthermore, a local temperature inversion, where the fluid becomes hotter than the solid matrix, is identified and attributed to vapor counterflow and its subsequent condensation. Full article
(This article belongs to the Section J1: Heat and Mass Transfer)
Show Figures

Figure 1

26 pages, 15885 KiB  
Article
Comparative Analysis of Fully Floating and Semi-Floating Ring Bearings in High-Speed Turbocharger Rotordynamics
by Kyuman Kim and Keun Ryu
Lubricants 2025, 13(8), 338; https://doi.org/10.3390/lubricants13080338 - 31 Jul 2025
Viewed by 143
Abstract
This study presents a detailed experimental comparison of the rotordynamic and thermal performance of automotive turbochargers supported by two distinct hydrodynamic bearing configurations: fully floating ring bearings (FFRBs) and semi-floating ring bearings (SFRBs). While both designs are widely used in commercial turbochargers, they [...] Read more.
This study presents a detailed experimental comparison of the rotordynamic and thermal performance of automotive turbochargers supported by two distinct hydrodynamic bearing configurations: fully floating ring bearings (FFRBs) and semi-floating ring bearings (SFRBs). While both designs are widely used in commercial turbochargers, they exhibit significantly different dynamic behaviors due to differences in ring motion and fluid film interaction. A cold air-driven test rig was employed to assess vibration and temperature characteristics across a range of controlled lubricant conditions. The test matrix included oil supply pressures from 2 bar (g) to 4 bar (g) and temperatures between 30 °C and 70 °C. Rotor speeds reached up to 200 krpm (thousands of revolutions per minute), and data were collected using a high-speed data acquisition system, triaxial accelerometers, and infrared (IR) thermal imaging. Rotor vibration was characterized through waterfall and Bode plots, while jump speeds and thermal profiles were analyzed to evaluate the onset and severity of instability. The results demonstrate that the FFRB configuration is highly sensitive to oil supply parameters, exhibiting strong subsynchronous instabilities and hysteresis during acceleration–deceleration cycles. In contrast, the SFRB configuration consistently provided superior vibrational stability and reduced sensitivity to lubricant conditions. Changes in lubricant supply conditions induced a jump speed variation in floating ring bearing (FRB) turbochargers that was approximately 3.47 times larger than that experienced by semi-floating ring bearing (SFRB) turbochargers. Furthermore, IR images and oil outlet temperature data confirm that the FFRB system experiences greater heat generation and thermal gradients, consistent with higher energy dissipation through viscous shear. This study provides a comprehensive assessment of both bearing types under realistic high-speed conditions and highlights the advantages of the SFRB configuration in improving turbocharger reliability, thermal performance, and noise suppression. The findings support the application of SFRBs in high-performance automotive systems where mechanical stability and reduced frictional losses are critical. Full article
(This article belongs to the Collection Rising Stars in Tribological Research)
Show Figures

Figure 1

16 pages, 4133 KiB  
Article
Preparation, Performance Evaluation and Mechanisms of a Diatomite-Modified Starch-Based Fluid Loss Agent
by Guowei Zhou, Xin Zhang, Weijun Yan and Zhengsong Qiu
Processes 2025, 13(8), 2427; https://doi.org/10.3390/pr13082427 - 31 Jul 2025
Viewed by 185
Abstract
Natural polymer materials are increasingly utilized in drilling fluid additives. Starch has come to be applied extensively due to its low cost and favorable fluid loss reduction properties. However, its poor temperature resistance and high viscosity limit its application in high-temperature wells. This [...] Read more.
Natural polymer materials are increasingly utilized in drilling fluid additives. Starch has come to be applied extensively due to its low cost and favorable fluid loss reduction properties. However, its poor temperature resistance and high viscosity limit its application in high-temperature wells. This study innovatively introduces for the first time diatomite as an inorganic material in the modification process of starch-based fluid loss additives. Through synergistic modification with acrylamide and acrylic acid, we successfully resolved the longstanding challenge of balancing temperature resistance with viscosity control in existing modification methods. The newly developed fluid loss additive demonstrates remarkable performance: It remains effective at 160 °C when used independently. When added to a 4% sodium bentonite base mud, it achieves an 80% fluid loss reduction rate—significantly higher than the 18.95% observed in conventional starch-based products. The resultant filter cake exhibits thin and compact characteristics. Moreover, this additive shows superior contamination resistance, tolerating 30% NaCl and 0.6% calcium contamination, outperforming other starch-based treatments. With starch content exceeding 75%, the product not only demonstrates enhanced performance but also achieves significant cost reduction compared to conventional starch products (typically containing < 50% starch content). Full article
(This article belongs to the Section Food Process Engineering)
Show Figures

Figure 1

15 pages, 4667 KiB  
Article
Longitudinal High-Resolution Imaging of Retinal Sequelae of a Choroidal Nevus
by Kaitlyn A. Sapoznik, Stephen A. Burns, Todd D. Peabody, Lucie Sawides, Brittany R. Walker and Thomas J. Gast
Diagnostics 2025, 15(15), 1904; https://doi.org/10.3390/diagnostics15151904 - 29 Jul 2025
Viewed by 231
Abstract
Background: Choroidal nevi are common, benign tumors. These tumors rarely cause adverse retinal sequalae, but when they do, they can lead to disruption of the outer retina and vision loss. In this paper, we used high-resolution retinal imaging modalities, optical coherence tomography [...] Read more.
Background: Choroidal nevi are common, benign tumors. These tumors rarely cause adverse retinal sequalae, but when they do, they can lead to disruption of the outer retina and vision loss. In this paper, we used high-resolution retinal imaging modalities, optical coherence tomography (OCT) and adaptive optics scanning laser ophthalmoscopy (AOSLO), to longitudinally monitor retinal sequelae of a submacular choroidal nevus. Methods: A 31-year-old female with a high-risk choroidal nevus resulting in subretinal fluid (SRF) and a 30-year-old control subject were longitudinally imaged with AOSLO and OCT in this study over 18 and 22 months. Regions of interest (ROI) including the macular region (where SRF was present) and the site of laser photocoagulation were imaged repeatedly over time. The depth of SRF in a discrete ROI was quantified with OCT and AOSLO images were assessed for visualization of photoreceptors and retinal pigmented epithelium (RPE). Cell-like structures that infiltrated the site of laser photocoagulation were measured and their count was assessed over time. In the control subject, images were assessed for RPE visualization and the presence and stability of cell-like structures. Results: We demonstrate that AOSLO can be used to assess cellular-level changes at small ROIs in the retina over time. We show the response of the retina to SRF and laser photocoagulation. We demonstrate that the RPE can be visualized when SRF is present, which does not appear to depend on the height of retinal elevation. We also demonstrate that cell-like structures, presumably immune cells, are present within and adjacent to areas of SRF on both OCT and AOSLO, and that similar cell-like structures infiltrate areas of retinal laser photocoagulation. Conclusions: Our study demonstrates that dynamic, cellular-level retinal responses to SRF and laser photocoagulation can be monitored over time with AOSLO in living humans. Many retinal conditions exhibit similar retinal findings and laser photocoagulation is also indicated in numerous retinal conditions. AOSLO imaging may provide future opportunities to better understand the clinical implications of such responses in vivo. Full article
(This article belongs to the Special Issue High-Resolution Retinal Imaging: Hot Topics and Recent Developments)
Show Figures

Figure 1

17 pages, 3811 KiB  
Article
Enhanced Cooling Performance in Cutting Tools Using TPMS-Integrated Toolholders: A CFD-Based Thermal-Fluidic Study
by Haiyang Ji, Zhanqiang Liu, Jinfu Zhao and Bing Wang
Modelling 2025, 6(3), 73; https://doi.org/10.3390/modelling6030073 - 28 Jul 2025
Viewed by 266
Abstract
The efficient thermal management of cutting tools is critical for ensuring dimensional accuracy, surface integrity, and tool longevity, especially in the high-speed dry machining process. However, conventional cooling methods often fall short in reaching the heat-intensive zones near the cutting inserts. This study [...] Read more.
The efficient thermal management of cutting tools is critical for ensuring dimensional accuracy, surface integrity, and tool longevity, especially in the high-speed dry machining process. However, conventional cooling methods often fall short in reaching the heat-intensive zones near the cutting inserts. This study proposes a novel internal cooling strategy that integrates triply periodic minimal surface (TPMS) structures into the toolholder, aiming to enhance localized heat removal from the cutting region. The thermal-fluidic behaviors of four TPMS topologies (Gyroid, Diamond, I-WP, and Fischer–Koch S) were systematically analyzed under varying coolant velocities using computational fluid dynamics (CFD). Several key performance indicators, including the convective heat transfer coefficient, Nusselt number, friction factor, and thermal resistance, were evaluated. The Diamond and Gyroid structures exhibited the most favorable balance between heat transfer enhancement and pressure loss. The experimental validation confirmed the CFD prediction accuracy. The results establish a new design paradigm for integrating TPMS structures into toolholders, offering a promising solution for efficient, compact, and sustainable cooling in advanced cutting applications. Full article
Show Figures

Figure 1

16 pages, 2870 KiB  
Article
Development and Characterization of Modified Biomass Carbon Microsphere Plugging Agent for Drilling Fluid Reservoir Protection
by Miao Dong
Processes 2025, 13(8), 2389; https://doi.org/10.3390/pr13082389 - 28 Jul 2025
Viewed by 267
Abstract
Using common corn stalks as raw materials, a functional dense-structured carbon microsphere with good elastic deformation and certain rigid support was modified from biomass through a step-by-step hydrothermal method. The composition, thermal stability, fluid-loss reduction performance, and reservoir protection performance of the modified [...] Read more.
Using common corn stalks as raw materials, a functional dense-structured carbon microsphere with good elastic deformation and certain rigid support was modified from biomass through a step-by-step hydrothermal method. The composition, thermal stability, fluid-loss reduction performance, and reservoir protection performance of the modified carbon microspheres were studied. Research indicates that after hydrothermal treatment, under the multi-level structural action of a small amount of proteins in corn stalks, the naturally occurring cellulose, polysaccharide organic compounds, and part of the ash in the stalks are adsorbed and encapsulated within the long-chain network structure formed by proteins and cellulose. By attaching silicate nanoparticles with certain rigidity from the ash to the relatively stable chair-type structure in cellulose, functional dense-structured carbon microspheres were ultimately prepared. These carbon microspheres could still effectively reduce fluid loss at 200 °C. The permeability recovery value of the cores treated with modified biomass carbon microspheres during flowback reached as high as 88%, which was much higher than that of the biomass itself. With the dense network-like chain structure supplemented by small-molecule aldehydes and silicate ash, the subsequent invasion of drilling fluid was successfully prevented, and a good sealing effect was maintained even under high-temperature and high-pressure conditions. Moreover, since this functional dense-structured carbon microsphere achieved sealing through a physical mechanism, it did not cause damage to the formation, showing a promising application prospect. Full article
Show Figures

Figure 1

18 pages, 4456 KiB  
Article
Study on the Filling and Plugging Mechanism of Oil-Soluble Resin Particles on Channeling Cracks Based on Rapid Filtration Mechanism
by Bangyan Xiao, Jianxin Liu, Feng Xu, Liqin Fu, Xuehao Li, Xianhao Yi, Chunyu Gao and Kefan Qian
Processes 2025, 13(8), 2383; https://doi.org/10.3390/pr13082383 - 27 Jul 2025
Viewed by 376
Abstract
Channeling in cementing causes interlayer interference, severely restricting oilfield recovery. Existing channeling plugging agents, such as cement and gels, often lead to reservoir damage or insufficient strength. Oil-soluble resin (OSR) particles show great potential in selective plugging of channeling fractures due to their [...] Read more.
Channeling in cementing causes interlayer interference, severely restricting oilfield recovery. Existing channeling plugging agents, such as cement and gels, often lead to reservoir damage or insufficient strength. Oil-soluble resin (OSR) particles show great potential in selective plugging of channeling fractures due to their excellent oil solubility, temperature/salt resistance, and high strength. However, their application is limited by the efficient filling and retention in deep fractures. This study innovatively combines the OSR particle plugging system with the mature rapid filtration loss plugging mechanism in drilling, systematically exploring the influence of particle size and sorting on their filtration, packing behavior, and plugging performance in channeling fractures. Through API filtration tests, visual fracture models, and high-temperature/high-pressure (100 °C, salinity 3.0 × 105 mg/L) core flow experiments, it was found that well-sorted large particles preferentially bridge in fractures to form a high-porosity filter cake, enabling rapid water filtration from the resin plugging agent. This promotes efficient accumulation of OSR particles to form a long filter cake slug with a water content <20% while minimizing the invasion of fine particles into matrix pores. The slug thermally coalesces and solidifies into an integral body at reservoir temperature, achieving a plugging strength of 5–6 MPa for fractures. In contrast, poorly sorted particles or undersized particles form filter cakes with low porosity, resulting in slow water filtration, high water content (>50%) in the filter cake, insufficient fracture filling, and significantly reduced plugging strength (<1 MPa). Finally, a double-slug strategy is adopted: small-sized OSR for temporary plugging of the oil layer injection face combined with well-sorted large-sized OSR for main plugging of channeling fractures. This strategy achieves fluid diversion under low injection pressure (0.9 MPa), effectively protects reservoir permeability (recovery rate > 95% after backflow), and establishes high-strength selective plugging. This study clarifies the core role of particle size and sorting in regulating the OSR plugging effect based on rapid filtration loss, providing key insights for developing low-damage, high-performance channeling plugging agents and scientific gradation of particle-based plugging agents. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

Back to TopTop