Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (120)

Search Parameters:
Keywords = fluid catalytic cracking

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
88 pages, 9998 KiB  
Review
Research and Developments of Heterogeneous Catalytic Technologies
by Milan Králik, Peter Koóš, Martin Markovič and Pavol Lopatka
Molecules 2025, 30(15), 3279; https://doi.org/10.3390/molecules30153279 - 5 Aug 2025
Abstract
This review outlines a comprehensive methodology for the research and development of heterogeneous catalytic technologies (R&D_HeCaTe). Emphasis is placed on the fundamental interactions between reactants, solvents, and heterogeneous catalysts—specifically the roles of catalytic centers and support materials (e.g., functional groups) in modulating activation [...] Read more.
This review outlines a comprehensive methodology for the research and development of heterogeneous catalytic technologies (R&D_HeCaTe). Emphasis is placed on the fundamental interactions between reactants, solvents, and heterogeneous catalysts—specifically the roles of catalytic centers and support materials (e.g., functional groups) in modulating activation energies and stabilizing catalytic functionality. Particular attention is given to catalyst deactivation mechanisms and potential regeneration strategies. The application of molecular modeling and chemical engineering analyses, including reaction kinetics, thermal effects, and mass and heat transport phenomena, is identified as essential for R&D_HeCaTe. Reactor configuration is discussed in relation to key physicochemical parameters such as molecular diffusivity, reaction exothermicity, operating temperature and pressure, and the phase and “aggressiveness” of the reaction system. Suitable reactor types—such as suspension reactors, fixed-bed reactors, and flow microreactors—are evaluated accordingly. Economic and environmental considerations are also addressed, with a focus on the complexity of reactions, selectivity versus conversion trade-offs, catalyst disposal, and separation challenges. To illustrate the breadth and applicability of the proposed framework, representative industrial processes are discussed, including ammonia synthesis, fluid catalytic cracking, methanol production, alkyl tert-butyl ethers, and aniline. Full article
(This article belongs to the Special Issue Heterogeneous Catalysts: From Synthesis to Application)
21 pages, 2332 KiB  
Article
Evaluation of Spent Catalyst from Fluid Catalytic Cracking in Fly Ash and Blast Furnace Slag Based Alkali Activated Materials
by Yolanda Luna-Galiano, Domigo Cabrera-Gallardo, Mónica Rodríguez-Galán, Rui M. Novais, João A. Labrincha and Carlos Leiva Fernández
Recycling 2025, 10(4), 149; https://doi.org/10.3390/recycling10040149 - 1 Aug 2025
Viewed by 180
Abstract
The objective of this work is to evaluate how spent catalyst from fluid catalytic cracking (SCFCC) affects the physical, mechanical and durability properties of fly ash (FA) and blast furnace slag (BFS)-based alkali-activated materials (AAMs). Recycling of SCFCC by integrating it in a [...] Read more.
The objective of this work is to evaluate how spent catalyst from fluid catalytic cracking (SCFCC) affects the physical, mechanical and durability properties of fly ash (FA) and blast furnace slag (BFS)-based alkali-activated materials (AAMs). Recycling of SCFCC by integrating it in a AAM matrix offers several advantages: valorization of the material, reducing its disposal in landfills and the landfill cost, and minimizing the environmental impact. Mineralogical, physical and mechanical characterization were carried out. The durability of the specimens was studied by performing acid attack and thermal stability tests. Mass variation, compressive strength and porosity parameters were determined to assess the durability. BFS- and FA-based AAMs have a different chemical composition, which contribute to variations in microstructure and physical and mechanical properties. Acid neutralization capacity was also determined to analyse the acid attack results. Porosity, including the pore size distribution, and the acid neutralization capacity are crucial in explaining the resistance of the AAMs to sulfuric acid attack and thermal degradation. Herein, a novel route was explored, the use of SCFCC to enhance the durability of AAMs under harsh operating conditions since results show that the compositions containing SCFCC showed lower strength decay due to the lower macroporosity proportions in these compositions. Full article
Show Figures

Figure 1

30 pages, 883 KiB  
Review
From Block-Oriented Models to the Koopman Operator: A Comprehensive Review on Data-Driven Chemical Reactor Modeling
by Mustapha Kamel Khaldi, Mujahed Al-Dhaifallah, Ibrahim Aljamaan, Fouad Mohammad Al-Sunni, Othman Taha and Abdullah Alharbi
Mathematics 2025, 13(15), 2411; https://doi.org/10.3390/math13152411 - 26 Jul 2025
Viewed by 295
Abstract
Some chemical reactors exhibit coupled dynamics with multiple equilibrium points and strong nonlinearities. The accurate modeling of these dynamics is crucial to optimal control and increasing the reactor’s economic performance. While neural networks can effectively handle complex nonlinearities, they sacrifice interpretability. Alternatively, block-oriented [...] Read more.
Some chemical reactors exhibit coupled dynamics with multiple equilibrium points and strong nonlinearities. The accurate modeling of these dynamics is crucial to optimal control and increasing the reactor’s economic performance. While neural networks can effectively handle complex nonlinearities, they sacrifice interpretability. Alternatively, block-oriented Hammerstein–Wiener models and Koopman operator-based linear predictors combine nonlinear representation with linear dynamics, offering a gray-box identification approach. This paper comprehensively reviews recent advancements in both the Hammerstein–Wiener and Koopman operator methods and benchmarks their accuracy against neural network-based approaches to modeling a large-scale industrial Fluid Catalytic Cracking fractionator. Furthermore, Monte Carlo simulations are employed to validate performance under varying signal-to-noise ratios. The results demonstrate that the Koopman bilinear model significantly outperforms the other methods in terms of accuracy and robustness. Full article
Show Figures

Figure 1

48 pages, 1341 KiB  
Review
Evaluation of Feedstock Characteristics Determined by Different Methods and Their Relationships to the Crackability of Petroleum, Vegetable, Biomass, and Waste-Derived Oils Used as Feedstocks for Fluid Catalytic Cracking: A Systematic Review
by Dicho Stratiev
Processes 2025, 13(7), 2169; https://doi.org/10.3390/pr13072169 - 7 Jul 2025
Viewed by 473
Abstract
It has been proven that the performance of fluid catalytic cracking (FCC), as the most important oil refining process for converting low-value heavy oils into high-value transportation fuels, light olefins, and feedstocks for petrochemicals, depends strongly on the quality of the feedstock. For [...] Read more.
It has been proven that the performance of fluid catalytic cracking (FCC), as the most important oil refining process for converting low-value heavy oils into high-value transportation fuels, light olefins, and feedstocks for petrochemicals, depends strongly on the quality of the feedstock. For this reason, characterization of feedstocks and their relationships to FCC performance are issues deserving special attention. This study systematically reviews various publications dealing with the influence of feedstock characteristics on FCC performance, with the aim of identifying the best characteristic descriptors allowing prediction of FCC feedstock cracking capability. These characteristics were obtained by mass spectrometry, SARA analysis, elemental analysis, and various empirical methods. This study also reviews published research dedicated to the catalytic cracking of biomass and waste oils, as well as blends of petroleum-derived feedstocks with sustainable oils, with the aim of searching for quantitative relationships allowing prediction of FCC performance during co-processing. Correlation analysis of the various FCC feed characteristics was carried out, and regression techniques were used to develop correlations predicting the conversion at maximum gasoline yield and that obtained under constant operating conditions. Artificial neural network (ANN) analysis and nonlinear regression techniques were applied to predict FCC conversion from feed characteristics at maximum gasoline yield, with the aim of distinguishing which technique provided the more accurate model. It was found that the correlation developed in this work based on the empirically determined aromatic carbon content according to the n-d-M method and the hydrogen content calculated via the Dhulesia correlation demonstrated highly accurate calculation of conversion at maximum gasoline yield (standard error of 1.3%) compared with that based on the gasoline precursor content determined by mass spectrometry (standard error of 1.5%). Using other data from 88 FCC feedstocks characterized by hydrogen content, saturates, aromatics, and polars contents to develop the ANN model and the nonlinear regression model, it was found that the ANN model demonstrated more accurate prediction of conversion at maximum gasoline yield, with a standard error of 1.4% versus 2.3% for the nonlinear regression model. During the co-processing of petroleum-derived feedstocks with sustainable oils, it was observed that FCC conversion and yields may obey the linear mixing rule or synergism, leading to higher yields of desirable products than those calculated according to the linear mixing rule. The exact reason for this observation has not yet been thoroughly investigated. Full article
Show Figures

Figure 1

18 pages, 1371 KiB  
Article
Reduced-Order Model for Catalytic Cracking of Bio-Oil
by Francisco José de Souza, Jonathan Utzig, Guilherme do Nascimento, Alicia Carvalho Ribeiro, Higor de Bitencourt Rodrigues and Henry França Meier
Fluids 2025, 10(7), 179; https://doi.org/10.3390/fluids10070179 - 7 Jul 2025
Viewed by 223
Abstract
This work presents a one-dimensional (1D) model for simulating the behavior of an FCC riser reactor processing bio-oil. The FCC riser is modeled as a plug-flow reactor, where the bio-oil feed undergoes vaporization followed by catalytic cracking reactions. The bio-oil droplets are represented [...] Read more.
This work presents a one-dimensional (1D) model for simulating the behavior of an FCC riser reactor processing bio-oil. The FCC riser is modeled as a plug-flow reactor, where the bio-oil feed undergoes vaporization followed by catalytic cracking reactions. The bio-oil droplets are represented using a Lagrangian framework, which accounts for their movement and evaporation within the gas-solid flow field, enabling the assessment of droplet size impact on reactor performance. The cracking reactions are modeled using a four-lumped kinetic scheme, representing the conversion of bio-oil into gasoline, kerosene, gas, and coke. The resulting set of ordinary differential equations is solved using a stiff, second- to third-order solver. The simulation results are validated against experimental data from a full-scale FCC unit, demonstrating good agreement in terms of product yields. The findings indicate that heat exchange by radiation is negligible and that the Buchanan correlation best represents the heat transfer between the droplets and the catalyst particles/gas phase. Another significant observation is that droplet size, across a wide range, does not significantly affect conversion rates due to the bio-oil’s high vaporization heat. The proposed reduced-order model provides valuable insights into optimizing FCC riser reactors for bio-oil processing while avoiding the high computational costs of 3D CFD simulations. The model can be applied across multiple applications, provided the chemical reaction mechanism is known. Compared to full models such as CFD, this approach can reduce computational costs by thousands of computing hours. Full article
(This article belongs to the Special Issue Multiphase Flow for Industry Applications)
Show Figures

Figure 1

23 pages, 4126 KiB  
Article
Enhanced Hydrothermal Stability and Propylene Selectivity of Electron Beam Irradiation-Induced Hierarchical Fluid Catalytic Cracking Additives
by Nguyen Xuan Phuong Vo, Thuy Phuong Ngo, Van Tri Tran, Ngoc Thuy Luong, Phuc Nguyen Le and Van Chung Cao
Catalysts 2025, 15(7), 620; https://doi.org/10.3390/catal15070620 - 24 Jun 2025
Viewed by 1657
Abstract
A cheap, environmentally friendly, easily scalable post-treatment of Na-ZSM-5 (Si/Al molar ratio = 20 or 30) via electron-beam irradiation to produce hierarchical H-ZSM-5 as a propylene-increasing fluid catalytic cracking additive was performed. Higher specific surface areas and highly accessible porous systems were obtained [...] Read more.
A cheap, environmentally friendly, easily scalable post-treatment of Na-ZSM-5 (Si/Al molar ratio = 20 or 30) via electron-beam irradiation to produce hierarchical H-ZSM-5 as a propylene-increasing fluid catalytic cracking additive was performed. Higher specific surface areas and highly accessible porous systems were obtained among the irradiated samples. A combination of 27Al, 1H magic angle spinning nuclear magnetic resonance and NH3-temperature-programmed desorption methods showed that upon irradiation, some of the framework’s tetrahedral Al atoms were removed as non-framework Al atoms via flexible coordination with Si-OH groups (either framework or non-framework defects), thus increasing the H-ZSM-5 acidity and stability during hydrothermal dealumination. The enhanced selectivity and stability toward propylene production over the irradiated H-ZSM-5 samples were attributed to the integration of the reserved population of medium acid sites into the highly accessible hierarchical network. N2 adsorption–desorption isotherm data showed that the Si-rich H-ZSM-5 samples possessed an obvious ink-bottle-shaped micro-mesopore network and a greater degree of disordered orientation of the straight pore systems toward the exterior surfaces. Micro-activity test data suggested that with an increasing Si/Al ratio, the H-ZSM-5 additives lost some extent of their cracking activity due to the constricted hierarchical pore network toward the exterior surface but gained more stability and selectivity for propylene due to the reserved medium acid sites. Full article
(This article belongs to the Section Industrial Catalysis)
Show Figures

Graphical abstract

21 pages, 3684 KiB  
Article
Integrated CFD and Experimental Analysis of Coke Oxidation in FCC Catalyst Regeneration Under O2/N2 and O2/CO2
by Ahmad Alsuwaidi, Sasha Yang, Alfred Bekoe Appiagyei, John Nikko V. Salvilla, Nauman Ahmad, Haitao Song, Qianqian Liu, Fei Ren, Zhenyu Chen, Shibo Kuang and Lian Zhang
Processes 2025, 13(6), 1718; https://doi.org/10.3390/pr13061718 - 30 May 2025
Viewed by 675
Abstract
This study investigated the combustion profiles and oxidation mechanisms of coke on spent FCC catalysts from two Sinopec refineries and compared the effects of O2/N2 and O2/CO2 atmospheres. Using the Coats–Redfern method combined with nonlinear regression, the [...] Read more.
This study investigated the combustion profiles and oxidation mechanisms of coke on spent FCC catalysts from two Sinopec refineries and compared the effects of O2/N2 and O2/CO2 atmospheres. Using the Coats–Redfern method combined with nonlinear regression, the kinetics of coke oxidation were analyzed for the activation energies derived from the modified D3 and F2 models. Both these models yielded results that agreed with the previous reports. Selection of the suitable kinetic model was significantly influenced by specific properties of the coke on spent FCC catalysts. Furthermore, a computational model revealed that on an industrial scale, external mass transfer predominated the intrinsic kinetics; the differences observed in the O2/N2 and O2/CO2 environments were primarily due to variations in oxygen diffusion. These findings highlight the potential of optimizing FCC catalyst regeneration processes through alternative oxidation environments and the use of catalytic additives. Full article
Show Figures

Figure 1

14 pages, 2913 KiB  
Article
Selective Extraction of Aromatics from Slurry Oil with Subcritical Water
by Nuo-Xin Zhou, Zhu-Qi Liu, Meng-Han Zhu, Zi-Bin Huang, Jing-Yi Yang, Li-Tao Wang and Pei-Qing Yuan
Molecules 2025, 30(9), 2079; https://doi.org/10.3390/molecules30092079 - 7 May 2025
Viewed by 428
Abstract
The selective separation of aromatics from slurry oil (SLO)—a low-value byproduct of fluid catalytic cracking—remains a major industrial challenge. This study investigates the use of subcritical water (Sub-CW) as a green and tunable solvent to extract aromatics from SLO in a semi-batch system [...] Read more.
The selective separation of aromatics from slurry oil (SLO)—a low-value byproduct of fluid catalytic cracking—remains a major industrial challenge. This study investigates the use of subcritical water (Sub-CW) as a green and tunable solvent to extract aromatics from SLO in a semi-batch system operating at 250–325 °C. At 325 °C and a water-to-oil mass ratio of 6:1, the extract yield reaches 16 wt%, with aromatic hydrocarbons accounting for over 90 wt% of the extract, predominantly composed of 3- to 4-ring polycyclic aromatic hydrocarbons. Comprehensive characterization via simulated distillation, SARA analysis, FT-IR, and 1H-NMR confirms the selective enrichment of aromatics and effective separation from saturates and asphaltenes. To elucidate the molecular basis of this selectivity, principal component analysis of Hansen solubility parameters was performed. The results revealed a temperature-dependent solubility trend in Sub-CW, whereby the affinity for hydrocarbons follows the order aromatics > cycloalkanes > alkanes. This solubility preference, supported by both experimental data and theoretical analysis, offers new insight into subcritical solvent design and provides a basis for process intensification in SLO valorization. Full article
Show Figures

Figure 1

14 pages, 1365 KiB  
Article
Hydrocracking of Various Vacuum Residues
by Dicho Stratiev
Fuels 2025, 6(2), 35; https://doi.org/10.3390/fuels6020035 - 7 May 2025
Cited by 1 | Viewed by 645
Abstract
The residue conversion processes, coking, visbreaking, and fluid catalytic cracking (FCC), have demonstrated that feedstock quality is the single factor that most affects process performance. While, for the FCC, it is known that the heavy oil conversion at a maximum gasoline yield point [...] Read more.
The residue conversion processes, coking, visbreaking, and fluid catalytic cracking (FCC), have demonstrated that feedstock quality is the single factor that most affects process performance. While, for the FCC, it is known that the heavy oil conversion at a maximum gasoline yield point can vary between 50 and 85 wt. %, for the vacuum residue hydrocracking, no reports have appeared yet to reveal the dependence of conversion on the quality of vacuum residue being hydrocracked. In order to search for such a dependence, eight vacuum residues derived from medium, heavy, and extra heavy crude oils have been hydrocracked in a laboratory unit at different reaction temperatures. The current study has witnessed that the vacuum residue hydrocracking obeys the same rule as that of the other residue conversion processes, confirming that the feedstock quality has a great influence on the process performance. A conversion variation between 45 and 85 wt. % can be observed when the sediment content in the hydrocracked atmospheric residue is within the acceptable limit, guaranteeing the planned cycle length. An intercriteria analysis was performed, and it revealed that the vacuum residue conversion has negative consonances with the contents of nitrogen and metals. Correlations were developed which predict the conversion at constant operating conditions within the uncertainty of conversion measurement of 1.7 wt. % and correlation coefficient of 0.964. The conversion at constant hydrocracked atmospheric residue (HCAR) sediment content was predicted with a correlation coefficient of 0.985. The correlations developed in this work disclosed that the higher the contents of metals, nitrogen, and asphaltenes, and the lower the content of sulfur, the lower the conversion in the hydrocracking process is. It was also shown that vacuum residues, which have the same reactivity (the same conversion at identical operating conditions), can indicate significant difference in the conversion at the same HCAR sediment content due to their diverse propensity to form sediments in the process of hydrocracking. Full article
Show Figures

Figure 1

16 pages, 2497 KiB  
Article
Bayesian Deep Reinforcement Learning for Operational Optimization of a Fluid Catalytic Cracking Unit
by Jingsheng Qin, Lingjian Ye, Jiaqing Zheng and Jiangnan Jin
Processes 2025, 13(5), 1352; https://doi.org/10.3390/pr13051352 - 28 Apr 2025
Viewed by 525
Abstract
The emerging machine learning techniques provide great opportunities for optimal operation of chemical systems. This paper presents a Bayesian deep reinforcement learning method for the optimization of a fluid catalytic cracking (FCC) unit, which is a key process in the petroleum refining industry. [...] Read more.
The emerging machine learning techniques provide great opportunities for optimal operation of chemical systems. This paper presents a Bayesian deep reinforcement learning method for the optimization of a fluid catalytic cracking (FCC) unit, which is a key process in the petroleum refining industry. Unlike the traditional reinforcement learning (RL) methods that use deterministic network weights, Bayesian neural networks are incorporated to represent the RL agent. The Bayesian treatment is integrated with the primal-dual method to handle the process constraints. Simulated experiments for FCC determined that the proposed algorithm achieves more stable control performance and higher economic profits, especially under parameter fluctuations and external disturbances. Full article
(This article belongs to the Special Issue Machine Learning Optimization of Chemical Processes)
Show Figures

Figure 1

14 pages, 1413 KiB  
Article
Evaluation of Regeneration Effects of Different Rejuvenators on Aged Asphalt
by Jian Wang, Song Xu, Jiang Chen, Weibin Xie, Xuehong Cheng, Jiahao Wang and Yunbin Ke
Buildings 2025, 15(7), 1171; https://doi.org/10.3390/buildings15071171 - 2 Apr 2025
Viewed by 400
Abstract
As a polymer-like organic material, asphalt often undergoes aging during service life. Regeneration technology is the main approach to achieve its recycling; therefore, the rejuvenator is an important factor affecting the regeneration effect. In order to evaluate the rejuvenation effects of rejuvenators on [...] Read more.
As a polymer-like organic material, asphalt often undergoes aging during service life. Regeneration technology is the main approach to achieve its recycling; therefore, the rejuvenator is an important factor affecting the regeneration effect. In order to evaluate the rejuvenation effects of rejuvenators on aged asphalt, fluid catalytic cracking (FCC) slurry and a penetrant containing epoxy functional groups were used to prepare conventional rejuvenators (CR1 and CR2) and a penetrable rejuvenator (PR). The impact of the penetrant on the physical properties of the rejuvenator was investigated, and the rejuvenation effects of different rejuvenators on mild and severe aged asphalt were evaluated through physical and rheological tests. Results show that the penetrant effectively lubricates the movement of rejuvenator molecules, improving the high temperature stability and aging resistance of the rejuvenator. CR1 and CR2 are more suitable for mild aged asphalt, as mild aging has a relatively minimal effect on the chemical composition and colloidal structure of asphalt. At a 25% dosage, the PR significantly restores the physical properties of severe aged asphalt, while CR1 and CR2 still fail to meet specifications. The PR is more effective for severe aged asphalt because it not only dissolves and disperses asphaltenes but also weakens interactions between asphaltenes, which facilitates a more effective restoration of the colloidal structure and significantly enhances the rejuvenation effect. The findings of this study provide insights into the design of penetrable rejuvenators for a more efficient utilization of reclaimed asphalt pavement (RAP). Full article
(This article belongs to the Special Issue Mechanical Properties of Asphalt and Asphalt Mixtures: 2nd Edition)
Show Figures

Figure 1

18 pages, 1588 KiB  
Article
Root Cause Analysis for Observed Increased Sedimentation in a Commercial Residue Hydrocracker
by Ivelina Shishkova, Dicho Stratiev, Petko Kirov, Rosen Dinkov, Sotir Sotirov, Evdokia Sotirova, Veselina Bureva, Krassimir Atanassov, Vesislava Toteva, Svetlin Vasilev, Dobromir Yordanov, Radoslava Nikolova and Anife Veli
Processes 2025, 13(3), 674; https://doi.org/10.3390/pr13030674 - 27 Feb 2025
Cited by 2 | Viewed by 801
Abstract
Ebullated bed vacuum residue hydrocracking is a well-established technology providing a high conversion level of low-value residue fractions in high-value light fuels. The main challenge in this technology when processing vacuum residues derived from different crude oils is the sediment formation rate that [...] Read more.
Ebullated bed vacuum residue hydrocracking is a well-established technology providing a high conversion level of low-value residue fractions in high-value light fuels. The main challenge in this technology when processing vacuum residues derived from different crude oils is the sediment formation rate that leads to equipment fouling and cycle length shortening. With the severity enhancement, the asphaltenes become more aromatic and less soluble which leads to sediment formation when the difference between solubility parameters of asphaltenes and maltenes goes beyond a threshold value. Although theoretical models have been developed to predict asphaltene precipitation, the great diversity of oils makes it impossible to embrace the full complexity of oil chemistry by any theoretical model making it impractical for using it in all applications. The evaluation of process data of a commercial ebullated bed vacuum residue hydrocracker, properties of different feeds, and product streams by intercriteria and regression analyses enabled us to decipher the reason for hydrocracked oil sediment content rising from 0.06 to 1.15 wt.%. The ICrA identified the presence of statistically meaningful relations between the single variables, while the regression analysis revealed the combination of variables having a statistically meaningful effect on sediment formation rate. In this study, vacuum residues derived from 16 crude oils have been hydrocracked as blends, which also contain fluid catalytic cracking heavy cycle oil and slurry oil (SLO), in a commercial H-Oil plant. It was found that the hydrocracked oil sediment content decreased exponentially with fluid catalytic cracking slurry oil augmentation. It was also established that it increased with the magnification of resin and asphaltene and the reduction in sulfur contents in the H-Oil feed. Full article
(This article belongs to the Special Issue Heat and Mass Transfer Phenomena in Energy Systems)
Show Figures

Figure 1

24 pages, 5999 KiB  
Article
Unravelling Vacuum Gas Oil Catalytic Cracking: The Influence of the Catalyst-to-Oil Ratio on FCC Catalyst Performance
by Jansen Gabriel Acosta-López, José Luis Muñoz and Hugo de Lasa
Catalysts 2025, 15(2), 170; https://doi.org/10.3390/catal15020170 - 12 Feb 2025
Cited by 1 | Viewed by 1310
Abstract
This study evaluates the impact of the catalyst-to-oil (C/O) ratio in the 1 to 7 range on the catalytic cracking of vacuum gas oil (VGO). Experiments are conducted using fluid catalytic cracking (FCC)-type catalysts, in a mini-fluidized bench-scale Riser Simulator reactor invented at [...] Read more.
This study evaluates the impact of the catalyst-to-oil (C/O) ratio in the 1 to 7 range on the catalytic cracking of vacuum gas oil (VGO). Experiments are conducted using fluid catalytic cracking (FCC)-type catalysts, in a mini-fluidized bench-scale Riser Simulator reactor invented at the Chemical Reactor Engineering Centre (CREC), University of Western Ontario. The CREC Riser Simulator replicates FCC industrial operating conditions such as temperature, species partial pressure, and reaction times. The results indicate that increasing the C/O ratio above 5 slightly impacts VGO conversion, increases light gases yield, decreases light cycle oil (LCO) yield, and stabilizes gasoline yield. These findings align with temperature-programmed desorption (TPD) data, showing how the retention of a larger number of acid sites at a C/O of 7 boosts light gas production and reduces LCO selectivity. These elevated C/O ratios also lead to higher coke formation. The results reported together with future studies conducted by our research team on the impact of higher catalyst flows, larger potential catalyst attrition, higher catalyst loading in the cyclones, and excess heat generated in the catalyst regenerator unit, are of critical value for establishing the impact of C/O ratios in the overall FCC refinery operation. Full article
(This article belongs to the Section Catalytic Reaction Engineering)
Show Figures

Graphical abstract

23 pages, 15693 KiB  
Article
A Fault Judgment Method of Catalyst Loss in FCC Disengager Based on Fault Tree Analysis and CFD Simulation
by Yuhui Li, Yunpeng Zhao, Zeng Li, Nan Liu, Chunmeng Zhu, Shouzhuang Li, Xiaogang Shi, Chengxiu Wang and Xingying Lan
Processes 2025, 13(2), 464; https://doi.org/10.3390/pr13020464 - 8 Feb 2025
Cited by 1 | Viewed by 786
Abstract
Catalyst loss is a typical fault that impacts the long-term operation of the fluidized catalytic cracking (FCC) in the oil refining process. The FCC disengager is a critical place for separating the catalyst from oil gas. A fast and precise fault-cause judgment of [...] Read more.
Catalyst loss is a typical fault that impacts the long-term operation of the fluidized catalytic cracking (FCC) in the oil refining process. The FCC disengager is a critical place for separating the catalyst from oil gas. A fast and precise fault-cause judgment of catalyst loss is vital for avoiding catalyst loss failures. In this study, a novel fault judgment method of catalyst loss failures with quantitative criteria was established via the fault tree analysis (FTA) method, based on the relationship model between flow field signals and faults in the FCC disengager investigated by computational fluid dynamics (CFD). The FTA method defines three intermediate events: catalyst fragmentation, process fault and mechanical fault. In CFD results, it was found that the detailed fault reason can be inferred based on the changes in the characteristic parameters within the disengager. For example, when the catalyst loss rate of the FCC disengager may rapidly increase by a factor of around 200. Furthermore, the pressure drop of the cyclone separator decreases by around 35%, which indicates that the dipleg has fractured. The new fault judgment method has been applied in cases of catalyst loss in two industrial disengagers. The method accurately pinpointed the sudden reduction in inlet velocity and blockage fault at the cyclone separator as the main factors leading to catalyst loss faults, respectively. The judgment results are consistent with actual reasons, demonstrating the reliability of the method. This study could contribute to providing theoretical support and enhancing the accuracy for the diagnosis of catalyst loss faults, thereby ensuring the safe and stable operation of the FCC unit. Full article
Show Figures

Graphical abstract

18 pages, 1322 KiB  
Article
Reaction Behavior and Kinetic Model of Hydroisomerization and Hydroaromatization of Fluid Catalytic Cracking Gasoline
by Haijun Zhong, Xiwen Song, Shuai He, Xuerui Zhang, Qingxun Li, Haicheng Xiao, Xiaowei Hu, Yue Wang, Boyan Chen and Wangliang Li
Molecules 2025, 30(4), 783; https://doi.org/10.3390/molecules30040783 - 8 Feb 2025
Viewed by 855
Abstract
The hydro-upgrading reaction behavior of model compound 1-hexene and FCC middle gasoline was investigated using a fixed-bed hydrogenation microreactor with a prepared La-Ni-Zn/H-ZSM-5 catalyst. The catalyst was prepared by wetness impregnation method, using hydrothermal treated H-ZSM-5 zeolite blended with alumina as the support, [...] Read more.
The hydro-upgrading reaction behavior of model compound 1-hexene and FCC middle gasoline was investigated using a fixed-bed hydrogenation microreactor with a prepared La-Ni-Zn/H-ZSM-5 catalyst. The catalyst was prepared by wetness impregnation method, using hydrothermal treated H-ZSM-5 zeolite blended with alumina as the support, and La, Ni, Zn as the active metals. The reaction tests were carried out at 300–380 °C, 1.0 MPa, 1.5–3.0 h−1 (LSHV), and 300:1 v/v (H2/oil). Analyzing the changes in hydrocarbon components before and after hydro-upgrading elucidated the mechanistic pathways of olefin hydroisomerization and hydroaromatization. Based on these findings, a seven-lump kinetic model was established for the FCC middle gasoline hydro-upgrading process. Given the diversity and complexity of reaction products, they were grouped into seven lumps: normal paraffins, isoparaffins, linear olefins, branched olefins, cycloolefins, naphthenes, and aromatics. Kinetic parameters were estimated using the Levenberg–Marquardt algorithm and validated against experimental data. The results showed that the conversion of naphthenes to aromatics exhibited the highest activation energy and pre-exponential factor, resulting in the largest reaction rate increase within the 320–380 °C range. The model accurately predicted the product yields of FCC gasoline hydro-upgrading, with a relative error of less than 5%. These findings provide valuable guidance for the optimization, design, and operation of FCC gasoline hydro-upgrading units, as well as for catalyst development, with the aim of improving process efficiency and fuel quality. Full article
Show Figures

Figure 1

Back to TopTop