Evaluation of Regeneration Effects of Different Rejuvenators on Aged Asphalt
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Rejuvenators
2.3. Preparation of Rejuvenated Asphalt
- (1)
- Aging treatment
- (2)
- Rejuvenation of asphalt
2.4. Measurements
- (1)
- Physical property test
- (2)
- Rheological property test
3. Results and Discussion
3.1. Effect of Penetrant on Rejuvenator
3.2. Effect of Rejuvenator on Physical Properties of Mild Aged Asphalt
3.2.1. Penetration
3.2.2. Ductility
3.2.3. Softening Point
3.2.4. Viscosity
3.3. Effect of Rejuvenator on Physical Properties of Severe Aged Asphalt
3.3.1. Penetration
3.3.2. Ductility
3.3.3. Softening Point
3.3.4. Viscosity
3.4. Effect of Rejuvenator on Rheological Properties of Aged Asphalt
4. Conclusions
- (1)
- The penetrant, with its low viscosity and good fluidity, provides an effective lubrication for the movement of rejuvenator molecules, which improves the viscosity of the rejuvenator. And the addition of the penetrant enhances the high-temperature stability and aging resistance of the rejuvenator, which benefits the regeneration of aged asphalt.
- (2)
- Regarding mild aged asphalt, the PR exhibits a more pronounced effect on reducing the softening point and viscosity compared to CR1 and CR2 as its dosage increases, with reductions of 5.4%, 9.8%, and 11.9%, respectively. This indicates that the PR effectively dissolves and disperses asphaltenes while weakening their interactions. In addition, CR1 and CR2 are more suitable than the PR for rejuvenating mild aged asphalt.
- (3)
- Severe aging significantly increases the asphaltene content, which intensifies the spatial hindrance of asphaltenes. At dosages of 25% for the PR, CR1, and CR2, the PR significantly restores the physical properties of severe aged asphalt, whereas CR1 and CR2 still fail to meet the specifications. The PR, in contrast to CR1 and CR2, not only dissolves and disperses asphaltenes but also disrupts their interactions, leading to a more effective restoration of the colloidal structure of severe aged asphalt, which enhances the rejuvenation effect.
- (4)
- Three rejuvenators can reduce the elastic component while increasing the viscous component of aged asphalt. Among them, the PR promotes the blending of fresh and aged asphalt, aiding in the restoration of the colloidal structure, which effectively lowers the complex modulus and increases the phase angle of aged asphalt.
5. Future Suggestions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Meng, Y.J.; Wang, Z.; Lei, J.C.; Liao, Y.J.; Zhao, X.Y.; Qin, Y.; Fang, G.P.; Zhang, C.Y. Study on aging resistance and micro characteristics of bio-asphalt/TLA composite modified asphalt binder. Constr. Build. Mater. 2022, 359, 129566. [Google Scholar] [CrossRef]
- Shi, C.Y.; Ge, J.G.; Yu, H.A.; Qian, G.P.; Zhou, H.Y.; Ma, Y.T.; Nian, T.F.; Yao, D.; Wang, Y.; Zhong, Y.X. Interfacial adhesion properties and debonding mechanisms in rejuvenated asphalt mixtures. Constr. Build. Mater. 2024, 425, 135973. [Google Scholar] [CrossRef]
- Riekstins, A.; Haritonovs, V.; Straupe, V.; Izaks, R.; Merijs-Meri, R.; Zicans, J. Comparative environmental and economic assessment of a road pavement containing multiple sustainable materials and technologies. Constr. Build. Mater. 2024, 432, 136522. [Google Scholar] [CrossRef]
- Li, Y.Y.; Wu, S.P.; Dai, Y.; Pang, L.; Liu, Q.T.; Nie, S.; Li, H.C.; Wang, Z.F. Laboratory and field evaluation of sodium stearate organically modified LDHs effect on the anti aging performance of asphalt mixtures. Constr. Build. Mater. 2018, 189, 366–374. [Google Scholar] [CrossRef]
- Zhao, Y.; Wu, X.Q.; Chao, Y.B.; Liang, N.X.; Zhou, P.Y.; Li, Z.; Mei, Y.J. Aging characteristics and microscopic mechanisms of SBS asphalt based on coupled light-heat-water aging. Constr. Build. Mater. 2024, 456, 139190. [Google Scholar] [CrossRef]
- Liu, H.B.; Zhang, Z.Q.; Tian, Z.N.; Lu, C. Exploration for UV Aging Characteristics of Asphalt Binders based on Response Surface Methodology: Insights from the UV Aging Influencing Factors and Their Interactions. Constr. Build. Mater. 2022, 347, 128460. [Google Scholar] [CrossRef]
- Sun, Y.; Li, H.; Yang, B.; Han, Y.Z.; Zou, Z.X. Investigation on rheological properties and aging mechanism of asphalt under multiple environmental conditions. Constr. Build. Mater. 2024, 443, 137713. [Google Scholar] [CrossRef]
- Xu, S.; Jia, X.J.; Huang, R.Y.; Fang, L.; Ma, Z.R.; Zhang, C.L.; Que, Y. Preparation and performance evaluation of different bitumens modified by antioxidant/PABA-LDHs composites. Constr. Build. Mater. 2023, 367, 130286. [Google Scholar] [CrossRef]
- Sun, E.Y.; Cai, R.; Zhao, Y.Q.; Fu, G.Z.; Che, T.K. Microstructural and micromechanical evolution features of asphalt with aging: An atomic force microscopy study. Constr. Build. Mater. 2024, 441, 137518. [Google Scholar] [CrossRef]
- Du, P.F.; Long, J.; Duan, H.H.; Luo, H.; Zhang, H.L. Laboratory performance and aging resistance evaluation of zinc oxide/expanded vermiculite composite modified asphalt binder and mixture. Constr. Build. Mater. 2022, 358, 129385. [Google Scholar] [CrossRef]
- Wen, Y.; Wang, Y.H. Effect of Oxidative Aging on Dynamic Modulus of Hot-Mix Asphalt Mixtures. J. Mater. Civ. Eng. 2019, 31, 04018348. [Google Scholar] [CrossRef]
- Yuan, J.; Li, T.H.; Ya, X.; Li, H.Y.; Sun, W.W. Evaluation of pine needle oil recycled asphalt: Rheological characterization and molecular simulation. Constr. Build. Mater. 2024, 453, 13980. [Google Scholar] [CrossRef]
- Xu, B.; Ding, R.D.; Yang, Z.H.; Sun, Y.R.; Zhang, J.C.; Lu, K.J.; Cao, D.W.; Gao, A.D. Investigation on performance of mineral-oil-based rejuvenating agent for aged high viscosity modified asphalt of porous asphalt pavement. J. Clean. Prod. 2023, 395, 136285. [Google Scholar] [CrossRef]
- Shi, K.; Ma, F.; Fu, Z.; Liu, J.Y.; Song, R.M.; Yuan, D.D.; Tang, Y.J. Molecular dynamics simulation insights into rejuvenating aged asphalt with waste soybean oil and polymers. Constr. Build. Mater. 2024, 439, 137260. [Google Scholar] [CrossRef]
- Zhao, Y.C.; Chen, M.Z.; Shen, J.N.; Shi, P.C.; Wu, S.P.; Chen, D.Y.; Zhang, J.W.; Zhao, Z.G. Aging behaviors of asphalt binders rejuvenated by different chemical fractions from waste cooking oil. Constr. Build. Mater. 2024, 435, 136867. [Google Scholar] [CrossRef]
- Luo, Y.H.; Guo, P.; Gao, J.F.; Meng, J.W.; Dai, Y.K. Application of Design-Expert response surface methodology for the prediction of rejuvenated asphalt fatigue life. J. Clean. Prod. 2022, 379, 134427. [Google Scholar] [CrossRef]
- Wang, J.P.; Lv, S.T.; Liu, J.; Peng, X.H.; Lu, W.W.; Wang, Z.Y.; Xie, N.S. Performance evaluation of aged asphalt rejuvenated with various bio-oils based on rheological property index. J. Clean. Prod. 2023, 385, 135593. [Google Scholar] [CrossRef]
- Xu, X.; Yu, J.Y.; Xue, L.H.; Zhang, C.L.; He, B.Y.; Wu, M. Structure and performance evaluation on aged SBS modified bitumen with bi- or tri-epoxy reactive rejuvenating system. Constr. Build. Mater. 2017, 151, 479–486. [Google Scholar] [CrossRef]
- Xin, X.; Jiang, H.G.; Liang, M.; Yao, Z.Y.; Zhang, J.Z.; Luo, W.X.; Zhang, X.M. Chemical, rheological properties and microstructure of road asphalt prepared from deoiled asphalt, slurry oil and polymers. Constr. Build. Mater. 2020, 257, 119571. [Google Scholar] [CrossRef]
- Cui, L.R.; Xu, J.; Cen, L.; Ren, M.N.; Cao, F.H. Molecular engineering and modification of FCC slurry oil residue for improving ageing resistance of high quality paving asphalt. Constr. Build. Mater. 2021, 299, 124234. [Google Scholar] [CrossRef]
- Feng, Y.; Lu, M.; Sun, Y. Structure and Composition of Aromatics in Fluid Catalytic Cracking Slurry Oils From Different Crudes. Acta Pet. Sin. Pet. Process. Sect. 2022, 38, 191–198. [Google Scholar]
- Deng, M.; Cao, X.J.; Yuan, Y.; Yang, X.Y.; Tang, B.M.; Li, X.Y. Response of oxidized asphaltene aggregations in presence of rejuvenators and characteristics of molecular assembly behavior. Constr. Build. Mater. 2023, 397, 132468. [Google Scholar] [CrossRef]
- Hu, M.J.; Sun, D.Q.; Zhu, X.Y.; Sun, G.Q.; Hofko, B.; Mirwald, J.; Primerano, K. Molecular-atomic scale insights into polymer-asphalt interactions induced by the oxidation of reactive oxygen species via computational simulation and multifield microscopy characterization. J. Mol. Liq. 2024, 409, 125492. [Google Scholar] [CrossRef]
- Fini, E.; Rajib, A.I.; Oldham, D.; Samieadel, A.; Hosseinnezhad, S. Role of Chemical Composition of Recycling Agents in Their Interactions with Oxidized Asphaltene Molecules. J. Mater. Civ. Eng. 2020, 32, 04020268. [Google Scholar] [CrossRef]
- Fang, Y.; Zhang, Z.Q.; Yang, J.H.; Wang, Y.Y. Research on interfacial fusion characteristics of rejuvenator-aged asphalt system: Wettability, permeability and molecular simulation. Constr. Build. Mater. 2024, 443, 137646. [Google Scholar] [CrossRef]
- Fang, Y.; Zhang, Z.Q.; Shi, J.R.; Yang, X.H.; Li, X.J. Insights into permeability of rejuvenator in old asphalt based on permeation theory: Permeation behaviors and micro characteristics. Constr. Build. Mater. 2022, 325, 126765. [Google Scholar] [CrossRef]
- JTG E20-2011; Test Specifications for Asphalt and Asphalt Mixtures in Highway Engineering. Standardization Administration of China: Beijing, China, 2011.
Items | Indexes | Measured Values |
---|---|---|
Physical properties | Penetration (25 °C, 0.1 mm) | 78 |
Ductility (15 °C, cm) | >150 | |
Softening point (°C) | 47.2 | |
Viscosity (60 °C, Pa·s) | 258 | |
Chemical components | Saturates (wt.%) | 11.64 |
Aromatics (wt.%) | 53.95 | |
Resins (wt.%) | 24.43 | |
Asphaltenes (wt.%) | 9.98 |
Items | Values |
---|---|
Flash point (°C) | >260 |
Viscosity (25 °C, mPa·s) | 305 |
Weight loss after TFOT aging (%) | 0.28 |
Physical Properties | Measured Values |
---|---|
Density (20 °C, g/cm3) | 1.119 |
Flash point (°C) | 225 |
Molecular weight | 306 |
Carbon residue (wt.%) | 5.76 |
Ash content (wt.%) | 0.135 |
Kinematic viscosity (100 °C, mm2/s) | 12.38 |
Physical Properties | PR | CR1 | CR2 |
---|---|---|---|
Kinematic viscosity (60 °C, mm2/s) | 1120 | 1840 | 5470 |
Flash point (°C) | 248 | 241 | 267 |
Viscosity ratio after TFOT aging | 1.71 | 2.53 | 1.93 |
Weight loss after TFOT aging (%) | −1.83 | −2.76 | −1.64 |
Physical Properties | TFOT Aging Time (h) | |
---|---|---|
25 | 50 | |
Penetration (25 °C, 0.1 mm) | 32 | 14 |
Ductility (15 °C, cm) | 5.1 | 0.6 |
Softening point (°C) | 57.8 | 68.1 |
Viscosity (135 °C, Pa·s) | 1.14 | 3.95 |
Physical Properties | Mild Aged Asphalt with Fresh Asphalt | Severe Aged Asphalt with Fresh Asphalt |
---|---|---|
Penetration (25 °C, 0.1 mm) | 41 | 29 |
Ductility (15 °C, cm) | 28.6 | 15.9 |
Softening point (°C) | 52.3 | 63.1 |
Viscosity (135 °C, Pa·s) | 0.97 | 3.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Xu, S.; Chen, J.; Xie, W.; Cheng, X.; Wang, J.; Ke, Y. Evaluation of Regeneration Effects of Different Rejuvenators on Aged Asphalt. Buildings 2025, 15, 1171. https://doi.org/10.3390/buildings15071171
Wang J, Xu S, Chen J, Xie W, Cheng X, Wang J, Ke Y. Evaluation of Regeneration Effects of Different Rejuvenators on Aged Asphalt. Buildings. 2025; 15(7):1171. https://doi.org/10.3390/buildings15071171
Chicago/Turabian StyleWang, Jian, Song Xu, Jiang Chen, Weibin Xie, Xuehong Cheng, Jiahao Wang, and Yunbin Ke. 2025. "Evaluation of Regeneration Effects of Different Rejuvenators on Aged Asphalt" Buildings 15, no. 7: 1171. https://doi.org/10.3390/buildings15071171
APA StyleWang, J., Xu, S., Chen, J., Xie, W., Cheng, X., Wang, J., & Ke, Y. (2025). Evaluation of Regeneration Effects of Different Rejuvenators on Aged Asphalt. Buildings, 15(7), 1171. https://doi.org/10.3390/buildings15071171