Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (318)

Search Parameters:
Keywords = flow over a sphere

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 6280 KB  
Article
Increasing Residence Time in Random Packed Beds of Spheres with a Helical Flow Deflector
by Maciej Marek
Processes 2025, 13(9), 2828; https://doi.org/10.3390/pr13092828 - 3 Sep 2025
Viewed by 455
Abstract
Random packed beds (RPBs) of various particles are widely used in chemical reactors to enhance the contact between the reactants or the catalyst. This numerical study investigates the prospects of using a helical flow deflector spanning the whole cross-section of the reactor and [...] Read more.
Random packed beds (RPBs) of various particles are widely used in chemical reactors to enhance the contact between the reactants or the catalyst. This numerical study investigates the prospects of using a helical flow deflector spanning the whole cross-section of the reactor and the height of the random packing to control residence time distribution (RTD) in RPBs of spherical particles. The packed bed geometry is generated via sequential particle deposition, while flow equations are solved for the real geometry of the packing without additional modelling terms. The results demonstrate that in laminar conditions the flow deflector significantly increases flow tortuosity and residence time (even a few times for small helix pitches) when the effective velocity in the RPB is kept fixed. The relationship between the helix pitch and tortuosity, pressure drop, and RTD is quantified, revealing that residence time scale similarly to tortuosity while the increase in pressure drop is more pronounced. The study provides a validated framework for optimising helical deflector designs in RPBs (at least in the laminar regime), with implications for reactor efficiency. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Graphical abstract

21 pages, 8217 KB  
Article
Numerical Study of Irregularly Roughened Micro-Particles’ Drag in Laminar Flow
by Eleni Papazoglou, Konstantinos-Stefanos Nikas and Demetri Bouris
Appl. Sci. 2025, 15(16), 9090; https://doi.org/10.3390/app15169090 - 18 Aug 2025
Viewed by 362
Abstract
The effect of surface roughness in laminar flow has been the focus of recent research related to drag reduction. However, although particle transport is governed by laminar flow in most applications, the effect of surface texture on the drag of a sphere has [...] Read more.
The effect of surface roughness in laminar flow has been the focus of recent research related to drag reduction. However, although particle transport is governed by laminar flow in most applications, the effect of surface texture on the drag of a sphere has mostly been addressed in the transitional and turbulent regimes. The aim of the present study is to explore the drag behavior of rough spherical micro-particles in laminar flow. The spheres’ roughness has been structured based on a 3D complex Weaire–Phelan model, as well as on a simpler orthogonal lattice one, and quantified as per various definitions. The emerging surface roughness comprises irregular elements in terms of shape and size. The investigation has been performed at Reynolds numbers ranging from 2 to 8. The drag coefficient is found to drop quadratically with increasing roughness. Relative roughness can reduce the total drag on the particle by over 21%. The key physical mechanism is explained by the particles’ surface cavities, which contain recirculating, nearly stagnant fluid, thus creating a self-lubricating effect that reduces skin friction, as the main flow skims over the top without entering the cavities. A reduction in total drag arises when skin friction drag reduction is larger than the increase in form drag. Understanding the drag behavior of spherical particles with irregular surface texture provides new and useful insight into low Reynolds number transport phenomena related to a variety of engineering applications. Full article
(This article belongs to the Section Fluid Science and Technology)
Show Figures

Figure 1

14 pages, 4120 KB  
Article
DEM Parameter Calibration and Experimental Definition for White Tea Granular Systems
by Dapeng Ye, Yuxuan Gao, Yanlin Qi, Hao Wang, Renye Wu and Haiyong Weng
Agronomy 2025, 15(8), 1909; https://doi.org/10.3390/agronomy15081909 - 8 Aug 2025
Viewed by 379
Abstract
During automated packaging of white tea, uneven tea pile thickness leads to reduced weighing accuracy, while traditional experimental methods struggle to reveal the underlying particle flow mechanisms, hindering equipment optimization. Addressing the lack of discrete element method (DEM) parameters for Baihao Yinzhen tea, [...] Read more.
During automated packaging of white tea, uneven tea pile thickness leads to reduced weighing accuracy, while traditional experimental methods struggle to reveal the underlying particle flow mechanisms, hindering equipment optimization. Addressing the lack of discrete element method (DEM) parameters for Baihao Yinzhen tea, this study calibrates its DEM parameters based on the DEM approach, providing input for virtual commissioning of packaging machinery. Through physical experiments, the static friction coefficient (0.546), restitution coefficient (0.326), and rolling friction coefficient (0.133) between tea leaves and steel plates were determined. A three-dimensional DEM model of tea leaves was established using slicing techniques and the multi-sphere aggregation method. The steepest-ascent method and Box–Behnken design were employed to optimize the simulation parameters, resulting in the following optimal parameter combination: inter-particle restitution coefficient (0.16), static friction coefficient (0.14), and rolling friction coefficient (0.15). Validation simulations demonstrated that the mean angle of repose of tea leaves under the optimized parameter combination was 22.51°, with a relative error of only 1.29% compared to the actual experimental result of 22.80°. The calibrated parameters can be directly applied to the simulation of the feeding system in white tea automatic packaging machines, enabling optimization of vibration parameters through prediction of pile behavior, thereby reducing weighing errors. Full article
(This article belongs to the Section Precision and Digital Agriculture)
Show Figures

Figure 1

19 pages, 4538 KB  
Article
Structural Optimization of Numerical Simulation for Spherical Grid-Structured Microporous Aeration Reactor
by Yipeng Liu, Hui Nie, Yangjiaming He, Yinkang Xu, Jiale Sun, Nan Chen, Saihua Huang, Hao Chen and Dongfeng Li
Water 2025, 17(15), 2302; https://doi.org/10.3390/w17152302 - 2 Aug 2025
Viewed by 528
Abstract
As the core equipment for efficient wastewater treatment, the internal structure of microporous aeration bioreactors directly determines the mass transfer efficiency and treatment performance. Based on Computational Fluid Dynamics (CFD) technology, this study explores the optimization mechanism of a Spherical Grid-Structured on the [...] Read more.
As the core equipment for efficient wastewater treatment, the internal structure of microporous aeration bioreactors directly determines the mass transfer efficiency and treatment performance. Based on Computational Fluid Dynamics (CFD) technology, this study explores the optimization mechanism of a Spherical Grid-Structured on the internal flow field of the reactor through a 3D numerical simulation system, aiming to improve the aeration efficiency and resource utilization. This study used a combination of experimental and numerical simulations to compare and analyze different configurations of the Spherical Grid-Structure. The simulation results show that the optimal equilibrium of the flow field inside the reactor is achieved when the diameter of the grid sphere is 2980 mm: the average flow velocity is increased by 22%, the uniformity of the pressure distribution is improved by 25%, and the peak turbulent kinetic energy is increased by 30%. Based on the Kalman vortex street theory, the periodic vortex induced by the grid structure refines the bubble size to 50–80 microns, improves the oxygen transfer efficiency by 20%, increases the spatial distribution uniformity of bubbles by 35%, and significantly reduces the dead zone volume from 28% to 16.8%, which is a decrease of 40%. This study reveals the quantitative relationship between the structural parameters of the grid and the flow field characteristics through a pure numerical simulation, which provides a theoretical basis and quantifiable optimization scheme for the structural design of the microporous aeration bioreactor, which is of great significance in promoting the development of low-energy and high-efficiency wastewater treatment technology. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

17 pages, 3738 KB  
Article
Beyond Spheres: Evaluating Gold Nano-Flowers and Gold Nano-Stars for Enhanced Aflatoxin B1 Detection in Lateral Flow Immunoassays
by Vinayak Sharma, Bilal Javed, Hugh J. Byrne and Furong Tian
Biosensors 2025, 15(8), 495; https://doi.org/10.3390/bios15080495 - 1 Aug 2025
Viewed by 832
Abstract
The lateral flow immunoassay (LFIA) is a widely utilized, rapid diagnostic technique characterized by its short analysis duration, cost efficiency, visual result interpretation, portability and suitability for point-of-care applications. However, conventional LFIAs have limited sensitivity, a challenge that can be overcome by the [...] Read more.
The lateral flow immunoassay (LFIA) is a widely utilized, rapid diagnostic technique characterized by its short analysis duration, cost efficiency, visual result interpretation, portability and suitability for point-of-care applications. However, conventional LFIAs have limited sensitivity, a challenge that can be overcome by the introduction of gold nanoparticles, which provide enhanced sensitivity and selectivity (compared, for example, to latex beads or carbon nanoparticles) for the detection of target analytes, due to their optical properties, chemical stability and ease of functionalization. In this work, gold nanoparticle-based LFIAs are developed for the detection of aflatoxin B1, and the relative performance of different morphology particles is evaluated. LFIA using gold nano-labels allowed for aflatoxin B1 detection over a range of 0.01 ng/mL–100 ng/mL. Compared to spherical gold nanoparticles and gold nano-flowers, star-shaped gold nanoparticles show increased antibody binding efficiency of 86% due to their greater surface area. Gold nano-stars demonstrated the highest sensitivity, achieving a limit of detection of 0.01ng/mL, surpassing the performance of both spherical gold nanoparticles and gold nano-flowers. The use of star-shaped particles as nano-labels has demonstrated a five-fold improvement in sensitivity, underscoring the potential of integrating diverse nanostructures into LFIA for significantly improving analyte detection. Moreover, the robustness and feasibility of gold nano-stars employed as labels in LFIA was assessed in detecting aflatoxin B1 in a wheat matrix. Improved sensitivity with gold nano-stars holds promise for applications in food safety monitoring, public health diagnostics and rapid point-of-care diagnostics. This work opens the pathway for further development of LFIA utilizing novel nanostructures to achieve unparallel precision in diagnostics and sensing. Full article
Show Figures

Figure 1

22 pages, 8896 KB  
Article
Synergistic Sequestration and Hydroxyapatite-Based Recovery of Phosphorus by the Coupling Process of CaCl2/Modified Oyster Shell and Circulating Fluidized Bed Reactor
by Xuejun Long, Nanshan Yang, Huiqi Wang, Jun Fang, Rui Wang, Zhenxing Zhong, Peng Yu, Xuelian Xu, Hao Huang, Jun Wan, Xiejuan Lu and Xiaohui Wu
Catalysts 2025, 15(8), 706; https://doi.org/10.3390/catal15080706 - 24 Jul 2025
Viewed by 590
Abstract
A novel modified oyster shell (MOS-800) was developed to enhance phosphorus sequestration and recovery from wastewater. Approximately 33.3% of phosphate was eliminated by the MOS-800, which also exhibited excellent pH regulation capabilities. In semicontinuous tests, a synergistic phosphorus separation was achieved through the [...] Read more.
A novel modified oyster shell (MOS-800) was developed to enhance phosphorus sequestration and recovery from wastewater. Approximately 33.3% of phosphate was eliminated by the MOS-800, which also exhibited excellent pH regulation capabilities. In semicontinuous tests, a synergistic phosphorus separation was achieved through the coupling process of CaCl2/MOS-800 and a circulating fluidized bed (CFB), resulting in an 86.5% phosphate separation. In continuous flow experiments, phosphorus elimination reached 98.2%. Material characterization revealed that hydroxyapatite (HAP) was the primary component of the crystallized products. Additionally, MOS-800 released 506.5–572.2 mg/g Ca2+ and 98.1 mg/g OH. A four-stage heterogeneous crystallization mechanism was proposed for the coupling process. In the first stage, Ca2+ quickly reacted with phosphate to form Ca-P ion clusters, etc. In the second stage, these clusters packed randomly to form spherical amorphous calcium phosphate (ACP). In the third stage, the ACP spheres were transformed and rearranged into sheet-like HAP crystallites, Finally, in the fourth stage, the HAP crystallites aggregated on the surface of crystal seeds, also with the addition of crystal seeds and undissolved MOS-800, potentially catalyzing the heterogeneous crystallization. These findings suggest that the CaCl2/MOS-800/CFB system is a promising technique for phosphate recovery from wastewater. Full article
Show Figures

Figure 1

20 pages, 2542 KB  
Article
Rarefied Reactive Gas Flows over Simple and Complex Geometries Using an Open-Source DSMC Solver
by Rodrigo Cassineli Palharini, João Luiz F. Azevedo and Diego Vera Sepúlveda
Aerospace 2025, 12(8), 651; https://doi.org/10.3390/aerospace12080651 - 23 Jul 2025
Viewed by 516
Abstract
During atmospheric reentry, a significant number of chemical reactions are produced inside the high-temperature shock wave formed upstream of the spacecraft. Chemical reactions can significantly alter the flowfield structure surrounding the vehicle and affect surface properties, including heat transfer, pressure, and skin friction [...] Read more.
During atmospheric reentry, a significant number of chemical reactions are produced inside the high-temperature shock wave formed upstream of the spacecraft. Chemical reactions can significantly alter the flowfield structure surrounding the vehicle and affect surface properties, including heat transfer, pressure, and skin friction coefficients. In this scenario, the primary goal of this investigation is to evaluate the Quantum-Kinetic chemistry model for computing rarefied reactive gas flow over simple and complex geometries. The results are compared with well-established reaction models available for the transitional flow regime. The study focuses on two configurations, a sphere and the Orion capsule, analyzed at different altitudes to assess the impact of chemical nonequilibrium across varying flow rarefaction levels. Including chemical reactions led to lower post-shock temperatures, broader shock structures, and significant species dissociation in both geometries. These effects strongly influenced the surface heat flux, pressure, and temperature distributions. Comparison with results from the literature confirmed the validity of the implemented QK model and highlighted the importance of including chemical kinetics when simulating hypersonic flows in the upper atmosphere. Full article
(This article belongs to the Special Issue Thermal Protection System Design of Space Vehicles)
Show Figures

Figure 1

31 pages, 23687 KB  
Article
Spatiotemporal Dynamics of Ecosystem Services and Human Well-Being in China’s Karst Regions: An Integrated Carbon Flow-Based Assessment
by Yinuo Zou, Yuefeng Lyu, Guan Li, Yanmei Ye and Cifang Wu
Land 2025, 14(8), 1506; https://doi.org/10.3390/land14081506 - 22 Jul 2025
Viewed by 496
Abstract
The relationship between ecosystem services (ESs) and human well-being (HWB) is a central issue of sustainable development. However, current research often relies on qualitative frameworks or indicator-based assessments, limiting a comprehensive understanding of the relationship between natural environment and human acquisition, which still [...] Read more.
The relationship between ecosystem services (ESs) and human well-being (HWB) is a central issue of sustainable development. However, current research often relies on qualitative frameworks or indicator-based assessments, limiting a comprehensive understanding of the relationship between natural environment and human acquisition, which still needs to be strengthened. As an element transferred in the natural–society coupling system, carbon can assist in characterizing the dynamic interactions within coupled human–natural systems. Carbon, as a fundamental element transferred across ecological and social spheres, offers a powerful lens to characterize these linkages. This study develops and applies a novel analytical framework that integrates carbon flow as a unifying metric to quantitatively assess the spatiotemporal dynamics of the land use and land cover change (LUCC)–ESs–HWB nexus in Guizhou Province, China, from 2000 to 2020. The results show that: (1) Ecosystem services in Guizhou showed distinct trends from 2000 to 2020: supporting and regulating services declined and then recovered, and provisioning services steadily increased, while cultural services remained stable but varied across cities. (2) Human well-being generally improved over time, with health remaining stable and the HSI rising across most cities, although security levels fluctuated and remained low in some areas. (3) The contribution of ecosystem services to human well-being peaked in 2010–2015, followed by declines in central and northern regions, while southern and western areas maintained or improved their levels. (4) Supporting and regulating services were positively correlated with HWB security, while cultural services showed mixed effects, with strong synergies between culture and health in cities like Liupanshui and Qiandongnan. Overall, this study quantified the coupled dynamics between ecosystem services and human well-being through a carbon flow framework, which not only offers a unified metric for cross-dimensional analysis but also reduces subjective bias in evaluation. This integrated approach provides critical insights for crafting spatially explicit land management policies in Guizhou and offers a replicable methodology for exploring sustainable development pathways in other ecologically fragile karst regions worldwide. Compared with conventional ecosystem service frameworks, the carbon flow approach provides a process-based, dynamic mediator that quantifies biogeochemical linkages in LUCC–ESs–HWB systems, which is particularly important in fragile karst regions. However, we acknowledge that further empirical comparison with traditional ESs metrics could strengthen the framework’s generalizability. Full article
(This article belongs to the Special Issue Advances in Land Consolidation and Land Ecology (Second Edition))
Show Figures

Graphical abstract

27 pages, 5832 KB  
Article
Incorporation of Horizontal Aquifer Flow into a Vertical Vadose Zone Model to Simulate Natural Groundwater Table Fluctuations
by Vipin Kumar Oad, Adam Szymkiewicz, Tomasz Berezowski, Anna Gumuła-Kawęcka, Jirka Šimůnek, Beata Jaworska-Szulc and René Therrien
Water 2025, 17(14), 2046; https://doi.org/10.3390/w17142046 - 8 Jul 2025
Cited by 1 | Viewed by 1474
Abstract
The main goal of our work was to evaluate approaches for modeling lateral outflow from shallow unconfined aquifers in a one-dimensional model of vertical variably-saturated flow. The HYDRUS-1D model was modified by implementing formulas representing lateral flow in an aquifer, with linear or [...] Read more.
The main goal of our work was to evaluate approaches for modeling lateral outflow from shallow unconfined aquifers in a one-dimensional model of vertical variably-saturated flow. The HYDRUS-1D model was modified by implementing formulas representing lateral flow in an aquifer, with linear or quadratic drainage functions describing the relationship between groundwater head and flux. The results obtained by the modified HYDRUS-1D model were compared to the reference simulations with HydroGeoSphere (HGS), with explicit representation of 2D flow in unsaturated and saturated zones in a vertical cross-section of a strip aquifer, including evapotranspiration and plant water uptake. Four series of simulations were conducted for sand and loamy sand soil profiles with deep (6 m) and shallow (2 m) water tables. The results indicate that both linear and quadratic drainage functions can effectively capture groundwater table fluctuations and soil water dynamics. HYDRUS-1D demonstrates notable accuracy in simulating transient fluctuations but shows higher variability near the surface. The study concludes that both quadratic and linear drainage boundary conditions can effectively represent horizontal aquifer flow in 1D models, enhancing the ability of such models to simulate groundwater table fluctuations. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

21 pages, 3755 KB  
Article
Effect of Pore-Scale Anisotropic and Heterogeneous Structure on Rarefied Gas Flow in Three-Dimensional Porous Media
by Wenqiang Guo, Jinshan Zhao, Gang Wang, Ming Fang and Ke Zhu
Fluids 2025, 10(7), 175; https://doi.org/10.3390/fluids10070175 - 3 Jul 2025
Viewed by 594
Abstract
Porous media have great application prospects, such as transpiration cooling for the aerospace industry. The main challenge for the prediction of gas permeability includes the geometrical complexity and high Knudsen number of gas flow at the nano-scale to micro-scale, leading to failure of [...] Read more.
Porous media have great application prospects, such as transpiration cooling for the aerospace industry. The main challenge for the prediction of gas permeability includes the geometrical complexity and high Knudsen number of gas flow at the nano-scale to micro-scale, leading to failure of the conventional Darcy’s law. To address these issues, the Quartet Structure Generation Set (QSGS) method is improved to construct anisotropic and heterogeneous three-dimensional porous media, and the lattice Boltzmann method (LBM) with the multiple relaxation time (MRT) collision operator is adopted. Using MRT-LBM, the pressure boundary conditions at the inlet and outlet are firstly dealt with using the moment-based boundary conditions, demonstrating good agreement with the analytical solutions in two benchmark tests of three-dimensional Poiseuille flow and flow through a body-centered cubic array of spheres. Combined with the Bosanquet-type effective viscosity model and Maxwellian diffuse reflection boundary condition, the gas flow at high Knudsen (Kn) numbers in three-dimensional porous media is simulated to study the relationship between pore-scale anisotropy, heterogeneity and Kn, and permeability and micro-scale slip effects in porous media. The slip factor is positively correlated with the anisotropic factor, which means that the high Kn effect is stronger in anisotropic structures. There is no obvious correlation between the slip factor and heterogeneity factor. Full article
(This article belongs to the Section Flow of Multi-Phase Fluids and Granular Materials)
Show Figures

Figure 1

20 pages, 4804 KB  
Article
Analysis of Aerodynamic Heating Modes in Thermochemical Nonequilibrium Flow for Hypersonic Reentry
by Shuai He, Wei Zhao, Xinyue Dong, Zhuzhu Zhang, Jingying Wang, Xinglian Yang, Shiyue Zhang, Jiaao Hao and Ke Sun
Energies 2025, 18(13), 3417; https://doi.org/10.3390/en18133417 - 29 Jun 2025
Viewed by 781
Abstract
Thermochemical nonequilibrium significantly affects the accurate simulation of the aerothermal environment surrounding a hypersonic reentry vehicle entering Earth’s atmosphere during deep space exploration missions. The different heat transfer modes corresponding to each internal energy mode and chemical diffusion have not been sufficiently analyzed. [...] Read more.
Thermochemical nonequilibrium significantly affects the accurate simulation of the aerothermal environment surrounding a hypersonic reentry vehicle entering Earth’s atmosphere during deep space exploration missions. The different heat transfer modes corresponding to each internal energy mode and chemical diffusion have not been sufficiently analyzed. The existing dimensionless correlations for stagnation point aerodynamic heating do not account for thermochemical nonequilibrium effects. This study employs an in-house high-fidelity solver PHAROS (Parallel Hypersonic Aerothermodynamics and Radiation Optimized Solver) to simulate the hypersonic thermochemical nonequilibrium flows over a standard sphere under both super-catalytic and non-catalytic wall conditions. The total stagnation point heat flux and different heating modes, including the translational–rotational, vibrational–electronic, and chemical diffusion heat transfers, are all identified and analyzed. Stagnation point aerodynamic heating correlations have been modified to account for the thermochemical nonequilibrium effects. The results further reveal that translational–rotational and chemical diffusion heat transfers dominate the total aerodynamic heating, while vibrational–electronic heat transfer contributes only about 5%. This study contributes to the understanding of aerodynamic heating principles and thermal protection designs for future hypersonic reentry vehicles. Full article
(This article belongs to the Special Issue Computational Fluid Dynamics (CFD) Study for Heat Transfer)
Show Figures

Figure 1

29 pages, 4847 KB  
Article
Enhancing Power Generation: PIV Analysis of Flow Structures’ Impact on Concentrated Solar Sphere Parameters
by Hassan Abdulmouti
Energies 2025, 18(12), 3162; https://doi.org/10.3390/en18123162 - 16 Jun 2025
Viewed by 458
Abstract
The flow velocity field of the oil-filled acrylic solar sphere is assessed using flow visualization, which includes image processing and Particle Image Velocimetry (PIV) measurements. The temperature, sphere size, and thickness all have an impact on the generated convection flow. The acrylic sphere, [...] Read more.
The flow velocity field of the oil-filled acrylic solar sphere is assessed using flow visualization, which includes image processing and Particle Image Velocimetry (PIV) measurements. The temperature, sphere size, and thickness all have an impact on the generated convection flow. The acrylic sphere, a contemporary concentrated photovoltaic technology, collects solar energy and concentrates it into a small focal region. This focus point is positioned precisely above a multi-junction apparatus that serves as an appliance for concentrator cells. Instead of producing the same amount of electricity as a typical photovoltaic panel (PV), this gadget can generate an enormous power rate directly. There are numerous industrial uses for acrylic spheres as well. This study paper aims to examine the flow properties inside a sphere and investigate the impact of the sphere’s temperature, size, and thickness on the fluid motion’s flow velocity. Furthermore, the goal of this research is to elucidate the correlation between these variables to enhance power-generating performance by achieving higher efficiency. The findings demonstrated that the flow structure value is greatly affected by the sphere size, thickness, and temperature. It is discovered that when the spherical thickness lowers, the velocity rises. As a result, the sphere performs better at lower liquid temperatures (35–40 °C), larger sizes (15–30 cm diameter), and reduced acrylic thickness (3–4 mm), leading to up to a 23% increase in power output and a 35–50% rise in internal flow velocity compared to thicker and smaller configurations. Therefore, reducing the sphere thickness by 1 mm results in approximately a 10% increase in average flow velocity at the top of the sphere, corresponding to an increase of about 0.0001 m/s. Notably, the sphere with a 3 mm thickness demonstrates superior power and efficiency compared to other thicknesses. As the sphere’s thickness decreases, the solar sphere’s output power and efficiency rise. The amount of sunlight absorbed by the acrylic photons increases with decreasing acrylic layer thickness; hence, the greater the output power, the higher the efficiency that follows. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

19 pages, 3128 KB  
Article
Slow Translation and Rotation of a Composite Sphere Parallel to One or Two Planar Walls
by Yu F. Chou and Huan J. Keh
Fluids 2025, 10(6), 154; https://doi.org/10.3390/fluids10060154 - 12 Jun 2025
Viewed by 854
Abstract
A semi-analytical investigation is conducted to examine the coupled translational and rotational motions of a composite spherical particle (consisting of an impermeable hard core surrounded by a permeable porous shell) immersed in a viscous fluid parallel to one or two planar boundaries under [...] Read more.
A semi-analytical investigation is conducted to examine the coupled translational and rotational motions of a composite spherical particle (consisting of an impermeable hard core surrounded by a permeable porous shell) immersed in a viscous fluid parallel to one or two planar boundaries under the steady condition of a low Reynolds number. The fluid flow is described using the Stokes equations outside the porous shell and the Brinkman equation within it. A general solution is formulated by employing fundamental solutions in both spherical and Cartesian coordinate systems. The boundary conditions on the planar walls are implemented using the Fourier transform method, while those on the inner and outer boundaries of the porous shell are applied via a collocation technique. Numerical calculations yield hydrodynamic force and torque results with good convergence across a broad range of physical parameters. For validation, the results corresponding to an impermeable hard sphere parallel to one or two planar walls are shown to be in close agreement with established solutions from the literature. The hydrodynamic drag force and torque experienced by the composite particle increase steadily with larger values of the ratio of the particle radius to the porous shell’s permeation length, the ratio of the core radius to the total particle radius, and the separations between the particle and the walls. It has been observed that the influence of the walls on translational motion is significantly stronger than that on rotational motion. When comparing motions parallel versus normal to the walls, the planar boundaries impose weaker hydrodynamic forces but stronger torques during parallel motions. The coupling between the translation and rotation of the composite sphere parallel to the walls exhibits complex behavior that does not vary monotonically with changes in system parameters. Full article
(This article belongs to the Section Flow of Multi-Phase Fluids and Granular Materials)
Show Figures

Figure 1

23 pages, 2058 KB  
Review
Alginate Sphere-Based Soft Actuators
by Umme Salma Khanam, Hyeon Teak Jeong, Rahim Mutlu and Shazed Aziz
Gels 2025, 11(6), 432; https://doi.org/10.3390/gels11060432 - 5 Jun 2025
Viewed by 1180
Abstract
Alginate hydrogels offer distinct advantages as ionically crosslinked, biocompatible networks that can be shaped into spherical beads with high compositional flexibility. These spherical architectures provide isotropic geometry, modularity and the capacity for encapsulation, making them ideal platforms for scalable, stimuli-responsive actuation. Their ability [...] Read more.
Alginate hydrogels offer distinct advantages as ionically crosslinked, biocompatible networks that can be shaped into spherical beads with high compositional flexibility. These spherical architectures provide isotropic geometry, modularity and the capacity for encapsulation, making them ideal platforms for scalable, stimuli-responsive actuation. Their ability to respond to thermal, magnetic, electrical, optical and chemical stimuli has enabled applications in targeted delivery, artificial muscles, microrobotics and environmental interfaces. This review examines recent advances in alginate sphere-based actuators, focusing on fabrication methods such as droplet microfluidics, coaxial flow and functional surface patterning, and strategies for introducing multi-stimuli responsiveness using smart polymers, nanoparticles and biologically active components. Actuation behaviours are understood and correlated with physical mechanisms including swelling kinetics, photothermal effects and the field-induced torque, supported by analytical and multiphysics models. Their demonstrated functionalities include shape transformation, locomotion and mechano-optical feedback. The review concludes with an outlook on the existing limitations, such as the material stability, cyclic durability and integration complexity, and proposes future directions toward the development of autonomous, multifunctional soft systems. Full article
(This article belongs to the Special Issue Polysaccharide Gels for Biomedical and Environmental Applications)
Show Figures

Figure 1

23 pages, 2941 KB  
Article
FEM-Based Modelling and AI-Enhanced Monitoring System for Upper Limb Rehabilitation
by Filippo Laganà, Diego Pellicanò, Mariangela Arruzzo, Danilo Pratticò, Salvatore A. Pullano and Antonino S. Fiorillo
Electronics 2025, 14(11), 2268; https://doi.org/10.3390/electronics14112268 - 31 May 2025
Cited by 11 | Viewed by 1023
Abstract
The integration of physical modelling, artificial intelligence (AI), and embedded electronics represents a promising direction in the development of intelligent systems for rehabilitation monitoring. Most existing approaches, however, treat biomechanical simulation and sensor-based AI separately, without leveraging their potential synergy. This study introduces [...] Read more.
The integration of physical modelling, artificial intelligence (AI), and embedded electronics represents a promising direction in the development of intelligent systems for rehabilitation monitoring. Most existing approaches, however, treat biomechanical simulation and sensor-based AI separately, without leveraging their potential synergy. This study introduces a hybrid framework for upper limb rehabilitation that combines finite element modelling (FEM), AI-based trend classification, and a custom-designed electronic system for real-time signal acquisition and wireless data transmission. A mechanical model, developed in COMSOL 6.2 Multiphysics, simulates the interaction between a robotic glove and a deformable latex sphere. The latex material is described using a two-parameter Mooney–Rivlin hyperelastic formulation to capture large nonlinear deformations under realistic contact conditions. The high-fidelity simulation data are used to validate the signal acquisition chain and to train a supervised AI algorithm capable of classifying rehabilitation progress—whether improving or worsening—based on biomechanical features. An integrated electronic prototype enables seamless data flow to a cloud-based monitoring platform, supporting real-time feedback and adaptability. The classification algorithm demonstrates robust performance across different test conditions, while the electronic system confirms its applicability in rehabilitation settings. The novelty of this paper lies in the closed-loop integration of FEM-based simulation, AI-driven analysis, and embedded electronics into a unified monitoring architecture. This intelligent and non-invasive approach provides a scalable tool for tracking motor recovery and enhancing therapy effectiveness through adaptive, feedback-driven interventions. Full article
(This article belongs to the Special Issue Circuit Design for Embedded Systems)
Show Figures

Figure 1

Back to TopTop