Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (172)

Search Parameters:
Keywords = floral-fruity aroma

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2968 KiB  
Article
Dissecting Organ-Specific Aroma-Active Volatile Profiles in Two Endemic Phoebe Species by Integrated GC-MS Metabolomics
by Ming Xu, Yu Chen and Guoming Wang
Metabolites 2025, 15(8), 526; https://doi.org/10.3390/metabo15080526 - 3 Aug 2025
Viewed by 145
Abstract
Background: Phoebe zhennan and Phoebe chekiangensis are valuable evergreen trees recognized for their unique aromas and ecological significance, yet the organ-related distribution and functional implications of aroma-active volatiles remain insufficiently characterized. Methods: In this study, we applied an integrated GC-MS-based volatile metabolomics [...] Read more.
Background: Phoebe zhennan and Phoebe chekiangensis are valuable evergreen trees recognized for their unique aromas and ecological significance, yet the organ-related distribution and functional implications of aroma-active volatiles remain insufficiently characterized. Methods: In this study, we applied an integrated GC-MS-based volatile metabolomics approach combined with a relative odor activity value (rOAV) analysis to comprehensively profile and compare the volatile metabolite landscape in the seeds and leaves of both species. Results: In total, 1666 volatile compounds were putatively identified, of which 540 were inferred as key aroma-active contributors based on the rOAV analysis. A multivariate statistical analysis revealed clear tissue-related separation: the seeds were enriched in sweet, floral, and fruity volatiles, whereas the leaves contained higher levels of green leaf volatiles and terpenoids associated with ecological defense. KEGG pathway enrichment indicated that terpenoid backbone and phenylpropanoid biosynthesis pathways played major roles in shaping these divergent profiles. A Venn diagram analysis further uncovered core and unique volatiles underlying species and tissue specificity. Conclusions: These insights provide an integrated reference for understanding tissue-divergent volatile profiles in Phoebe species and offer a basis for fragrance-oriented selection, ecological trait evaluation, and the sustainable utilization of organ-related metabolic characteristics in breeding and conservation programs. Full article
(This article belongs to the Section Plant Metabolism)
Show Figures

Graphical abstract

20 pages, 2144 KiB  
Article
Effects of Crop Load Management on Berry and Wine Composition of Marselan Grapes
by Jianrong Kai, Jing Zhang, Caiyan Wang, Fang Wang, Xiangyu Sun, Tingting Ma, Qian Ge and Zehua Xu
Horticulturae 2025, 11(7), 851; https://doi.org/10.3390/horticulturae11070851 - 18 Jul 2025
Viewed by 392
Abstract
The aim of this study was to investigate the effects of the crop load on the berry and wine composition of Marselan grapes. Thus, the appropriate crop load for Marselan wine grapes in Ningxia was determined based on the shoot density and the [...] Read more.
The aim of this study was to investigate the effects of the crop load on the berry and wine composition of Marselan grapes. Thus, the appropriate crop load for Marselan wine grapes in Ningxia was determined based on the shoot density and the number of clusters per shoot. Marselan grapes from the Gezi Mountain vineyard, located at the eastern foot of Helan Mountain in the Qingtongxia region of Ningxia, were selected as the research material to conduct a combination experiment with four levels of shoot density and three levels of cluster density. The analysis of the berry and wine chemical composition was combined with a wine sensory evaluation to determine the optimal crop load levels. Crop load regulation significantly affected both the grape berry composition and the basic physicochemical properties of the resulting wine. Low crop loads improved metrics such as the berry weight and soluble solids content. A low shoot density facilitated the accumulation of organic acids, flavonols, and hydroxybenzoic acids in wine. Moderate crop loads were conducive to anthocyanin synthesis—the total individual anthocyanins content in the 10–20 shoots per meter of the canopy treatment group ranged from 116% to 490% of the control group—whereas excessive crop loads hindered its accumulation. Crop load management significantly influenced the aroma composition of wine by regulating the content of sugars, nitrogen sources, and organic acids in grape berries, thereby promoting the synthesis of esters and the accumulation of key aromatic compounds, such as terpenes. This process optimized pleasant flavors, including fruity and floral aromas. In contrast, wines from the high crop load and control treatments contained lower levels of these aroma compounds. Compounds such as ethyl caprylate and β-damascenone were identified as potential quality markers. Overall, the wine produced from vines with a crop load of 30 clusters (15 shoots per meter of canopy, 2 clusters per shoot) received the highest sensory scores. Appropriate crop load management is therefore critical to improving the chemical composition of Marselan wine. Full article
(This article belongs to the Section Viticulture)
Show Figures

Figure 1

18 pages, 675 KiB  
Article
Effects of Hyperbaric Micro-Oxygenation on the Color, Volatile Composition, and Sensory Profile of Vitis vinifera L. cv. Monastrell Grape Must
by Antonio José Pérez-López, Luis Noguera-Artiaga, Patricia Navarro, Pablo Mompean, Alejandro Van Lieshout and José Ramón Acosta-Motos
Fermentation 2025, 11(7), 380; https://doi.org/10.3390/fermentation11070380 - 30 Jun 2025
Viewed by 518
Abstract
Color, aroma, and overall sensory quality in red wines are largely influenced by oxygen availability during fermentation. This study evaluated the effects of micro-oxygenation under hyperbaric conditions on the physicochemical, chromatic, volatile, and sensory properties of Vitis vinifera L. cv. Monastrell grape must. [...] Read more.
Color, aroma, and overall sensory quality in red wines are largely influenced by oxygen availability during fermentation. This study evaluated the effects of micro-oxygenation under hyperbaric conditions on the physicochemical, chromatic, volatile, and sensory properties of Vitis vinifera L. cv. Monastrell grape must. Grape clusters were manually harvested and fermented under controlled conditions, applying micro-oxygenation treatments at two fermentation stages (day 3 and day 13) within a hyperbaric chamber. Physicochemical analyses, CIELab color measurements, visible reflectance spectra, GC-FID volatile profiling, and descriptive sensory analysis were performed. Micro-oxygenated samples (M1_MOX and M2_MOX) showed significant increases in lightness (L*), redness (a*), chroma (C*), and reflectance in the 520–620 nm range, indicating enhanced extraction and stabilization of phenolic pigments. Volatile analysis revealed that these samples also contained higher concentrations of key esters and terpenes associated with fruity and floral notes. Sensory evaluation confirmed these findings, with MOX-treated wines displaying greater aromatic intensity, flavor persistence, and varietal character. Control samples (M1_CON and M2_CON) exhibited lower color saturation and volatile compound content, along with diminished sensory quality. These results suggest that hyperbaric micro-oxygenation is an effective strategy for improving color intensity and aromatic complexity during red wine fermentation under controlled, non-thermal conditions. Full article
Show Figures

Figure 1

19 pages, 1443 KiB  
Review
Impact of Spontaneous Fermentation on the Physicochemical and Sensory Qualities of Cacao
by Lucas Fernando Quintana-Fuentes, Alberto García-Jerez, Ana Carolina Rodríguez-Negrette, Nurys Tatiana Hoyos-Merlano and Armando Alvis-Bermúdez
Fermentation 2025, 11(7), 377; https://doi.org/10.3390/fermentation11070377 - 30 Jun 2025
Viewed by 732
Abstract
Fermentation is a fundamental technique that allows us to obtain high-quality cacao beans and derived products. Therefore, it is necessary to apply fermentation correctly to maximize product quality. Fermentation techniques vary by region and include piles, trays, wooden boxes, baskets, and platforms. During [...] Read more.
Fermentation is a fundamental technique that allows us to obtain high-quality cacao beans and derived products. Therefore, it is necessary to apply fermentation correctly to maximize product quality. Fermentation techniques vary by region and include piles, trays, wooden boxes, baskets, and platforms. During these processes, several factors influence the physicochemical and sensory characteristics of cacao beans. The factors that influence these characteristics are the frequency of turning, the genotype of the bean, and the duration of fermentation. This review aims to explore how the fermentation method, turning frequency, bean genotype, and fermentation duration affect the physicochemical and sensory qualities of cacao beans. To this end, an exhaustive search for recent information on the most commonly used fermentation methods in cacao-producing countries over the last 10 years was carried out. The fermentation method in wooden boxes or crates is the most commonly used method worldwide. The most common turning frequency is 24 or 48 h, which is considered the most suitable time for obtaining cacao beans with better sensory attributes, such as floral and fruity aromas, and a lower level of acidity. Finally, a relationship was found between the genotype and the optimal fermentation time of cacao: about 4 days for Criollo cacao, approximately 5 days for Forastero cacao and between 1.5 and 10 days for Trinitario cacao. Full article
(This article belongs to the Section Fermentation for Food and Beverages)
Show Figures

Figure 1

14 pages, 2626 KiB  
Article
Aroma-Driven Differentiation of Wuyi Shuixian Tea Grades: The Pivotal Role of Linalool Revealed by OAV and Multivariate Analysis
by Mengzhen Zhang, Ying Zhang, Yeyun Lin, Yuhua Wang, Jishuang Zou, Miaoen Qiu, Qingxu Zhang, Jianghua Ye, Xiaoli Jia, Haibin He, Haibin Wang and Qi Zhang
Foods 2025, 14(13), 2169; https://doi.org/10.3390/foods14132169 - 21 Jun 2025
Viewed by 349
Abstract
Wuyi Shuixian tea, a premium oolong tea known for its complex floral-fruity aroma, exhibits significant quality variations across different grades. This study systematically analyzed the aroma characteristics and key fragrant compounds of four grades (Grand Prize SA, First Prize SB, Outstanding Award SC, [...] Read more.
Wuyi Shuixian tea, a premium oolong tea known for its complex floral-fruity aroma, exhibits significant quality variations across different grades. This study systematically analyzed the aroma characteristics and key fragrant compounds of four grades (Grand Prize SA, First Prize SB, Outstanding Award SC, and Non-award SD) using headspace solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS), odor activity value (OAV) analysis, and multivariate statistical methods. A total of 159 volatile compounds were identified, with similar compound categories but distinct concentration gradients between grades. OAV-splitting analysis (based on OAV ≥ 1 as the threshold for aroma activity) identified β-ionone (fruity), octanal (fatty), and linalool (floral) as core aroma-active contributors, as their OAV values significantly exceeded 10 in awarded grades (SA, SB, SC), indicating dominant roles in sensory perception. Notably, linalool, a floral marker, showed a concentration gradient (SA > SB > SC) and was absent in SD, serving as a critical determinant of grade differentiation. Orthogonal partial least squares-discriminant analysis (OPLS-DA) further distinguished awarded grades (SA, SB, SC) by balanced fruity, floral, and woody notes, while SD lacked floral traits and exhibited burnt aromas. This classification was supported by hierarchical clustering analysis (HCA) of volatile profiles and principal component analysis (PCA). Electronic nose data validated these findings, showing strong correlations between sensor responses (W5S/W2W) and key compounds like hexanal and β-ionone. This study elucidates the molecular basis of aroma-driven quality grading in Wuyi Shuixian tea, providing a scientific framework for optimizing processing techniques and enhancing quality evaluation standards. The integration of chemical profiling with sensory attributes advances precision in tea industry practices, bridging traditional grading with objective analytical metrics. Full article
(This article belongs to the Special Issue Tea Technology and Resource Utilization)
Show Figures

Figure 1

15 pages, 1027 KiB  
Article
Formation Mechanisms and Kinetic Modeling of Key Aroma Compounds During Qidan Tea Roasting
by Xing Gao, Siyuan Wang, Ying Wang and Huanlu Song
Foods 2025, 14(12), 2125; https://doi.org/10.3390/foods14122125 - 18 Jun 2025
Viewed by 418
Abstract
Understanding the changes in tea aroma and non-volatile substances during roasting is essential for optimizing tea processing and enhancing tea quality. In this study, the Carbon Module Labeling (CAMOLA) technique was employed to simulate the roasting conditions of Qidan, thereby elucidating the formation [...] Read more.
Understanding the changes in tea aroma and non-volatile substances during roasting is essential for optimizing tea processing and enhancing tea quality. In this study, the Carbon Module Labeling (CAMOLA) technique was employed to simulate the roasting conditions of Qidan, thereby elucidating the formation pathway of the theanine-glucose Maillard system. Combined with sensory evaluation, the results indicated that the floral and fruity aromas of Qidan tea decreased, while the woody, roasted, smoky, and herbal aromas increased with prolonged roasting time. Kinetic modeling demonstrated that higher temperatures favored the production of benzaldehyde, which was directly proportional to the heating temperature. In contrast, pyrazines exhibited zero-order kinetics, influenced by both temperature and time. An increasing trend in furans was observed with rising temperature and extended heating time. The kinetic equations effectively describe the changes in aroma compounds associated with merad, highlighting the differences in the production patterns of aroma compounds under varying roasting conditions. This study provides a theoretical foundation for optimizing roasting parameters to enhance tea quality. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Figure 1

20 pages, 734 KiB  
Article
Effect of Sewage Sludge Compost and Urban Pruning Waste on Agronomic Parameters and Wine Composition in Arid Zones Under Climate Change
by Fernando Sánchez-Suárez, María del Valle Palenzuela, Antonio Rosal and Rafael Andrés Peinado
Fermentation 2025, 11(5), 292; https://doi.org/10.3390/fermentation11050292 - 21 May 2025
Viewed by 643
Abstract
Soil degradation is caused by climate change and some agricultural practices. The use of compost from organic waste can be a sustainable solution, but poses risks to soil, crops and fruit. This article examined vineyard yield, vine and wine composition when compost from [...] Read more.
Soil degradation is caused by climate change and some agricultural practices. The use of compost from organic waste can be a sustainable solution, but poses risks to soil, crops and fruit. This article examined vineyard yield, vine and wine composition when compost from sewage sludge and urban waste was applied to two soils. One rainfed plot received 80 UFN kg/ha, while two irrigated plots received 40 and 80 UFN kg/ha. Compared to mineral fertilizer, compost increased crop yield (+60% in rainfed conditions) and above-ground biomass (+15% in rainfed conditions). Aromatic series were obtained by grouping the aroma compounds according to their aroma descriptor. In both rainfed and irrigated trials, higher values were observed in the fruity, green, waxy and floral series in wines from vines fertilized with compost compared to the control and chemical fertilization. The compounds with a higher influence in such series were ethyl butanoate, ethyl hexanoate, ethyl octanoate, hexanal, phenylacetaldehyde and 2-phenylethanol. Organoleptically, wines from compost were preferred to those from mineral fertilizer, with ratings close to the control wine, particularly in aroma, flavor and overall impression. Although further studies are needed, compost fertilization appears on the one hand to improve wine quality and, on the other hand, is a suitable alternative that reduces municipal waste. Full article
(This article belongs to the Special Issue Sustainable Grape Production, Climate Change, and Wine Quality)
Show Figures

Figure 1

16 pages, 6103 KiB  
Article
Volatile Flavor of Tricholoma matsutake from the Different Regions of China by Using GC×GC-TOF MS
by Yunli Feng, Shaoxiong Liu, Yuan Fang, Jianying Li, Ming Ma, Zhenfu Yang, Lue Shang, Xiang Guo, Rong Hua and Dafeng Sun
Foods 2025, 14(10), 1824; https://doi.org/10.3390/foods14101824 - 21 May 2025
Viewed by 556
Abstract
Two-dimensional gas chromatography-time-of-flight mass spectrometry (GC × GC-TOF MS) was employed to analyze the volatile flavor compounds (VOCs) of Tricholoma matsutake samples from six different geographical regions: CX (Chuxiong), DL (Dali), DQ (Diqing), JL (Yanji), SC (Xiaojin) and XZ (Linzhi). The result indicate [...] Read more.
Two-dimensional gas chromatography-time-of-flight mass spectrometry (GC × GC-TOF MS) was employed to analyze the volatile flavor compounds (VOCs) of Tricholoma matsutake samples from six different geographical regions: CX (Chuxiong), DL (Dali), DQ (Diqing), JL (Yanji), SC (Xiaojin) and XZ (Linzhi). The result indicate that a total of 2730 kinds of VOCs were identified from the fruiting bodies of six T. matsutake samples. The primary types of volatile organic compounds identified were 349 alcohols, 92 aldehydes, 146 carboxylic_acids, 311 esters, 742 organoheterocyclic compounds, 630 hydrocarbons, 381 ketones, 51 organic acids, and 28 derivatives and organosulfur compounds. Furthermore, PCA and PLS-DA analysis from the GC×GC-ToF-MS showed that samples from different regions could be distinguished by their VOCs. Network analysis revealed that 33 aroma compounds were identified as markers for distinguishing the samples from the six regions. The sensory attributes sweet, fruity, green, waxy, and floral were found to be more significant to the flavor profile of T. matsutake. 1-Nonanol, 2-Nonanone, Nonanoic acid, ethyl ester, 1-Undecanol, 2-Undecanone, Octanoic acid, ethyl ester, 2H-Pyran, and tetrahy-dro-4-methyl-2-(2-methyl-1-propenyl)- primarily contribute to the differences in the aroma characteristics among six T. matsutake samples. The results also provide a theoretical and practical foundation for the flavor compounds of these precious edible fungi in different regions. Full article
(This article belongs to the Section Food Analytical Methods)
Show Figures

Figure 1

14 pages, 481 KiB  
Article
Characterization of the Key Odorants of Mastic Gum (Pistacia lentiscus var. Chia) from Two Different Countries
by Ozlem Kilic-Buyukkurt, Gamze Guclu, Hasim Kelebek and Serkan Selli
Appl. Sci. 2025, 15(10), 5329; https://doi.org/10.3390/app15105329 - 10 May 2025
Viewed by 546
Abstract
Mastic gum, a plant-based resin from mastic trees, has become very popular in recent years and has been used in various food products due to its strong and positive aroma properties. In the present study, key odorant compounds of the mastic gum (MG) [...] Read more.
Mastic gum, a plant-based resin from mastic trees, has become very popular in recent years and has been used in various food products due to its strong and positive aroma properties. In the present study, key odorant compounds of the mastic gum (MG) samples obtained from mastic gum trees (Pistacia lentiscus var. Chia) from two different countries, Türkiye (MGT) and Greece (MGG), were investigated and compared. The aroma-active compounds (AACs) were determined by aroma extract dilution analysis (AEDA) and by using gas chromatography-mass spectrometry-olfactometry (GC-MS-O). The two mastic gum samples exhibited similar aroma profiles but significant differences were observed in their concentrations. Among the aroma groups identified in both samples, monoterpenes were the most abundant group with α-pinene as the main compound followed by β-myrcene and β-pinene. On the other hand, the most dominant AAC in both samples was determined to be α-pinene (resinous, forest-like odor), followed by β-pinene (resinous, terpene-like odor), β-myrcene (pine-like, greenish odor), and linalool (floral, fruity odor), all of which had high flavor dilution (FD) values. The findings of the AEDA and sensory analysis revealed that the MGT sample contained more floral and fruity odors while the MGG sample had more resinous and pine-woody odors. Full article
(This article belongs to the Special Issue Investigation of the Flavour Profiles of Plant-Based Foods)
Show Figures

Graphical abstract

14 pages, 3268 KiB  
Article
Metabolite Analysis of Hangzhou Gongmei White Tea of Different Varieties
by Cun Ao, Xiaojun Niu, Haitao Huang, Jizhong Yu and Zhiqiang Cheng
Foods 2025, 14(9), 1622; https://doi.org/10.3390/foods14091622 - 4 May 2025
Viewed by 647
Abstract
To comprehensively understand the quality characteristics and key characteristic metabolites of Hangzhou Gongmei white tea (HGW), an integrated approach involving sensory evaluation, chemical composition analysis, gas chromatography–mass spectrometry (GC-MS), and liquid chromatography–mass spectrometry (LC-MS) was employed to analyse the volatile and non-volatile metabolites [...] Read more.
To comprehensively understand the quality characteristics and key characteristic metabolites of Hangzhou Gongmei white tea (HGW), an integrated approach involving sensory evaluation, chemical composition analysis, gas chromatography–mass spectrometry (GC-MS), and liquid chromatography–mass spectrometry (LC-MS) was employed to analyse the volatile and non-volatile metabolites of tea samples from different varieties. Compared to the Fudingdabai (FD) variety, the Jiukeng (JK) and Longjing (LJ) varieties exhibited more pronounced fruity or floral aromas and stronger taste profiles. The elevated concentrations of water extracts, tea polyphenols, and complex catechins in the tea infusion contributed to its increased astringency. A multivariate analysis revealed that linalool, geraniol, 2-ethylhexanol, hexanal, methyl salicylate, linalool oxide I, (E)-hex-2-en-1-al, β-myrcene, (Z)-hex-3-en-1-ol, phenylethanol, benzaldehyde, (E)-citral, nonanal, and trans-β-ionone were the primary differential volatile metabolites in HGW. The non-volatile metabolomic analyses showed that flavonoids were the main differential metabolites in HGW from different varieties. The abundance levels of the differential non-volatile metabolites were higher in JK and LJ compared to those in FD. This study provides theoretical support for the breeding and quality improvement of Hangzhou white tea, as well as the development of flowery and fruity flavoured white tea products. Full article
Show Figures

Figure 1

29 pages, 16724 KiB  
Article
Chemical, Sensory Variations in Black Teas from Six Tea Cultivars in Jingshan, China
by Rui Wu, Huiling Liang, Nan Hu, Jiajia Lu, Chunfang Li and Desong Tang
Foods 2025, 14(9), 1558; https://doi.org/10.3390/foods14091558 - 29 Apr 2025
Viewed by 752
Abstract
The development of black tea quality is the outcome of the synergistic interaction between tea cultivars and the ecological environment of the production area, including factors such as climate, soil, and cultivation practices. Nevertheless, within a specific geographical region, systematic analysis of the [...] Read more.
The development of black tea quality is the outcome of the synergistic interaction between tea cultivars and the ecological environment of the production area, including factors such as climate, soil, and cultivation practices. Nevertheless, within a specific geographical region, systematic analysis of the environmental regulation mechanisms governing processing adaptability and quality formation among different cultivars remains insufficient. This study evaluated six Camellia sinensis cultivars from the Jingshan region of Hangzhou, China, integrating non-targeted metabolomics, sensory profiling, bioassays, and molecular docking to elucidate cultivar-specific quality attributes. Non-volatile metabolomics identified 84 metabolites linked to color and taste, including amino acids, catechins, flavonoid glycosides, and phenolic acids. Sensory and metabolite correlations revealed that amino acids enhanced brightness and imparted fresh-sweet flavors, while catechins contributed to bitterness and astringency. Specific metabolites, such as 4-hydroxybenzoyl glucose and feruloyl quinic acid, modulated color luminance. Volatile analysis identified 13 aroma-active compounds (OAV ≥ 1), with 1-octen-3-ol, phenylacetaldehyde, and linalool endowing JK with distinct floral-fruity notes. Molecular docking further demonstrated interactions between these volatiles and olfactory receptors (e.g., OR1A1 and OR2J2), providing mechanistic insights into aroma perception. These findings establish a robust link between cultivar-driven metabolic profiles in black tea, offering actionable criteria for cultivar selection and quality optimization in regional tea production. Full article
Show Figures

Figure 1

36 pages, 3365 KiB  
Review
Advances in Mead Aroma Research: A Comprehensive Bibliometric Review and Insights into Key Factors and Trends
by Amanda Felipe Reitenbach, Adriana Sturion Lorenzi, Grace Ferreira Ghesti, Paula Christina Mattos dos Santos, Igor Murilo Teixeira Rodrigues, Ananda Dos Santos Barbosa, Rodrigo Ribeiro Arnt Sant’Ana, Carlise Beddin Fritzen-Freire, Bahareh Nowruzi and Vívian Maria Burin
Fermentation 2025, 11(4), 226; https://doi.org/10.3390/fermentation11040226 - 17 Apr 2025
Viewed by 1869
Abstract
This article examines the key factors influencing the aromatic profile of mead, which is increasingly popular in artisanal markets worldwide. Based on a bibliometric review of 44 scientific studies, the analysis highlights the significant role of honey type in shaping mead’s sensory characteristics. [...] Read more.
This article examines the key factors influencing the aromatic profile of mead, which is increasingly popular in artisanal markets worldwide. Based on a bibliometric review of 44 scientific studies, the analysis highlights the significant role of honey type in shaping mead’s sensory characteristics. Acacia honey contributes subtle floral notes, while eucalyptus honey brings bolder, resinous aromas. The bibliometric analysis also emphasizes fermentation conditions, such as temperature and yeast selection, as crucial factors. Lower fermentation temperatures help preserve volatile compounds, enhancing fruity and floral aromas, while higher temperatures lead to increased concentrations of undesirable higher alcohols. Additionally, aging mead in oak barrels for 6 to 12 months adds complexity by introducing vanilla, coconut, and spice notes from the wood’s phenolic compounds. The maturation process, including its duration and storage conditions, also enables the flavors to blend and develop over time. Moreover, the addition of herbs and fruits during fermentation or maturation has been proven to introduce new layers of aroma and flavor, with ingredients like citrus, berries, and aromatic herbs enhancing the final product with fresh, lively notes. The potential of non-Saccharomyces yeasts is also explored as an alternative for enriching aromatic profiles, with the capacity to introduce unique sensory characteristics, including diverse flavor profiles and regional or terroir-based variations. Finally, the bibliometric review reinforces the importance of selecting appropriate ingredients and controlling fermentation processes to improve mead quality. It also suggests exploring microbiomes, exotic honey varieties, and the use of herbs and fruits for even more distinct aromatic profiles. Full article
(This article belongs to the Section Fermentation for Food and Beverages)
Show Figures

Figure 1

19 pages, 4369 KiB  
Article
Fermentation of Pediococcus pentosaceus JC30 Improves Phytochemical, Flavor Characteristics and Antioxidant Activity of Mulberry Leaves
by Caiyan Meng, Jiawen Xie, Jiaqi Chen, Jiajia Xuan, Zhuoying Zeng, Minghua Lai, Xuerui Kang, Jiayun Li, Guanhui Liu, Jie Tu and Hongxun Tao
Molecules 2025, 30(8), 1703; https://doi.org/10.3390/molecules30081703 - 10 Apr 2025
Cited by 1 | Viewed by 717
Abstract
Mulberry leaves contain polysaccharides, phenols, alkaloids, and other active ingredients which have medicinal and edible value. In this study, fermented mulberry leaf powder was prepared by solid-state fermentation using Pediococcus pentosaceus JC30. The effects of the fermentation on the phytochemical, flavor characteristics, phenolics, [...] Read more.
Mulberry leaves contain polysaccharides, phenols, alkaloids, and other active ingredients which have medicinal and edible value. In this study, fermented mulberry leaf powder was prepared by solid-state fermentation using Pediococcus pentosaceus JC30. The effects of the fermentation on the phytochemical, flavor characteristics, phenolics, and antioxidant activity of mulberry leaves were studied. The results showed that the content of γ-aminobutyric acid in fermented mulberry leaf powder (FMLP) increased by 6.73-fold and the content of phytic acid decreased by 11.16%. Ultra-high-performance liquid chromatography with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) analysis showed that the fermentation of Pediococcus pentosaceus JC30 altered the phenolic composition of mulberry leaves, increasing the total free phenolic content by 88.43%. In particular, the contents of free phenols such as leucocyanidin, myricetin, and quercetin increased significantly and were positively correlated with antioxidant capacity. The fermentation of Pediococcus pentosaceus JC30 significantly enhanced the scavenging ability of DPPH free radicals, hydroxyl radicals, and the total reducing ability of mulberry leaves. Gas chromatography ion mobility spectrometry (GC-IMS) analysis showed that FMLP has an intense fruity and floral aroma, while having less grassy and earthy odor. The fermentation improved the phytochemical, flavor, and nutritional value of mulberry leaves, which provides more possibilities for the development of mulberry leaf products outside the sericulture industry. Full article
Show Figures

Figure 1

20 pages, 3735 KiB  
Article
Effect of Blue Light Intensity During Spreading on the Aroma of Green Tea
by Youyue He, Yan Tang, Shiyue Song, Lailong Li, Shaoshuai An, Guoming Zhou, Jing Zhu, Song Li, Yue Yin, Anburaj Jeyaraj, Chunju Peng, Xinghui Li and Guanghui Zeng
Foods 2025, 14(8), 1308; https://doi.org/10.3390/foods14081308 - 9 Apr 2025
Viewed by 588
Abstract
Spreading is the key process for ensuring green tea quality. However, the effect of blue light intensity conditions on the formation of green tea aroma and the evolution of key volatile compounds has not been assessed to date. Four tea samples treated with [...] Read more.
Spreading is the key process for ensuring green tea quality. However, the effect of blue light intensity conditions on the formation of green tea aroma and the evolution of key volatile compounds has not been assessed to date. Four tea samples treated with different light conditions (blue light intensities) were used to investigate the effect of spreading treatment on changes in the composition and content of volatile compounds. Volatile compounds in green tea samples were detected using headspace-solid phase microextraction and gas chromatography-mass spectrometry under different light conditions. Orthogonal partial least squares discriminant analysis (OPLS-DA) and relative odor activity value (rOAV) analyses were then applied to clarify the best blue light condition for forming aroma and associated compounds. The 116 volatile compounds were detected in the green tea samples, of which alcohols were the most abundant. The findings demonstrated that MBL (middle-intensity blue light; 150 μmol/(m2∙s)) treatment was the most effective condition for developing an intense and persistent fruity and floral scent compared to HBL (high-intensity blue light; 300 μmol/(m2∙s)) and LBL (low-intensity blue light; 75 μmol/(m2∙s)). This study underscores how blue light intensity conditions shape green tea aromas and offers operational insights. It also provides a theoretical basis for controlling light conditions in the process of green tea spreading Full article
(This article belongs to the Section Drinks and Liquid Nutrition)
Show Figures

Graphical abstract

14 pages, 3635 KiB  
Article
Aromatic Volatile Substances in Different Types of Guangnan Dixu Tea Based on HS-SPME-GC-MS Odor Activity Value
by Ying Feng, Di Tian, Chaoliang Wang, Yong Huang, Yang Luo, Xiuqiong Zhang and Lei Li
Metabolites 2025, 15(4), 257; https://doi.org/10.3390/metabo15040257 - 9 Apr 2025
Viewed by 546
Abstract
Dixu tea is one of the characteristic tea germplasm resources of southeastern Yunnan, and is also a precious wild tea germplasm resource. Background: In order to further develop Dixu tea products and improve their flavor, this article studies the effects of different [...] Read more.
Dixu tea is one of the characteristic tea germplasm resources of southeastern Yunnan, and is also a precious wild tea germplasm resource. Background: In order to further develop Dixu tea products and improve their flavor, this article studies the effects of different processing methods on the aroma quality of Dixu tea. Methods: A comprehensive analysis of the aroma quality of Diwei tea was conducted using HS-SPME combined with GC-MS and multivariate statistical analysis. A principal component analysis (PCA) was applied to process the detected volatile substances and an orthogonal partial least squares-discriminant analysis (OPLS-DA) model was established. We evaluated the contribution of major compounds in the tea aroma by calculating the odor activity value (OAV). Results: The results showed that a total of 67 compounds were identified. A total of 27 major aromatic volatile compounds (OAV > 1) were screened, and 17 key differential volatile compounds were identified in different tea samples, including octanoic acid, d-citrol, laurene, hexanal, citral, β-cyclic citral, trans-2-hexenal, γ-nonanolide, β-ionone, geranylacetone, 1,1,6-trimethyl-1,2-dihydronaphthalene, geraniol, methyl salicylate, linalool, nerolidol, and 7,11-dimethyl-3-methylene-1,6,10-dodecatriene. Combined with the OAV analysis, it is shown that a floral fragrance is a common feature of Guangnan Dixu tea varieties. In addition, white tea also has a fragrant aroma, while black tea, green tea, and bamboo tube tea are all accompanied by a fruity aroma. Conclusions: In summary, processing techniques regulate the aroma characteristics of various types of tea by changing the types and contents of volatile aroma compounds. This provides a theoretical basis for exploring and utilizing tea production resources in the future. Full article
Show Figures

Figure 1

Back to TopTop