Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (154)

Search Parameters:
Keywords = floral extract

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3770 KiB  
Article
A YOLOv8n-T and ByteTrack-Based Dual-Area Tracking and Counting Method for Cucumber Flowers
by Liyang Su, Shujuan Zhang, Hongtu Zhang, Xiangsen Meng and Xiongkui He
Agronomy 2025, 15(7), 1744; https://doi.org/10.3390/agronomy15071744 - 19 Jul 2025
Viewed by 370
Abstract
Accurate counting of cucumber flowers using intelligent algorithms to monitor their sex ratio is essential for intelligent facility agriculture management. However, complex greenhouse environments impose higher demands on the precision and efficiency of counting algorithms. This study proposes a dual-area counting algorithm based [...] Read more.
Accurate counting of cucumber flowers using intelligent algorithms to monitor their sex ratio is essential for intelligent facility agriculture management. However, complex greenhouse environments impose higher demands on the precision and efficiency of counting algorithms. This study proposes a dual-area counting algorithm based on an improved YOLOv8n-Track (YOLOv8n-T) and ByteTrack cascaded framework. This method accomplishes the cucumber flower counting task by detecting flower targets, tracking them frame-by-frame, and validating the count through dual-area counting. The YOLOv8n-T incorporates a Coordinate Attention (CA) mechanism and lightweight modules while optimizing the loss function, thereby improving floral feature extraction capabilities and reducing computational complexity. By integrating the ByteTrack tracking algorithm with a dual-area counting strategy, the robustness of flower counting in dynamic environments is strengthened. Experimental results show that the improved YOLOv8n-T achieves mAP and F1 scores of 86.9% and 82.1%, surpassing YOLOv8n by 3% and 2.6%, respectively, with a 0.3 G reduction in model parameters. The integrated framework achieves a detection accuracy of 82.4% for cucumber flower counting. This research provides a new method for monitoring cucumber flower sex ratios in facility agriculture, promoting the development of intelligent agricultural management. Full article
(This article belongs to the Section Precision and Digital Agriculture)
Show Figures

Figure 1

14 pages, 1114 KiB  
Article
Deciphering Important Odorants in a Spirulina (Arthrospira platensis) Dietary Supplement by Aroma Extract Dilution Analysis Using Offline and Online Fractionation Approaches
by Aikaterina Paraskevopoulou, Veronika Mall, Theodoros M. Triantis, Triantafyllos Kaloudis, Anastasia Hiskia, Dimitra Dimotikali and Martin Steinhaus
Int. J. Mol. Sci. 2025, 26(14), 6767; https://doi.org/10.3390/ijms26146767 - 15 Jul 2025
Viewed by 625
Abstract
Investigating the volatiles isolated from a commercial spirulina (Arthrospira platensis) dietary supplement by gas chromatography–olfactometry (GC–O) in combination with an aroma extract dilution analysis (AEDA) resulted in 29 odor events with flavor dilution (FD) factors between 8 and 2048. Identification experiments, [...] Read more.
Investigating the volatiles isolated from a commercial spirulina (Arthrospira platensis) dietary supplement by gas chromatography–olfactometry (GC–O) in combination with an aroma extract dilution analysis (AEDA) resulted in 29 odor events with flavor dilution (FD) factors between 8 and 2048. Identification experiments, including various offline and online fractionation approaches, led to the structure assignment of 30 odorants, among which the most potent were sweaty 2- and 3-methylbutanoic acid (FD 2048), roasty, earthy, shrimp-like 2-ethyl-3,5-dimethylpyrazine (FD 2048), vinegar-like acetic acid (FD 1024), and floral, violet-like β-ionone (FD 1024). Static headspace dilution analysis revealed sulfuric, cabbage-like methanethiol (FD factor ≥ 32) as an additional potent odorant. In summary, 31 important spirulina odorants were identified in this study, and 14 were reported for the first time as spirulina constituents. Our data will provide a basis for future odor optimization of spirulina-based food products. Full article
(This article belongs to the Special Issue Recent Research of Natural Products from Microalgae and Cyanobacteria)
Show Figures

Figure 1

18 pages, 675 KiB  
Article
Effects of Hyperbaric Micro-Oxygenation on the Color, Volatile Composition, and Sensory Profile of Vitis vinifera L. cv. Monastrell Grape Must
by Antonio José Pérez-López, Luis Noguera-Artiaga, Patricia Navarro, Pablo Mompean, Alejandro Van Lieshout and José Ramón Acosta-Motos
Fermentation 2025, 11(7), 380; https://doi.org/10.3390/fermentation11070380 - 30 Jun 2025
Viewed by 507
Abstract
Color, aroma, and overall sensory quality in red wines are largely influenced by oxygen availability during fermentation. This study evaluated the effects of micro-oxygenation under hyperbaric conditions on the physicochemical, chromatic, volatile, and sensory properties of Vitis vinifera L. cv. Monastrell grape must. [...] Read more.
Color, aroma, and overall sensory quality in red wines are largely influenced by oxygen availability during fermentation. This study evaluated the effects of micro-oxygenation under hyperbaric conditions on the physicochemical, chromatic, volatile, and sensory properties of Vitis vinifera L. cv. Monastrell grape must. Grape clusters were manually harvested and fermented under controlled conditions, applying micro-oxygenation treatments at two fermentation stages (day 3 and day 13) within a hyperbaric chamber. Physicochemical analyses, CIELab color measurements, visible reflectance spectra, GC-FID volatile profiling, and descriptive sensory analysis were performed. Micro-oxygenated samples (M1_MOX and M2_MOX) showed significant increases in lightness (L*), redness (a*), chroma (C*), and reflectance in the 520–620 nm range, indicating enhanced extraction and stabilization of phenolic pigments. Volatile analysis revealed that these samples also contained higher concentrations of key esters and terpenes associated with fruity and floral notes. Sensory evaluation confirmed these findings, with MOX-treated wines displaying greater aromatic intensity, flavor persistence, and varietal character. Control samples (M1_CON and M2_CON) exhibited lower color saturation and volatile compound content, along with diminished sensory quality. These results suggest that hyperbaric micro-oxygenation is an effective strategy for improving color intensity and aromatic complexity during red wine fermentation under controlled, non-thermal conditions. Full article
Show Figures

Figure 1

16 pages, 2353 KiB  
Article
New Contributions to Deepen the Quality-Based Safety Assessment in the Consumption of Edible Nasturtium Flowers—The Role of Volatilome
by Rosa Perestrelo, Maria da Graça Lopes, Alda Pereira da Silva, Maria do Céu Costa and José S. Câmara
Life 2025, 15(7), 1053; https://doi.org/10.3390/life15071053 - 30 Jun 2025
Viewed by 620
Abstract
The garden Nasturtium (Tropaeolum majus L.) is increasingly consumed worldwide due to its culinary appeal and perceived health benefits. However, the chemical markers underlying its functional properties remain insufficiently characterized. Building on evidence from a recent human pilot study confirming both high [...] Read more.
The garden Nasturtium (Tropaeolum majus L.) is increasingly consumed worldwide due to its culinary appeal and perceived health benefits. However, the chemical markers underlying its functional properties remain insufficiently characterized. Building on evidence from a recent human pilot study confirming both high acceptability and dietary safety, we conducted a comprehensive volatilomic and phytochemical analysis of T. majus flowers and their juice. Headspace solid-phase microextraction coupled with gas chromatography–mass spectrometry (HS-SPME/GC-MS) was employed to establish the volatilomic fingerprint of floral tissues and juice. Our analysis revealed a striking dominance of benzyl isothiocyanate and benzonitrile, which together accounted for 88% of the total volatile organic metabolites (VOMs) in the juice, 67% and 21%, respectively. In the floral tissues, benzyl isothiocyanate was even more prevalent, representing 95% of the total volatile profile. Complementary in vitro assays confirmed a substantial total phenolic content and strong antioxidant activity in the flowers. These findings provide a robust chemical rationale for the potential health-promoting attributes of T. majus, while identifying key volatilomic markers that could support future functional and safety claims. In parallel, a benefit–risk assessment framework is discussed in accordance with the European Food Safety Authority (EFSA) guidelines for the Qualified Presumption of Safety (QPS) of edible flowers. Given that both benzyl isothiocyanate and benzonitrile are classified as Cramer Class III substances, a conservative intake threshold of 1.5 μg/kg body weight per day is proposed. To enable quantitative exposure modeling and support the derivation of a tolerable daily intake (TDI), future studies should integrate organic solvent-based extraction methodologies to estimate the total volatile load per gram of floral biomass. This would align risk–benefit assessments with the EFSA’s evolving framework for novel foods and functional ingredients. Full article
(This article belongs to the Section Pharmaceutical Science)
Show Figures

Figure 1

22 pages, 3140 KiB  
Review
Biological and Medicinal Properties of Chrysanthemum boreale Makino and Its Bioactive Products
by Christian Bailly
Int. J. Mol. Sci. 2025, 26(13), 5956; https://doi.org/10.3390/ijms26135956 - 20 Jun 2025
Viewed by 606
Abstract
Chrysanthemum species represent an economically important group of flowering plants. Many species also present a medicinal interest, notably for the treatment of inflammatory pathologies. This is the case for Chrysanthemum boreale Makino, endemic to Japan and widespread in Eastern Asia. This perennial plant [...] Read more.
Chrysanthemum species represent an economically important group of flowering plants. Many species also present a medicinal interest, notably for the treatment of inflammatory pathologies. This is the case for Chrysanthemum boreale Makino, endemic to Japan and widespread in Eastern Asia. This perennial plant has long been used in folk medicine to treat inflammatory diseases and bacterial infections. An extensive review of the scientific literature pertaining to C. boreale has been performed to analyze the origin of the plant, its genetic traits, the traditional usages, and the properties of aqueous or organic plant extracts and essential oils derived from this species. Aqueous extracts and the associated flavonoids, such as acacetin and glycoside derivatives, display potent antioxidant activities. These aqueous extracts and floral waters are used mainly as cytoprotective agents. Organic extracts, in particular those made from methanol or ethanol, essentially display antioxidant and anti-inflammatory properties useful to protect organs from oxidative damage. They can be used for neuroprotection. Essential oils from C. boreale have been used as cytoprotective or antibacterial agents. The main bioactive natural products isolated from the plant include flavonoids such as acacetin and related glycosides (notably linarin), and diverse sesquiterpene lactones (SLs). Among monomeric SLs, cumambrins and borenolide are the main products of interest, with cumambrin A targeting covalently the transcription factor NF-κB to regulate proinflammatory gene expression to limit osteoclastic bone resorption. The dimeric SL handelin, which is characteristic of C. boreale, exhibits a prominent anti-inflammatory action, with a capacity to target key proteins like kinase TAK1 and chaperone Hsp70. A few other natural products isolated from the plant (tulipinolide, polyacetylenic derivatives) are discussed. Altogether, the review explores all medicinal usages of the plant and the associated phytochemical panorama, with the objective of promoting further botanical and chemical studies of this ancestral medicinal species. Full article
(This article belongs to the Special Issue Anti-cancer Effects of Natural Products)
Show Figures

Figure 1

15 pages, 1619 KiB  
Article
Characterization of Aroma, Sensory Properties, and Consumer Acceptability of Honey from Capparis spinosa L.
by Gianluca Tripodi, Maria Merlino, Marco Torre, Concetta Condurso, Antonella Verzera and Fabrizio Cincotta
Foods 2025, 14(11), 1978; https://doi.org/10.3390/foods14111978 - 3 Jun 2025
Viewed by 545
Abstract
The increasing scarcity of traditional nectar sources due to climate change has led beekeepers to explore alternative floral sources. This study investigates the volatile profile, sensory characteristics, and consumer acceptability of monofloral honey derived from Capparis spinosa L., a drought-resistant Mediterranean plant. Honey [...] Read more.
The increasing scarcity of traditional nectar sources due to climate change has led beekeepers to explore alternative floral sources. This study investigates the volatile profile, sensory characteristics, and consumer acceptability of monofloral honey derived from Capparis spinosa L., a drought-resistant Mediterranean plant. Honey samples produced by Apis mellifera ssp. sicula on Aeolian Islands (Sicily, Italy) were analyzed. Volatile organic compounds (VOCs) were extracted using headspace solid–phase microextraction (HS-SPME) and identified by gas chromatography–mass spectrometry (GC–MS), revealing 59 compounds, with dimethyl sulfide being the predominant one. Sensory evaluation using quantitative descriptive analysis (QDA) and Time Intensity (TI) analysis identified distinctive descriptors such as sweet-caramel, cabbage/cauliflower, and pungent notes. Statistical analyses confirmed correlations between specific VOCs and sensory perceptions. A consumer acceptability test involving 80 participants showed lower preference scores for caper honey in terms of aroma and overall acceptability compared to commercial multifloral honey, with differences observed across age groups. The unique aromatic profile and consumer feedback suggest that caper honey has strong potential as a niche, high-quality product, particularly within the context of climate-resilient beekeeping, offering valuable opportunities for innovation and diversification in sustainable apiculture. Full article
(This article belongs to the Special Issue Novel Insights into Food Flavor Chemistry and Analysis)
Show Figures

Figure 1

16 pages, 568 KiB  
Article
Antioxidant, Antibacterial, and Bioaccessibility Properties of Ultrasound-Extracted Chilean Propolis
by Jessica Mejía, Claudia Giovagnoli-Vicuña, Cristian Jacob, Gloria Montenegro, Andrea I. Moreno-Switt and Ady Giordano
Antioxidants 2025, 14(6), 651; https://doi.org/10.3390/antiox14060651 - 28 May 2025
Viewed by 601
Abstract
Propolis is a honeybee product with significant biological properties, strongly influenced by geographic and floral origin as well as extraction method. Ultrasound-assisted extraction (UAE) is an emerging alternative for propolis preparation. This study aimed to determine the optimal UAE conditions for total polyphenol [...] Read more.
Propolis is a honeybee product with significant biological properties, strongly influenced by geographic and floral origin as well as extraction method. Ultrasound-assisted extraction (UAE) is an emerging alternative for propolis preparation. This study aimed to determine the optimal UAE conditions for total polyphenol content (TPC) and total flavonoid content (TFC) in Chilean propolis and compare its antioxidant and antimicrobial capacities with a conventional method. UAE was performed with varying ethanol concentrations (50–90%), temperatures (20–60 °C), and extraction times (10–50 min), keeping the solid/liquid ratio constant at 1:10 (w/v). The optimal ethanolic UAE extract (OE) was compared to the conventional ethanolic extract (CE) for antimicrobial activity against Salmonella enterica and Listeria monocytogenes and antioxidant capacity (DPPH, ABTS, FRAP assays). Optimal UAE conditions were 80% ethanol, 30 °C, and 30 min. The OE showed significantly higher (p < 0.05) TPC (22.4 ± 0.3 mg GAE/mL), TFC (15.7 ± 0.7 mg QE/mL), antioxidant capacity (ABTS: 35.7 ± 0.9; DPPH: 62.9 ± 0.3; FRAP: 49.7 ± 2.1 µmol TE/mL), and antimicrobial activity in the evaluated Gram-positive bacteria (>15 mm inhibition halo, MBC = 3.1 mg/mL) compared to the CE. The bioaccessibility analysis revealed that the OE maintained 20.1% of its polyphenol content and 69.5%, 60.5%, and 61.9% of DPPH, ABTS, and FRAP, respectively, after simulated gastrointestinal digestion. The established optimal UAE conditions generated extracts with increased polyphenol content, antioxidant capacity, antimicrobial activity, and bioaccessibility, indicating its potential as an extraction method for propolis with enhanced bioactivity. Full article
Show Figures

Figure 1

22 pages, 3926 KiB  
Article
Flavor Quality and Lipid-Lowering Function of Mixed Fermented Pu-erh Tea with Various Monascus Species
by Xiaomin Chen, Yao Hu, Zhen Zeng, Xu Zhang and Yahui Huang
Foods 2025, 14(11), 1894; https://doi.org/10.3390/foods14111894 - 26 May 2025
Viewed by 643
Abstract
As a potential raw material with a variety of bioactive compounds, Pu-erh raw tea can produce rich flavor and health benefits through natural fermentation or microbial fermentation in traditional processing. However, the traditional fermentation process has some problems such as a long fermentation [...] Read more.
As a potential raw material with a variety of bioactive compounds, Pu-erh raw tea can produce rich flavor and health benefits through natural fermentation or microbial fermentation in traditional processing. However, the traditional fermentation process has some problems such as a long fermentation period and unstable quality. Monascus, a kind of fungus used in both medicine and food, has been proved to have many beneficial effects such as lowering cholesterol and regulating blood lipids. Therefore, in this study we investigated whether the fermentation of mixed monascus could significantly improve the flavor quality and lipid-lowering activity of Pu-erh raw tea. We added four kinds of monascus to unfermented Pu-erh raw tea (UT) to obtain a fermented Pu-erh raw tea (FT). The quality of the two tea samples was determined and an in vitro lipid-lowering experiment was conducted. The results show that the contents of water extractives, flavone, trans-catechins (GCG and CG), theabrownins, and caffeine in FT are significantly higher than those in UT, increasing by 19.41%, 14.47%, 18.76%, 29.82%, and 10.67%, respectively. In terms of aroma, linalool was the characteristic compound of UT, presenting a floral note. D-Limonene was the key characteristic substance of FT, manifested as lemon, toast, and wood. In terms of taste, FT has a high content of bitter amino acids and caffeine, a low content of catechins, and is rich in carbohydrate substances, forming a characteristic mild and mellow slightly bitter taste with reduced astringency. In addition, the relative contents of active substances with lipid-lowering effects such as quercetin, quercitrin, ascorbic acid, and sorbitol in FT were higher than those in UT, increasing by 83.09%, 81.73%, 89.86%, and 92.76%, respectively. The effect of FT on regulating cellular lipid metabolism was superior to UT based on cell experiments. The research results provide a scientific basis for the deep processing and functional development of Pu-erh raw tea. Full article
(This article belongs to the Section Food Biotechnology)
Show Figures

Graphical abstract

17 pages, 1946 KiB  
Article
Genomic and Fermentation Characterization of Kluyveromyces marxianus and Saccharomyces cerevisiae in Root Extract-Based Low-Alcohol Beverage
by Eun-Ju Lee, Seung-Hyun Choi, Min-Ju Seo, A-Reum Lee, Chan-Song Jang, Woong-Kwon Kwak, Jung-Ki Kwak, Jae-Ho Lee, Won-Joo Yoon and Seok-Min Yoon
Fermentation 2025, 11(6), 299; https://doi.org/10.3390/fermentation11060299 - 23 May 2025
Viewed by 887
Abstract
Fermentation is widely recognized for enhancing the sensory attributes and nutritional value in foods, with recent research focusing on non-alcoholic and root-based functional beverages. In this study, the genomic and fermentation characteristics of Kluyveromyces marxianus LRCC8279 (KM8279) and Saccharomyces cerevisiae LRCC8293 (SC8293) were [...] Read more.
Fermentation is widely recognized for enhancing the sensory attributes and nutritional value in foods, with recent research focusing on non-alcoholic and root-based functional beverages. In this study, the genomic and fermentation characteristics of Kluyveromyces marxianus LRCC8279 (KM8279) and Saccharomyces cerevisiae LRCC8293 (SC8293) were analyzed, specifically for their application in root extract-based low-alcohol fermentations. Whole-genome sequencing revealed that both strains harbored key genes involved in glucose, fructose, and sucrose metabolism and genes implicated in ethanol production. Although SC8293 harbored maltose-metabolizing genes, including MAL13 and MAL31, these genes were absent in KM8279. This genetic difference was evident in the fermentation performance, manifesting as distinct variations in alcohol production depending on the carbohydrate source. A further investigation of fermentation conditions demonstrated that both strains maintained low alcohol levels and exhibited a consistent growth at 15–20 °C within 72 h. Fermentation using extracts from Pueraria lobata, Arctium lappa (AL), Zingiber officinale (ZO), and Platycodon grandifloras revealed that KM8279 markedly increased the production of volatile compounds, contributing to floral and fruity sensory attributes in ZO and AL, whereas SC8293 contributed to a more complex flavor profile in AL. Notably, KM8279-ZO and KM8279-AL fermentations maintained alcohol contents below 1%, indicating their potential application in non-alcoholic beverages. Future studies are needed to investigate the relationship between the key volatile compound production and associated genetic characteristics, along with sensory evaluations, to develop optimized flavor modulation strategies. Full article
(This article belongs to the Section Fermentation for Food and Beverages)
Show Figures

Figure 1

14 pages, 481 KiB  
Article
Characterization of the Key Odorants of Mastic Gum (Pistacia lentiscus var. Chia) from Two Different Countries
by Ozlem Kilic-Buyukkurt, Gamze Guclu, Hasim Kelebek and Serkan Selli
Appl. Sci. 2025, 15(10), 5329; https://doi.org/10.3390/app15105329 - 10 May 2025
Viewed by 536
Abstract
Mastic gum, a plant-based resin from mastic trees, has become very popular in recent years and has been used in various food products due to its strong and positive aroma properties. In the present study, key odorant compounds of the mastic gum (MG) [...] Read more.
Mastic gum, a plant-based resin from mastic trees, has become very popular in recent years and has been used in various food products due to its strong and positive aroma properties. In the present study, key odorant compounds of the mastic gum (MG) samples obtained from mastic gum trees (Pistacia lentiscus var. Chia) from two different countries, Türkiye (MGT) and Greece (MGG), were investigated and compared. The aroma-active compounds (AACs) were determined by aroma extract dilution analysis (AEDA) and by using gas chromatography-mass spectrometry-olfactometry (GC-MS-O). The two mastic gum samples exhibited similar aroma profiles but significant differences were observed in their concentrations. Among the aroma groups identified in both samples, monoterpenes were the most abundant group with α-pinene as the main compound followed by β-myrcene and β-pinene. On the other hand, the most dominant AAC in both samples was determined to be α-pinene (resinous, forest-like odor), followed by β-pinene (resinous, terpene-like odor), β-myrcene (pine-like, greenish odor), and linalool (floral, fruity odor), all of which had high flavor dilution (FD) values. The findings of the AEDA and sensory analysis revealed that the MGT sample contained more floral and fruity odors while the MGG sample had more resinous and pine-woody odors. Full article
(This article belongs to the Special Issue Investigation of the Flavour Profiles of Plant-Based Foods)
Show Figures

Graphical abstract

14 pages, 3268 KiB  
Article
Metabolite Analysis of Hangzhou Gongmei White Tea of Different Varieties
by Cun Ao, Xiaojun Niu, Haitao Huang, Jizhong Yu and Zhiqiang Cheng
Foods 2025, 14(9), 1622; https://doi.org/10.3390/foods14091622 - 4 May 2025
Viewed by 637
Abstract
To comprehensively understand the quality characteristics and key characteristic metabolites of Hangzhou Gongmei white tea (HGW), an integrated approach involving sensory evaluation, chemical composition analysis, gas chromatography–mass spectrometry (GC-MS), and liquid chromatography–mass spectrometry (LC-MS) was employed to analyse the volatile and non-volatile metabolites [...] Read more.
To comprehensively understand the quality characteristics and key characteristic metabolites of Hangzhou Gongmei white tea (HGW), an integrated approach involving sensory evaluation, chemical composition analysis, gas chromatography–mass spectrometry (GC-MS), and liquid chromatography–mass spectrometry (LC-MS) was employed to analyse the volatile and non-volatile metabolites of tea samples from different varieties. Compared to the Fudingdabai (FD) variety, the Jiukeng (JK) and Longjing (LJ) varieties exhibited more pronounced fruity or floral aromas and stronger taste profiles. The elevated concentrations of water extracts, tea polyphenols, and complex catechins in the tea infusion contributed to its increased astringency. A multivariate analysis revealed that linalool, geraniol, 2-ethylhexanol, hexanal, methyl salicylate, linalool oxide I, (E)-hex-2-en-1-al, β-myrcene, (Z)-hex-3-en-1-ol, phenylethanol, benzaldehyde, (E)-citral, nonanal, and trans-β-ionone were the primary differential volatile metabolites in HGW. The non-volatile metabolomic analyses showed that flavonoids were the main differential metabolites in HGW from different varieties. The abundance levels of the differential non-volatile metabolites were higher in JK and LJ compared to those in FD. This study provides theoretical support for the breeding and quality improvement of Hangzhou white tea, as well as the development of flowery and fruity flavoured white tea products. Full article
Show Figures

Figure 1

11 pages, 236 KiB  
Article
Physicochemical Properties of Traditionally Produced Mead
by Kristina Habschied, Blanka Bilić Rajs, Lorena Dozan, Vinko Krstanović and Krešimir Mastanjević
Beverages 2025, 11(3), 61; https://doi.org/10.3390/beverages11030061 - 28 Apr 2025
Viewed by 565
Abstract
Mead is described as a traditional alcoholic drink produced by fermentation from a solution of honey and water. It has been produced as a refreshing drink. However, in the past, it was more expensive than wine, which led to a decrease in demand. [...] Read more.
Mead is described as a traditional alcoholic drink produced by fermentation from a solution of honey and water. It has been produced as a refreshing drink. However, in the past, it was more expensive than wine, which led to a decrease in demand. Due to the simple method of production, the mead industry is growing again. The quality and physicochemical properties of mead depend on the type of honey used. The goal of this study is to produce mead from two kinds of honey of different floral origins, chestnut and sunflower, in order to determine the differences using sensory and physicochemical analyses. The fermentation process was monitored until the extract values were consecutively the same. The results obtained in this research indicate that chestnut honey mead took a longer time to ferment, 2 months, while sunflower honey mead took 1.5 months to ferment. The alcohol content in chestnut honey mead was 7.2% v/v, and sunflower honey mead contained 8.6% v/v. Sensory-wise, the chestnut mead was more acceptable to consumers due to a more pronounced color and thus received a one-point higher score (15) than sunflower honey mead (14). Full article
21 pages, 969 KiB  
Article
Construction of Simple Sequence Repeat-Based Genetic Linkage Map and Identification of QTLs for Accumulation of Floral Volatiles in Lavender (Lavandula angustifolia Mill.)
by Pavlina Georgieva, Krasimir Rusanov, Mila Rusanova, Meglena Kitanova and Ivan Atanassov
Int. J. Mol. Sci. 2025, 26(8), 3705; https://doi.org/10.3390/ijms26083705 - 14 Apr 2025
Cited by 2 | Viewed by 409
Abstract
In spite of the increasing industrial cultivation of lavender (Lavandula angustifolia Mill.), no genetic linkage map and mapping of QTLs (quantitative trait locus) has been reported for Lavandula species. We present the development of a set of SSR (simple sequence repeat) markers [...] Read more.
In spite of the increasing industrial cultivation of lavender (Lavandula angustifolia Mill.), no genetic linkage map and mapping of QTLs (quantitative trait locus) has been reported for Lavandula species. We present the development of a set of SSR (simple sequence repeat) markers and the first genetic linkage map of lavender following the genotyping of a segregating population obtained by the self-pollination of the industrial lavender variety Hemus. The resulting genetic map comprises 25 linkage groups (LGs) corresponding to the chromosome number of the lavender reference genome. The map includes 375 loci covering a total of 2631.57 centimorgan (cM). The average marker distance in the established map is 7.01 cM. The comparison of the map and reference genome sequence shows that LG maps cover an average of 82.6% of the chromosome sequences. The PCR amplification tests suggest that the developed SSR marker set possesses high intra-species (>93%) and inter-species (>78%) transferability. The QTL analysis employing the constructed map and gas chromatography/mass spectrometry (GC/MS) dataset of flower extracted volatiles resulted in the mapping of a total of 43 QTLs for the accumulation of 25 different floral volatiles. The comparison of the genome location of the QTLs and known biosynthetic genes suggests candidate genes for some QTLs. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

15 pages, 1638 KiB  
Article
Aromatic Profiling and Bioactive Potentials of Thai Edible Flowers from the Curcuma spp. (Zingiberaceae)
by Sarana Rose Sommano, Sureerat Thomya, Pasin Norkum Ai, Julaluk Khemacheewakul, R. Sindhu, Shashanka K. Prasad, Pawenud Thongdang, Apinya Rachkeeree, Methee Wongnak, Prateep Panyadee, Ratchadawan Puangpradab and Ratchuporn Suksathan
Diversity 2025, 17(4), 224; https://doi.org/10.3390/d17040224 - 24 Mar 2025
Viewed by 836
Abstract
This study investigated the aroma profiles, nutritional composition, and bioactive potential of three edible Curcuma species, namely Curcuma candida, C. singularis, and C. petiolata, traditionally consumed in Northern Thailand. An aroma analysis revealed distinct volatile profiles for each species. C. [...] Read more.
This study investigated the aroma profiles, nutritional composition, and bioactive potential of three edible Curcuma species, namely Curcuma candida, C. singularis, and C. petiolata, traditionally consumed in Northern Thailand. An aroma analysis revealed distinct volatile profiles for each species. C. petiolata was qualitatively characterized by high sabinene levels, while β-pinene, limonene, caryophyllene, and humulene were prominent markers for C. candida, and C. singularis exhibited the highest abundance of camphor. A nutritional analysis showed the edible floral tissue of C. petiolata to possess the highest carbohydrate (83.47 g/100 g DW), protein (18.04 g/100 g DW), and energy content (342.83 g/100 g DW). The mineral composition of the edible flowers revealed high levels of macronutrients, including phosphorus (0.36 g/100 g DW), potassium (1.82 g/100 g DW), sodium (0.33 g/100 g DW), and calcium (1.30 g/100 g DW). Palmitic acid (31,098 mg/100 g DW) was the predominant saturated fatty acid, while linoleic acid (45,356 mg/100 g DW) was the most abundant unsaturated fatty acid from these edible flora species. The ethanolic extracts of floral tissues of C. singularis exhibited the highest total phenolic content (0.26 mg GAE/g DW), followed by C. petiolata. Conversely, C. petiolata demonstrated the highest total flavonoid content (0.20 mg QE/g sample), followed by C. singularis (0.11 mg QE/g sample). Antioxidant potential exhibited a significant positive correlation with the quantified total flavonoid content. This research contributes to a deeper understanding of the nutritional and bioactive properties of edible Curcuma flowers, providing valuable information for the development of novel functional foods with unique flavor profiles and potential health benefits. Full article
Show Figures

Figure 1

21 pages, 5574 KiB  
Article
Pectin/Gellan Gum Hydrogels Loaded with Crocus sativus Tepal Extract for In Situ Modulation of Pro-Inflammatory Pathways Affecting Wound Healing
by Francesco Busto, Caterina Licini, Stefania Cometa, Stefano Liotino, Elisabetta Damiani, Tiziana Bacchetti, Isabelle Kleider, Alessandra La Contana, Monica Mattioli-Belmonte and Elvira De Giglio
Polymers 2025, 17(6), 814; https://doi.org/10.3390/polym17060814 - 20 Mar 2025
Viewed by 690
Abstract
Tepals of the Crocus sativus flower constitute the most abundant floral residue during saffron production (350 kg tepals/kg stigmas). Being a natural source of polyphenols with antioxidant properties, they can be reused to create potentially valuable products for pharmaceutical applications, generating a new [...] Read more.
Tepals of the Crocus sativus flower constitute the most abundant floral residue during saffron production (350 kg tepals/kg stigmas). Being a natural source of polyphenols with antioxidant properties, they can be reused to create potentially valuable products for pharmaceutical applications, generating a new income source while reducing agricultural bio-waste. In this work, composite hydrogels based on blends of pectin and gellan gum containing Crocus sativus tepal extract (CSE) have been proposed for the regeneration and healing of cutaneous wounds, exploiting the antioxidant properties of CSE. Various physico-chemical and mechanical characterizations were performed. The skin permeation of CSE was investigated using Franz cell diffusion system. The composite films were cytocompatible and able to counteract the increase in ROS, restore the production of matrix proteins, and favor wound closure. To conclude, CSE-loaded composite films represent a promising strategy to promote the body’s natural healing process. In addition, by reusing saffron tepals, not only can we develop new, sustainable treatments for skin diseases, but we can also reduce agricultural waste. Full article
Show Figures

Figure 1

Back to TopTop