Physicochemical Properties of Traditionally Produced Mead
Abstract
:1. Introduction
2. Materials and Methods
2.1. Honey Analysis
2.1.1. Determination of Water Content
2.1.2. Electrical Conductivity
2.1.3. Color
2.1.4. Hydroxymethylfurfural (HMF) and Diastase Activity
2.1.5. Carbohydrates Analysis
2.1.6. Pollen Analysis
2.2. Mead Production
Must Preparation and Fermentation
2.3. Sensory Analysis
2.4. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Senn, K. A Need for Mead: Sensory and Chemical Analysis of Traditional American Meads. Master’s Thesis, University of California, Davis, CA, USA, 2020. [Google Scholar]
- Iglesias, A.; Pascoal, A.; Choupina, A.B.; Carvalho, C.A.; Feas, X.; Estevinho, M. Developments in the Fermentation Process and Quality Improvement Strategies for Mead Production. Molecules 2014, 19, 12577–12590. [Google Scholar] [CrossRef] [PubMed]
- Bayon, J. Mead of the Celts: A celestial liquor. ArMen 1997, 86, 30–37. [Google Scholar]
- McGovern, P.E. Science in Archeology: A Review. Am. J. Archeol. 1995, 99, 79–142. [Google Scholar] [CrossRef]
- Vidrih, R.; Hribar, J. Studies on the sensory properties of mead and the formation of aroma compounds related to the type of honey. Acta Aliment. 2007, 36, 151–162. [Google Scholar] [CrossRef]
- Ramalhosa, E.; Gomes, T.; Pereira, A.P.; Dias, T.; Estevinho, L.M. Mead production: Tradition versus modernity. Adv. Food Nutr. Res. 2011, 63, 101–118. [Google Scholar]
- Roldán, A.; van Muiswinkel, G.C.J.; Lasanta, C.; Caro, I. Influence of pollen addition on mead elaboration: Physicochemical and sensory characteristics. Food Chem. 2011, 126, 574–582. [Google Scholar] [CrossRef]
- Pereira, A.P.; Dias, T.; Andrade, J.; Ramalhosa, E.; Estevinho, L.M. Mead production: Selection and characterization assays of Saccharomyces cerevisiae strains. Food Chem. Toxicol. 2009, 47, 2057–2063. [Google Scholar] [CrossRef]
- Jackowetz, J.N.; Dierschke, S.; Mira de Orduña, R. Multifactorial analysis of acetaldehyde kinetics during alcoholic fermentation by Saccharomyces cerevisiae. Food Res. Int. 2011, 44, 310–316. [Google Scholar] [CrossRef]
- The Meadery Homepage. Available online: http://www.themeadery.net (accessed on 15 July 2023).
- Gupta, J.; Sharma, R. Production technology and quality characteristics of mead and fruit-honey wines: A review. Nat. Prod. Rad. 2009, 8, 345–355. [Google Scholar]
- Herbert, J. Mead is the Fastest Growing Segment of the US Alcohol Industry, American Mead Makers Association. 2014. Available online: https://meadist.com/mead-articles/mead-fastest-growing-segment-us-alcohol-industry/ (accessed on 15 July 2024).
- Mendes-Ferreira, A.; Cosme, F.; Barbosa, C.; Falco, V.; Inês, A.; Mendes-Faia, A. Optimization of honey-must preparation and alcoholic fermentation by Saccharomyces cerevisiae for mead production. Int. J. Food Microbiol. 2010, 144, 193–198. [Google Scholar] [CrossRef]
- Decreto-Lei No. 214/2003 de 18 de Setembro, Diário da República Iª Série A. Available online: https://files.diariodarepublica.pt/1s/2003/09/216a00/60576060.pdf?lang=EN (accessed on 3 April 2025).
- Publication of an Application for Approval of an Amendment, Which Is Not Minor, to a Product Specification Pursuant to Article 50(2)(b) of Regulation (EU) No 1151/2012 of the European Parliament and of the Council on Quality Schemes for Agricultural Products and Foodstuffs. Available online: https://assets.publishing.service.gov.uk/media/665ed1ebdc15efdddf1a86af/CELEX_52020XC0630_01__EN_TXT_Tr%C3%B3jniak_staropolski_tradycyjny.pdf (accessed on 3 April 2025).
- International Honey Commission. Harmonised Methods of the International (European) Honey Commission. 2009. Available online: https://www.ihc-platform.net/ (accessed on 5 April 2023).
- Ministry of Agriculture, Fisheries and Rural Development. Ordinance on the Quality of Honey; Official Gazette 30: Zagreb, Croatia, 2015; pp. 3–5.
- Codex Alimentarius Commission. Revised Codex Standard for honey. Alinorm 2001, 1/25, 19–26. [Google Scholar]
- The Council of the European Union. EU Council Directive 2001/110/EC of 20 December 2001 relating to honey. Off. J. Eur. Communities 2002, L10, 47–52. [Google Scholar]
- DIN 10760 Determination of the Relative Pollen Content of Honey. Available online: https://www.en-standard.eu/din-10760-determination-of-the-relative-pollen-content-of-honey/?srsltid=AfmBOoru6f7y49DgKw-hAO1OfkYJKguQzwrCsXi5gz2he1weywy-jmyp (accessed on 13 May 2023).
- Ministry of Agriculture, Fisheries and Rural Development. Ordinance on the Quality of Unifloral Honey; Official Gazette 122: Zagreb, Croatia, 2009; pp. 15–16.
- The Essence of Mead: A Journey Through Its Flavours and Tasting Notes. Available online: https://lymebaywinery.co.uk/blog/the-essence-of-mead/?srsltid=AfmBOorMa_hPGYKVHki7pqdaADZevIk-DbRQfYKtBCVm1zRlp71d2Np9 (accessed on 13 January 2024).
- Senn, K.; Cantu, A.; Heymann, H. Characterizing the chemical and sensory profiles of traditional American meads. J. Food Sci. 2021, 86, 1048–1057. [Google Scholar] [CrossRef]
- Arena, E.; Ballistreri, G.; Fallico, B. Kinetics of 3-deoxy-D-erythro-hexos-2-ulose in unifloral honeys. J. Food. Sci. 2011, 76, C1044–C1049. [Google Scholar] [CrossRef] [PubMed]
- Erejuwa, O.; Sulaiman, S.; Wahab, M. Oligosaccharides might contribute to the antidiabetic effect of honey: A review of the literature. Molecules 2012, 17, 248–266. [Google Scholar] [CrossRef]
- Abraham, K.; Gürtler, R.; Berg, K.; Heinemeyer, G.; Lampen, A.; Appel, K.E. Toxicology and risk assessment of 5-Hydroxymethylfurfural in food. Mol. Nutr. Food Res. 2011, 55, 667–678. [Google Scholar] [CrossRef]
- Feás, X.; Pires, J.; Estevinho, M.L.; Iglesias, A.; Araujo, J.P.P. Palynological and physicochemical data characterisation of honeys produced in the Entre-Douro e Minho region of Portugal. Int. J. Food Sci. Technol. 2010, 45, 1255–1262. [Google Scholar] [CrossRef]
- Bhandari, B.; Arey, B.D.; Kelly, C. Rheology and chrystallization kinetics of honey: Present status. Int. J. Food Prop. 1999, 2, 217–226. [Google Scholar] [CrossRef]
- Pereira, A.P.; Mendes-Ferreira, A.; Oliveira, J.M.; Estevinho, L.M.; Mendes-Faia, A. High-cell-density fermentation of Saccharomyces cerevisiae for the optimisation of mead production. Food Microbiol. 2013, 33, 114–123. [Google Scholar] [CrossRef]
- Šmogrovicová, D.; Nádaský, P.; Tandlich, R.; Wilhelmi, B.S.; Cambray, G. Analytical and aroma profiles of Slovak and South African meads. Czech J. Food Sci. 2012, 30, 241–246. [Google Scholar] [CrossRef]
- Gomes, T.; Barradas, C.; Dias, T.; Verdial, J.; Morais, J.S.; Ramalhosa, E.; Estevinho, L.M. Optimization of mead production using response surface methodology. Food Chem. Toxicol. 2013, 59, 680–686. [Google Scholar] [CrossRef] [PubMed]
- Qureshi, N.; Tamhane, D.V. Mead production by continuous series reactors using immobilized yeast cells. Appl. Microbiol. Biotechnol. 1986, 23, 438–439. [Google Scholar] [CrossRef]
- Pereira, A.P.; Mendes-Ferreira, A.; Oliveira, J.M.; Estevinho, L.M.; Mendes-Faia, A. Effect of Saccharomyces cerevisiae cells immobilisation on mead production. LWT Food Sci. Technol. 2014, 56, 21–30. [Google Scholar] [CrossRef]
- Harder, M.N.C.; Benetole, B.M.; Gomes, W.P.C.; Generoso, E.P.; de Campos, S.V.; Harder, L.N.C.; Arthur, V. Mead of natural fermentation. J. Microbiol. Biotechnol. Food Sci. 2021, 11, e3628. [Google Scholar] [CrossRef]
- Schieberle, P.; Hofmann, T. Mapping the Combinatorial Code of Food Flavors by Means of Molecular Sensory Science Approach; FoodFlavors; CRC Press: Boca Raton, FL, USA, 2011; pp. 413–438. [Google Scholar]
- Li, R.; Sun, Y. Effects of Honey Variety and Non-Saccharomyces cerevisiae on the Flavor Volatiles of Mead. J. Am. Soc. Brew. Chem. 2019, 77, 40–53. [Google Scholar] [CrossRef]
- Gomes, T.; Dias, T.; Cadavez, V.; Verdial, J.; Morais, J.S.; Ramalhosa, E.; Estevinho, L.M. Influence of sweetness and ethanol content on mead acceptability. Pol. J. Food Nutr. Sci. 2015, 65, 137–142. [Google Scholar] [CrossRef]
Parameter | Unit | Chestnut Honey | Sunflower Honey |
---|---|---|---|
Water content | % | 18.3 a | 18.2 a |
Electrical conductivity | mS/cm | 1.13 a | 0.39 b |
Diastase activity | DN | 20.2 b | 21.0 a |
HMF | mg/kg | 15.75 a | 3.59 b |
Color | mm Pfund | 67.0 a | 50.0 b |
pH | / | 4.67 a | 3.61 b |
Fructose | g/100 g | 35.89 a | 34.71 b |
Glucose | g/100 g | 29.64 b | 38.99 a |
Sucrose | g/100 g | 0.06 a | 0.07 a |
Maltose | g/100 g | 2.52 a | 1.51 b |
Xylose | g/100 g | 0.24 a | <LOD |
Melezitose | g/100 g | <LOD | <LOD |
Raffinose | g/100 g | <LOD | <LOD |
F + G | g/100 g | 65.53 b | 73.70 a |
F/G | g/100 g | 1.21 a | 0.89 b |
Pollen Type | % | |
---|---|---|
Chestnut Honey | Sunflower Honey | |
Apiaceae | 1.9 b | 3.0 a |
Asteraceae (other) | / | 4.0 a |
Bellis sp. | / | 2.0 a |
Brassica sp. | / | 18.5 a |
Castanea sativa Mill. | 95.6 a | / |
Cornus sanguinea L. | / | 3.0 a |
Helianthus annuus L. | / | 54.5 a |
Myosotis | 2.5 a | / |
nonidentified | / | 1.0 a |
Rosaceae | / | / |
Salix sp. | / | 4.0 a |
Taraxacum officinale (L.) Weber | / | 4.0 a |
Trifolium sp. | / | 6.0 a |
Honeydew elements | present | present |
Starting Amount of Extract (°P) | Final Amount of Extract (°P) | Alcohol (% v/v) | |
---|---|---|---|
Chestnut honey | 16 b | 1.1 a | 7.2 b |
Sunflower honey | 18 a | 1.0 a | 8.9 a |
Must pH | Mead pH | |
---|---|---|
Chestnut honey | 4.5 a | 4.1 a |
Sunflower honey | 3.9 b | 3.6 b |
Property | Description and Scoring | Score | ||
---|---|---|---|---|
Chestnut | Sunflower | |||
Smell | Characteristic | 5 | 5 a | 5 a |
Less characteristic | 4 | |||
Mild errors | 3 | |||
Intense errors | 2 | |||
Grave errors | 1 | |||
Taste | Characteristic | 5 | 3 b | 4 a |
Less characteristic | 4 | |||
Mild errors | 3 | |||
Intense errors | 2 | |||
Grave errors | 1 | |||
Mouthful | Characteristic, very full | 5 | 3 a | 3 a |
Less characteristic | 4 | |||
Watery | 3 | |||
Uncharacteristic | 2 | |||
Nonexistent | 1 | |||
Color | Extremely acceptable | 4 | 4 a | 2 b |
Acceptable | 3 | |||
Less acceptable | 2 | |||
Unacceptable | 1 | |||
Total | 15 a | 14 b |
Descriptors | Aroma | Flavor |
---|---|---|
Mead/Evaluators | ||
Chestnut (21–24-Year-Olds) | Caramel-like Heavier | Wine-like Dry/sour (not sweet enought) |
Chestnut (25–60-Year-Olds) | Honey-forward Heavier | Wine-like Dry |
Sunflower (21–24-Year-Olds) | Floral Honey-forward | Wine-like Dry |
Sunflower (25–60-Year-Olds) | Floral Honey-forward | Wine-like Dry |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Habschied, K.; Rajs, B.B.; Dozan, L.; Krstanović, V.; Mastanjević, K. Physicochemical Properties of Traditionally Produced Mead. Beverages 2025, 11, 61. https://doi.org/10.3390/beverages11030061
Habschied K, Rajs BB, Dozan L, Krstanović V, Mastanjević K. Physicochemical Properties of Traditionally Produced Mead. Beverages. 2025; 11(3):61. https://doi.org/10.3390/beverages11030061
Chicago/Turabian StyleHabschied, Kristina, Blanka Bilić Rajs, Lorena Dozan, Vinko Krstanović, and Krešimir Mastanjević. 2025. "Physicochemical Properties of Traditionally Produced Mead" Beverages 11, no. 3: 61. https://doi.org/10.3390/beverages11030061
APA StyleHabschied, K., Rajs, B. B., Dozan, L., Krstanović, V., & Mastanjević, K. (2025). Physicochemical Properties of Traditionally Produced Mead. Beverages, 11(3), 61. https://doi.org/10.3390/beverages11030061