Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (44)

Search Parameters:
Keywords = floating raft system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3240 KB  
Article
Emergence of Autotoxicity in Closed Hydroponic Cultivation of Basil and Its Recovery by Compost Tea Application
by Andrea De Sio, Mauro Moreno, Stefano Mazzoleni, Stefania Cozzolino, Pietro Caggiano, Giovanna Ceriello, Giuliano Bonanomi, Chiara Cirillo and Fabrizio Carteni
Horticulturae 2025, 11(12), 1493; https://doi.org/10.3390/horticulturae11121493 - 10 Dec 2025
Viewed by 314
Abstract
Hydroponic systems enable constant and high-quality crop yields while avoiding soil-borne diseases and significant pedoclimatic limitations. Recycling nutrient solutions (NSs) makes these systems more environmentally friendly, but long-term cultivation often leads to a decline in the quality and quantity of final products. Biochar [...] Read more.
Hydroponic systems enable constant and high-quality crop yields while avoiding soil-borne diseases and significant pedoclimatic limitations. Recycling nutrient solutions (NSs) makes these systems more environmentally friendly, but long-term cultivation often leads to a decline in the quality and quantity of final products. Biochar and compost tea (CT) are an emerging nature-based solution known to improve both soil and plant health. This study investigates whether biochar or CT treatments can counteract the physiological and productive decline observed in recycled hydroponic systems. We established a closed floating raft system in a controlled-environment greenhouse, cultivated basil (Ocimum basilicum L. cv. Eleonora) over five cycles (conditioning phase), and then performed a last cycle (recovery phase) with the application of either compost tea or biochar filtration. Plant physiology and growth parameters were monitored. As expected, basil plants grown in untreated recycled NS showed significantly lower yields and dry matter content and reduced physiological values compared to controls (fresh NS). Among the applied treatments, biochar did not show any recovery function, whereas CT treatments fully restored physiological parameters and growth performance in a concentration-dependent manner. Recycled hydroponic systems often lead to physiological decline in plants, which can be effectively counteracted by CT treatments. Full article
Show Figures

Graphical abstract

17 pages, 8259 KB  
Article
NMR/MRI Techniques to Characterize Alginate-Based Gel Rafts for the Treatment of Gastroesophageal Reflux Disease
by Ewelina Baran, Piotr Kulinowski, Marek Król and Przemysław Dorożyński
Gels 2025, 11(9), 749; https://doi.org/10.3390/gels11090749 - 17 Sep 2025
Cited by 1 | Viewed by 1989
Abstract
Gastroesophageal reflux disease (GERD) is associated with symptoms such as heartburn, resulting from gastric content reflux. Alginate-based raft-forming gel formulations represent a non-pharmacological strategy for GERD management by forming a floating gel barrier in the stomach. This study evaluated three commercial anti-reflux oral [...] Read more.
Gastroesophageal reflux disease (GERD) is associated with symptoms such as heartburn, resulting from gastric content reflux. Alginate-based raft-forming gel formulations represent a non-pharmacological strategy for GERD management by forming a floating gel barrier in the stomach. This study evaluated three commercial anti-reflux oral gel systems under simulated fed-state gastric conditions, using in vitro magnetic resonance relaxometry techniques. Magnetic resonance imaging (MRI) was performed in 0.01 M hydrochloric acid (HCl) to visualize gel raft formation, spatial structure, and spatial distribution of effective T2 relaxation time. Nuclear magnetic resonance (NMR) relaxometry in 0.01 M deuterium chloride (DCl) measured T1 and T2 relaxation times of the protons that were initially included in the preparation to assess its molecular mobility within the gel matrix. Two formulations formed floating, coherent gels, whereas the remaining one exhibited only polymer swelling without flotation. In one case, relaxometry data revealed a solid-like component that can be detected, indicating enhanced mechanical stability. The performance of each formulation was influenced by interactions among alginate, bicarbonates, and calcium ions, which determined gel consistency and flotation behavior. MRI and NMR relaxometry in vitro provide valuable non-invasive insights into the structural and functional behavior of alginate-based gel formulations. This approach supports the rational design of advanced gel-based therapies for GERD by linking molecular composition with in situ performance. Full article
(This article belongs to the Special Issue Polymeric Hydrogels for Biomedical Application (2nd Edition))
Show Figures

Graphical abstract

17 pages, 1800 KB  
Article
Response of Solanum lycopersicum L. to Fusarium oxysporum During Germination and Seedling Stages
by Ana Elizabeth Paredes-Cervantes, Juan Enrique Rodríguez-Pérez, Jaime Sahagún-Castellanos, Santos Gerardo Leyva-Mir, Martha Hernández-Rodríguez and Alma Aurora Deanda-Tovar
Agronomy 2025, 15(9), 2089; https://doi.org/10.3390/agronomy15092089 - 30 Aug 2025
Viewed by 948
Abstract
Due to the widespread distribution of F. oxysporum, the search for mechanisms of tolerance to this disease in Solanum lycopersicum L. is an ongoing endeavor. This research aimed to identify F. oxysporum-tolerant genotypes at the germination and seedling stages in order [...] Read more.
Due to the widespread distribution of F. oxysporum, the search for mechanisms of tolerance to this disease in Solanum lycopersicum L. is an ongoing endeavor. This research aimed to identify F. oxysporum-tolerant genotypes at the germination and seedling stages in order to use them as sources of resistance. Ninety-six tomato lines were inoculated with the F. oxysporum strain with NCBI accession key PQ187438. The germination test was carried out in a germination chamber at a constant temperature of 28 ± 2 °C with 70 ± 5% relative humidity in darkness for the first 3 days and then 7 days with light. Clustering and discriminant analysis identified 14 genotypes with tolerance, showing great seed vigor and lower disease severity. Seedling evaluation was conducted in a floating raft system for 10 days after inoculation. Nine genotypes showed greater tolerance to the pathogen by developing a larger leaf area and accumulating more dry matter (p ≤ 0.05). No genotypes with tolerance were identified at both phenological stages (germination and seedling), indicating that tolerance mechanisms are independent at both phenological stages, so genotype selection should be carried out independently. Full article
(This article belongs to the Section Pest and Disease Management)
Show Figures

Figure 1

31 pages, 6684 KB  
Article
Intelligent Alignment Control for Floating Raft Air Spring Mounting System Under Coupled Hull–Raft Deformation
by Jian-Wei Cheng, Wen-Jun Bu, Ze-Chao Hu, Jun-Qiang Fu, Hong-Rui Zhang and Liang Shi
J. Mar. Sci. Eng. 2025, 13(9), 1664; https://doi.org/10.3390/jmse13091664 - 29 Aug 2025
Viewed by 762
Abstract
Shaft alignment is adversely affected by the increasingly severe coupled hull–raft deformation in deep-diving, highly integrated submersibles, thereby compromising operational safety and potentially amplifying vibration noise. To address to this issue, this paper investigates an intelligent alignment control method for the floating raft [...] Read more.
Shaft alignment is adversely affected by the increasingly severe coupled hull–raft deformation in deep-diving, highly integrated submersibles, thereby compromising operational safety and potentially amplifying vibration noise. To address to this issue, this paper investigates an intelligent alignment control method for the floating raft air spring mounting system (ASMS) applied to marine propulsion unit (MPU) under coupled hull–raft deformation conditions. A multi-objective alignment control algorithm was developed based on the NSGA-II optimization method within an N-step receding horizon optimal control framework, enabling simultaneous achievement of shaft alignment attitude adjustment, hull deformation compensation, raft deformation suppression, and pneumatic energy consumption. Experimental validation was conducted on two distinct ASMS prototypes to evaluate the control algorithm. Tests performed on the ASMS for MPU (MPU-ASMS) prototype demonstrated effective compensation of hull-induced deformations, maintaining shaft alignment offsets within ±0.3 mm and angularities within ±0.5 mm/m. Concurrently, experiments on the floating raft ASMS for the stern compartment (SC-FR-ASMS) achieved precise control of axial offsets within ±0.3 mm, angularities within ±0.5 mm/m, and vertical displacements of critical monitoring points within ±1 mm. The adaptive control strategy additionally proved effective in suppressing raft deformation while simultaneously optimizing pneumatic energy consumption. This research provides robust theoretical and technical foundations for intelligent vibration isolation systems in deep-sea equipment to accommodate extreme-depth-induced hull deformation and large-scale raft deformation. Full article
(This article belongs to the Special Issue Deep-Sea Mineral Resource Development Technology and Equipment)
Show Figures

Figure 1

25 pages, 6493 KB  
Article
Research on Vibration Reduction Characteristics and Optimization of an Embedded Symmetric Distribution Multi-Level Acoustic Black Hole Floating Raft Isolation System
by Xipeng Luo, Xiao Wang, Qiyuan Fan, Jun Wang, Yuanyuan Shi, Jiaqi Liu and Yizhe Huang
Symmetry 2025, 17(8), 1196; https://doi.org/10.3390/sym17081196 - 26 Jul 2025
Viewed by 820
Abstract
The subject of ship structural dynamics has faced new technological obstacles due to scientific and technological advancements, and one of the main concerns in related sectors is how to effectively reduce the vibration levels of different ships. This article focuses on the application [...] Read more.
The subject of ship structural dynamics has faced new technological obstacles due to scientific and technological advancements, and one of the main concerns in related sectors is how to effectively reduce the vibration levels of different ships. This article focuses on the application scenarios of ship floating raft isolation systems, establishing a wave propagation model for acoustic black hole (ABH) structures based on the idea of the ABH effect. Then, a transfer matrix model for serially connected ABH structures is derived, which serves as a basis for subsequent structural designs. Second, the finite element method is used to study the energy distribution and vibration characteristics of a symmetrically distributed periodic non-uniform multi-level ABH structure. Meanwhile, it examines its bandgap distribution under a one-dimensional periodic arrangement and then investigates the vibration properties of non-uniform multi-level ABH thin-plate constructions with different periods from the perspective of engineering applications. Moreover, parameter optimization studies of non-uniform multi-level ABH structures with finite periods are carried out with an emphasis on engineering applications. The first step is to use the design space to determine the range of values for the parameters that need to be optimized. The hyper Latin cubic sampling method is then employed to select samples, and the EI criterion and PSO optimization algorithm are applied to add new samples to improve the Kriging surrogate model’s accuracy. When the optimal structural parameters have been determined, they are applied to the raft rib plate to verify the isolation effect of the non-uniform multi-level ABH structure by analyzing the vibration level difference at specific raft positions before and after embedding it. Full article
Show Figures

Figure 1

19 pages, 2444 KB  
Article
Tomato Lines Tolerant to Sodium Chloride at Early Growth Stages
by Alma Aurora Deanda-Tovar, Juan Enrique Rodríguez-Pérez, Jaime Sahagún-Castellanos, María Teresa Beryl Colinas-y-León, Paulino Pérez-Rodríguez and Ana Elizabeth Paredes-Cervantes
Horticulturae 2025, 11(5), 532; https://doi.org/10.3390/horticulturae11050532 - 14 May 2025
Cited by 2 | Viewed by 1277
Abstract
High concentrations of sodium chloride (NaCl) in soil and water are increasingly common conditions in tomato (Solanum lycopersicum L.) production that impair the development and yield of this crop, generating the need for tolerant varieties. This research aimed to identify tomato lines [...] Read more.
High concentrations of sodium chloride (NaCl) in soil and water are increasingly common conditions in tomato (Solanum lycopersicum L.) production that impair the development and yield of this crop, generating the need for tolerant varieties. This research aimed to identify tomato lines tolerant to salinity during germination and early seedling development. A standard germination test was carried out in which 93 lines were evaluated under conditions of 0 and 80 mM NaCl for 12 days in a germination chamber with a temperature of 28 ± 1 °C and relative humidity of 80 ± 5%. At the seedling stage, 88 lines were evaluated under conditions of 0 and 150 mM NaCl in a floating raft system. During germination, saline conditions decreased germination percentage (37%), plumule (43%) and radicle (47%) length, dry matter (44%) and germination rate index (70%). At the seedling stage, NaCl decreased (p ≤ 0.05) plant height (44%) and leaf area (50%), without modifying root, aerial and total dry matter or root length. Twenty-eight tolerant lines were identified at germination and twenty-three at the seedling stage, seven of which were tolerant at both stages. This implies that salinity tolerance mechanisms differ in the developmental stages studied and makes it possible to combine these mechanisms to prolong tolerance during plant development. Full article
(This article belongs to the Special Issue Biotic and Abiotic Stress Responses of Horticultural Plants)
Show Figures

Figure 1

29 pages, 11422 KB  
Article
Experimental and Simulation Study on Vibration Transmission Characteristics and Vibration Isolation Effect of a New Floating Raft Vibration Isolation System
by Qichao Xue, Yonghui Wang, Chaoying Wang, Quansheng Hu, Guangping Zou, Mingtao Chen and Chuan He
J. Mar. Sci. Eng. 2025, 13(2), 254; https://doi.org/10.3390/jmse13020254 - 29 Jan 2025
Cited by 1 | Viewed by 1688
Abstract
To enhance the floating raft vibration isolation system’s effect, a new two-stiffness floating raft vibration isolation experimental was constructed. First, the system’s mathematical model was established. The vibration transfer function was deduced via substructure derivative synthesis and four-end parameter matrix methods, and the [...] Read more.
To enhance the floating raft vibration isolation system’s effect, a new two-stiffness floating raft vibration isolation experimental was constructed. First, the system’s mathematical model was established. The vibration transfer function was deduced via substructure derivative synthesis and four-end parameter matrix methods, and the structural parameter impacts on it were analyzed. Then, a modal test was conducted, and a finite element model was built. Comparing finite element analysis with test results verified the model’s validity, followed by a study of the support structure’s vibration characteristics. Finally, by measuring acceleration responses at the isolator’s upper and lower ends and using the difference as an evaluation index, the isolator’s vibration isolation effect on land and underwater was investigated, along with its impact on the device’s underwater acoustic radiation. The results demonstrate that the two-stiffness vibration isolator can reduce vibration transmission within a specific frequency range both on land and underwater, guiding practical engineering vibration isolation research. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

18 pages, 3185 KB  
Article
Mineral Supplementation in Jade Perch (Scortum barcoo) Aquaponics with Lettuce: A Comparison with Hydroponics and RAS
by Maurício Gustavo Coelho Emerenciano, Joel Slinger, George Koster, Jarvis Aland, Paula Camargo Lima, Maja Arsic and Cathryn O’Sullivan
Animals 2025, 15(3), 317; https://doi.org/10.3390/ani15030317 - 23 Jan 2025
Cited by 3 | Viewed by 2075
Abstract
The global demand for local and high-quality food sources has increased in recent decades, driven by consumer preferences and a growing population. RAS, hydroponics and a ‘hybrid’ version, aquaponics, are food production techniques that could support such growing demand. The current study evaluated [...] Read more.
The global demand for local and high-quality food sources has increased in recent decades, driven by consumer preferences and a growing population. RAS, hydroponics and a ‘hybrid’ version, aquaponics, are food production techniques that could support such growing demand. The current study evaluated coupled aquaponics (Jade perch and lettuce) with and without mineral supplementation in comparison to standard cultivation methods, i.e., RAS and hydroponics. The mineral supplementation in aquaponics was carried out using a hydroponics commercial blend fertilizer (10% of the dosage utilised in the hydroponics treatment). Fish/plant performance, nutrient dynamics and water quality were evaluated for 9 weeks using twelve experimental units (~720 L in total; fish tank/reservoir + filtration systems/sump + floating raft-based plant tank). After two crops of plants, the results showcased the positive impact of mineral supplementation in aquaponics; however, the hydroponics treatment outperformed the two aquaponics treatments, e.g., with higher total plant wet weight and total plant length (p < 0.05). Fish in aquaponics with and without mineral supplementation presented similar growth performance as compared to RAS (p > 0.05). By comparing these different farming approaches, this study sought to provide insights into optimising aquaponics systems and advancing the integration of Jade perch into aquaculture practices. Full article
Show Figures

Figure 1

24 pages, 3458 KB  
Article
Unveiling the Mechanisms of a Remission in Major Depressive Disorder (MDD)-like Syndrome: The Role of Hippocampal Palmitoyltransferase Expression and Stress Susceptibility
by Careen A. Schroeter, Anna Gorlova, Michael Sicker, Aleksei Umriukhin, Alisa Burova, Boris Shulgin, Sergey Morozov, Joao P. Costa-Nunes and Tatyana Strekalova
Biomolecules 2025, 15(1), 67; https://doi.org/10.3390/biom15010067 - 5 Jan 2025
Cited by 4 | Viewed by 1842
Abstract
Post-translational modifications of proteins via palmitoylation, a thioester linkage of a 16-carbon fatty acid to a cysteine residue, reversibly increases their affinity for cholesterol-rich lipid rafts in membranes, changing their function. Little is known about how altered palmitoylation affects function at the systemic [...] Read more.
Post-translational modifications of proteins via palmitoylation, a thioester linkage of a 16-carbon fatty acid to a cysteine residue, reversibly increases their affinity for cholesterol-rich lipid rafts in membranes, changing their function. Little is known about how altered palmitoylation affects function at the systemic level and contributes to CNS pathology. However, recent studies suggested a role for the downregulation of palmitoyl acetyltransferase (DHHC) 21 gene expression in the development of Major Depressive Disorder (MDD)-like syndrome. Here, we sought to investigate how susceptibility (sucrose preference below 65%) or resilience (sucrose preference > 65%) to stress-induced anhedonia affects DHHC gene expression in the hippocampus of C57BL/6J mice during the phase of spontaneous recovery from anhedonia. Because MDD is a recurrent disorder, it is important to understand the molecular mechanisms underlying not only the symptomatic phase of the disease but also a state of temporary remission. Indeed, molecular changes associated with the application of pharmacotherapy at the remission stage are currently not well understood. Therefore, we used a mouse model of chronic stress to address these questions. The stress protocol consisted of rat exposure, social defeat, restraint stress, and tail suspension. Mice from the stress group were not treated, received imipramine via drinking water (7 mg/kg/day), or received intraperitoneal injections of dicholine succinate (DS; 25 mg/kg/day) starting 7 days prior to stress and continuing during a 14-day stress procedure. Controls were either untreated or treated with either of the two drugs. At the 1st after-stress week, sucrose preference, forced swim, novel cage, and fear-conditioning tests were carried out; the sucrose test and 5-day Morris water maze test followed by a sacrifice of mice on post-stress day 31 for all mice were performed. Transcriptome Illumina analysis of hippocampi was carried out. Using the RT-PCR, the hippocampal gene expression of Dhhc3, Dhhc7, Dhhc8, Dhhc13, Dhhc14, and Dhhc21 was studied. We found that chronic stress lowered sucrose preference in a subgroup of mice that also exhibited prolonged floating behavior, behavioral invigoration, and impaired contextual fear conditioning, while auditory conditioning was unaltered. At the remission phase, no changes in the sucrose test were found, and the acquisition of the Morris water maze was unchanged in all groups. In anhedonic, but not resilient animals, Dhhc8 expression was lowered, and the expression of Dhhc14 was increased. Antidepressant treatment with either drug partially preserved gene expression changes and behavioral abnormalities. Our data suggest that Dhhc8 and Dhhc14 are likely to be implicated in the mechanisms of depression at the remission stage, serving as targets for preventive therapy. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

21 pages, 16398 KB  
Article
Assessing the Effect of Water on Submerged and Floating Plastic Detection Using Remote Sensing and K-Means Clustering
by Lenka Fronkova, Ralph P. Brayne, Joseph W. Ribeiro, Martin Cliffen, Francesco Beccari and James H. W. Arnott
Remote Sens. 2024, 16(23), 4405; https://doi.org/10.3390/rs16234405 - 25 Nov 2024
Cited by 3 | Viewed by 2966
Abstract
Marine and freshwater plastic pollution is a worldwide problem affecting ecosystems and human health. Although remote sensing has been used to map large floating plastic rafts, there are research gaps in detecting submerged plastic due to the limited amount of in situ data. [...] Read more.
Marine and freshwater plastic pollution is a worldwide problem affecting ecosystems and human health. Although remote sensing has been used to map large floating plastic rafts, there are research gaps in detecting submerged plastic due to the limited amount of in situ data. This study is the first to collect in situ data on submerged and floating plastics in a freshwater environment and analyse the effect of water submersion on the strength of the plastic signal. A large 10 × 10 m artificial polymer tarpaulin was deployed in a freshwater lake for a two-week period and was captured by a multi-sensor and multi-resolution unmanned aerial vehicle (UAV) and satellite. Spectral analysis was conducted to assess the attenuation of individual wavelengths of the submerged tarpaulin in UAV hyperspectral and Sentinel-2 multispectral data. A K-Means unsupervised clustering algorithm was used to classify the images into two clusters: plastic and water. Additionally, we estimated the optimal number of clusters present in the hyperspectral dataset and found that classifying the image into four classes (water, submerged plastic, near surface plastic and buoys) significantly improved the accuracy of the K-Means predictions. The submerged plastic tarpaulin was detectable to ~0.5 m below the water surface in near infrared (NIR) (~810 nm) and red edge (~730 nm) wavelengths. However, the red spectrum (~669 nm) performed the best with ~84% true plastic positives, classifying plastic pixels correctly even to ~1 m depth. These individual bands outperformed the dedicated Plastic Index (PI) derived from the UAV dataset. Additionally, this study showed that in neither Sentinel-2 bands, nor the derived indices (PI or Floating Debris Index (FDI), it is currently possible to determine if and how much of the tarpaulin was under the water surface, using a plastic tarpaulin object of 10 × 10 m. Overall, this paper showed that spatial resolution was more important than spectral resolution in detecting submerged tarpaulin. These findings directly contributed to Sustainable Development Goal 14.1 on mapping large marine plastic patches of 10 × 10 m and could be used to better define systems for monitoring submerged and floating plastic pollution. Full article
(This article belongs to the Section Environmental Remote Sensing)
Show Figures

Graphical abstract

17 pages, 2642 KB  
Article
Effects of Temperature and Packaging Atmosphere on Shelf Life, Biochemical, and Sensory Attributes of Glasswort (Salicornia europaea L.) Grown Hydroponically at Different Salinity Levels
by Chiara Sanmartin, Isabella Taglieri, Alessandro Bianchi, Prangthip Parichanon, Martina Puccinelli, Alberto Pardossi and Francesca Venturi
Foods 2024, 13(20), 3260; https://doi.org/10.3390/foods13203260 - 13 Oct 2024
Cited by 5 | Viewed by 2012
Abstract
Halophytes, such as Salicornia species, are promising new foods and are consumed for their pleasant salty taste and nutritional value. Since Salicornia is perishable, modified atmospheric packaging (MAP) can be a useful tool, in combination with proper temperature, to halt further quality degradation [...] Read more.
Halophytes, such as Salicornia species, are promising new foods and are consumed for their pleasant salty taste and nutritional value. Since Salicornia is perishable, modified atmospheric packaging (MAP) can be a useful tool, in combination with proper temperature, to halt further quality degradation in this type of product. The purpose of this study was to investigate the effect of MAP, with or without refrigeration, to extend the shelf life of glasswort (Salicornia europaea L.) grown hydroponically (floating raft system) in a greenhouse with a nutrient solution containing 0 g/L (C) or 12.5 g/L of NaCl (T). The dry matter content, weight loss, respiration rate, biochemical composition, color, antioxidant capacity, and sensorial attributes were determined in shoots after harvest and during storage in plastic bags filled with technical air or with MAP at 4 or 20 °C for 120 h. At harvest, plants supplied with salt-enriched solution (T) showed a significant improvement in nutritional value and sensory profile. Storage in air at room temperature (20 °C) accelerated weight loss and diminished color stability, particularly in non-salinity samples (C), while MAP extended the shelf life of all the samples regardless of the storage temperature adopted. Optimal storage conditions were observed when MAP was combined with refrigeration, which allowed to effectively preserve shoots sensory acceptability for a period of about seven days. Future research could further explore the long-term effects on the nutritional value and sensory quality of S. europaea under various combinations of MAP and different storage temperatures ranging between 4 °C and 20 °C. Full article
(This article belongs to the Section Food Quality and Safety)
Show Figures

Figure 1

14 pages, 319 KB  
Article
Growth, Ecophysiological Responses, and Leaf Mineral Composition of Lettuce and Curly Endive in Hydroponic and Aquaponic Systems
by Lucia Vanacore, Christophe El-Nakhel, Giuseppe Carlo Modarelli, Youssef Rouphael, Antonio Pannico, Antonio Luca Langellotti, Paolo Masi, Chiara Cirillo and Stefania De Pascale
Plants 2024, 13(20), 2852; https://doi.org/10.3390/plants13202852 - 11 Oct 2024
Cited by 4 | Viewed by 3049
Abstract
Against the backdrop of climate change, soil loss, and water scarcity, sustainable food production is a pivotal challenge for humanity. As the global population grows and urbanization intensifies, innovative agricultural methods are crucial to meet rising food demand, while mitigating environmental degradation. Hydroponic [...] Read more.
Against the backdrop of climate change, soil loss, and water scarcity, sustainable food production is a pivotal challenge for humanity. As the global population grows and urbanization intensifies, innovative agricultural methods are crucial to meet rising food demand, while mitigating environmental degradation. Hydroponic and aquaponic systems, has emerged as one of these solutions by minimizing land use, reducing water consumption, and enabling year-round crop production in urban areas. This study aimed at assessing the yield, ecophysiological performance, and nutritional content of Lactuca sativa L. and Cichorium endivia L. var. crispum grown in hydroponic and aquaponic floating raft systems, with Oreochromis niloticus L. integrated into the aquaponic system. Both species exhibited higher fresh biomass and canopy/root ratios in hydroponics compared to aquaponics. Additionally, hydroponics increased the leaf number in curly endive by 18%. Ecophysiological parameters, such as the leaf net photosynthesis rate, actual yield of PSII, and linear electron transport rate, were also higher in hydroponics for both species. However, the nutritional profiles varied between the two cultivation systems and between the two species. Given that standard fish feed often lacks sufficient potassium levels for optimal plant growth, potassium supplementation could be a viable strategy to enhance plant development in aquaponic systems. In conclusion, although aquaponic systems may demonstrate lower productivity compared to hydroponics, they offer a more sustainable and potentially healthier product with fewer harmful compounds due to the reduced use of synthetic fertilizers, pesticides, and the absence of chemical residue accumulation. However, careful system management and monitoring are crucial to minimize potential contaminants. Full article
(This article belongs to the Section Plant Physiology and Metabolism)
28 pages, 1069 KB  
Review
Expanding the Manufacturing Approaches for Gastroretentive Drug Delivery Systems with 3D Printing Technology
by Imola-Rebeka Turac, Alina Porfire, Sonia Iurian, Andrea Gabriela Crișan, Tibor Casian, Rareș Iovanov and Ioan Tomuță
Pharmaceutics 2024, 16(6), 790; https://doi.org/10.3390/pharmaceutics16060790 - 11 Jun 2024
Cited by 13 | Viewed by 5405
Abstract
Gastroretentive drug delivery systems (GRDDSs) have gained substantial attention in the last 20 years due to their ability to retain the drug in the stomach for an extended time, thus promoting an extended release and high bioavailability for a broad range of active [...] Read more.
Gastroretentive drug delivery systems (GRDDSs) have gained substantial attention in the last 20 years due to their ability to retain the drug in the stomach for an extended time, thus promoting an extended release and high bioavailability for a broad range of active pharmaceutical ingredients (APIs) that are pH-sensitive and/or have a narrow absorption window. The currently existing GRDDSs include floating, expanding, mucoadhesive, magnetic, raft-forming, ion-exchanging, and high-density systems. Although there are seven types of systems, the main focus is on floating, expanding, and mucoadhesive systems produced by various techniques, 3D printing being one of the most revolutionary and currently studied ones. This review assesses the newest production technologies and briefly describes the in vitro and in vivo evaluation methods, with the aim of providing a better overall understanding of GRDDSs as a novel emerging strategy for targeted drug delivery. Full article
(This article belongs to the Section Drug Delivery and Controlled Release)
Show Figures

Figure 1

23 pages, 4075 KB  
Article
Bioponic Cultivation Using Chicken Droppings to Produce Lettuce Plants (Lactuca sativa rz) Uncontaminated by Trace Metals
by Félicien Mununga Katebe, Iris Szekely, Michel Mpundu Mubemba, Clément Burgeon and M. Haïssam Jijakli
Horticulturae 2024, 10(6), 605; https://doi.org/10.3390/horticulturae10060605 - 7 Jun 2024
Cited by 3 | Viewed by 3189
Abstract
Anthropogenic activities have denatured aquatic, terrestrial, and aerial environments throughout the world in general, and in Lubumbashi in particular, where market garden soils have become uncultivable for many plants. Thus, bioponics could be an effective means of producing uncontaminated vegetables in soilless cultivation, [...] Read more.
Anthropogenic activities have denatured aquatic, terrestrial, and aerial environments throughout the world in general, and in Lubumbashi in particular, where market garden soils have become uncultivable for many plants. Thus, bioponics could be an effective means of producing uncontaminated vegetables in soilless cultivation, not only reducing the amount of fertilizer used and limiting contamination of agricultural produce but also achieving higher yields than in open-ground cultivation. The overall objective of this study was to implement a new bioponic technique for producing liquid fertilizer from chicken manure and utilize it in the organic hydroponic cultivation of lettuce (Lactuca sativa var. Lucrecia) installed on floating raft systems. To achieve this, two types of trials were conducted. The first was aimed at determining the quantities of organic matter to be used in the formulation of nutrient solutions. The second trial aimed to determine the optimal nitrogen concentration to be provided for hydroponic plant growth. Mineralization and/or anaerobic digestion of chicken manure were conducted for 7 days in 200 L barrels. For the first trial, nutrient solutions were created from three different concentrations of chicken manure (0.35%, 3.5%, and 7% dry matter—D.M.). These solutions were then used in bioponic rafts where total ammonia nitrogen (TAN) concentrations were fixed at 150 mg/L. For the second trial, D.M. was fixed at 2.5% for each tested modality, but TAN concentrations varied among them (i.e., 60, 90, and 120 mg/L TAN concentration). Modalities with low D.M. concentration (0.35%) and those with low TAN concentration (60 mg/L) resulted in higher yields than bioponic modalities receiving high concentrations of dry matter or TAN, respectively, for trials 1 and 2. Although the reference chemical solutions generate the greatest yields, bioponic systems operating with chicken manure present a good alternative for the cultivation of vegetables in developing countries with heavily contaminated soils. Indeed, bioponics allows for the production of vegetables in large quantities from animal waste, which does not pose health risks for human consumption. Local vegetable species commonly grown in Lubumbashi should be tested under hydroponic conditions. Full article
(This article belongs to the Special Issue Soilless Culture in Vegetable Production)
Show Figures

Figure 1

14 pages, 2191 KB  
Article
Effect of an Ipomoea aquatica Floating Raft on the Water Quality, Antioxidant System, Non-Specific Immune Responses, and Microbial Diversity of Penaeus vannamei in an Aquaculture System
by Zhuohao Ruan, Ruilin Xie, Yifu Li, Yuanyuan Luo, Zufeng Weng and Wensheng Liu
Fishes 2024, 9(5), 175; https://doi.org/10.3390/fishes9050175 - 12 May 2024
Cited by 1 | Viewed by 4031
Abstract
Pacific white shrimp (Penaeus vannamei) is one of the main shrimp species cultivated around the world. Despite its high yields and easy handling, water pollution from intensive shrimp cultivation remains a serious problem in China. In this study, a compound aquaculture [...] Read more.
Pacific white shrimp (Penaeus vannamei) is one of the main shrimp species cultivated around the world. Despite its high yields and easy handling, water pollution from intensive shrimp cultivation remains a serious problem in China. In this study, a compound aquaculture model of P. vannamei and water spinach (Ipomoea aquatica) was used to investigate the effect of a water spinach floating raft on water quality, antioxidants, non-specific immune response, growth performance, and microbial diversity. The experimental design of this study consisted of two groups with three replicates for each, i.e., control group: aquatic monoculture (AM) system with only P. vannamei; treatment group: P. vannamei-I. aquatica raft aquaponics (AP) system with a 50% cover ratio with a water spinach floating raft. The experiment lasted for seven weeks. The results show that the concentrations of total phosphorus (TP), total nitrogen (TN), nitrate nitrogen (NO3-N), ammonia nitrogen (NH4+-N), nitrite nitrogen (NO2-N), and active phosphorus (AP) in the AM group were higher than those in the AP group at different sampling times. The water quality index of the AP group was better than that of the AM group, indicating that water spinach can remove the nutrients from aquaculture water bodies. The average daily gain and survival rate of shrimp in the AP group were higher than those in the AM group. The total antioxidant capacity (T-AOC), catalase (CAT), superoxide dismutase (SOD), malondialdehyde (MDA), and acid phosphatase (ACP) in the AP group were better than those in the AM group. The Shannon–Wiener and Simpson indices of the gut, water, and sediment of the AP system were significantly higher than those in the AM system, which implied a higher abundance of microorganisms in the AP system. These results demonstrate that the application of a water spinach floating raft in aquaponics can not only improve the water quality, but also improve the growth performance, antioxidant system, and non-specific immune responses of Pacific white shrimp, while increasing the abundance of microorganisms in the aquaculture system and improving the ecological benefits in terms of the expenditure. Full article
(This article belongs to the Section Sustainable Aquaculture)
Show Figures

Figure 1

Back to TopTop