Growth, Ecophysiological Responses, and Leaf Mineral Composition of Lettuce and Curly Endive in Hydroponic and Aquaponic Systems
Abstract
:1. Introduction
2. Results
2.1. Plant Growth
2.2. Gas Exchanges and Chl “a” Fluorescence Emission
2.3. Leaf Photosynthetic Pigments
2.4. Mineral Profile and Nitrate Contents
3. Discussion
4. Materials and Methods
4.1. Facility
4.2. Planting and Growth Conditions
4.3. Nutrients Solution Management
4.4. Plant Growth and Leaf Traits
4.5. Gas Exchanges and Chl “a” Fluorescence Emission Determination
4.6. Leaf Chlorophyll and Carotenoids Content and SPAD Determination
4.7. Mineral Profile Determination
4.8. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. The Future of Food and Agriculture-Trends and Challenges; Food and Agriculture Organization: Rome, Italy, 2017. [Google Scholar]
- Masson-Delmotte, V.P.; Zhai, P.; Pirani, S.L.; Connors, C.; Péan, S.; Berger, N.; Scheel Monteiro, P.M. The physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change. IPCC: Summary for policymakers. In Climate Change 2021; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021. [Google Scholar]
- Farm to Fork Strategy. 2020, p. 23. Available online: https://food.ec.europa.eu/system/files/2020-05/f2f_action-plan_2020_strategy-info_en.pdf (accessed on 10 December 2022).
- Vittuari, M.; Bazzocchi, G.; Blasioli, S.; Cirone, F.; Maggio, A.; Orsini, F.; Penca, J.; Petruzzelli, M.; Specht, K.; Amghar, S.; et al. Envisioning the Future of European Food Systems: Approaches and Research Priorities After COVID-19. Front. Sustain. Food Syst. 2021, 5, 642787. [Google Scholar] [CrossRef]
- United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development; Department of Economic and Social Affairs, United Nations (UN DESA): New York, NY, USA, 2015; pp. 12–14. Available online: https://sustainabledevelopment.un.org/post2015/transformingourworld (accessed on 10 December 2022).
- Tegoni, C.; Licomati, S. The Milan Urban Food Policy Pact: The potential of food and the key role of cities in localizing SDGs. JUNCO J. Univ. Int. Dev. Coop. 2017, 1. [Google Scholar] [CrossRef]
- European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic, and Social Committee and the Committee of the Regions A Farm to Fork Strategy for a Fair, Healthy and Environmentally-Friendly Food System COM/2020/381 Final (PDF) Recirculating Aquaponics Systems: The New Era of Food Production. 2020. Available online: https://www.researchgate.net/publication/364150611_Recirculating_aquaponics_systems_the_new_era_of_food_production (accessed on 11 December 2023).
- De Zeeuw, H. Cities, climate change and urban agriculture. Urban Agric. Mag. 2011, 25, 39–42. [Google Scholar]
- Mok, H.F.; Williamson, V.G.; Grove, J.R.; Burry, K.; Barker, S.F.; Hamilton, A.J. Strawberry fields forever? Urban agriculture in developed countries: A review. Agron. Sustain. Dev. 2014, 34, 21–43. [Google Scholar] [CrossRef]
- Hawes, J.K.; Goldstein, B.P.; Newell, J.P.; Dorr, E.; Caputo, S.; Fox-Kämper, R.; Cohen, N. Comparing the carbon footprints of urban and conventional agriculture. Nat. Cities 2024, 1, 164–173. [Google Scholar] [CrossRef]
- Wortman, S.E.; Lovell, S.T. Environmental challenges threatening the growth of urban agriculture in the United States. J. Environ. Qual. 2013, 42, 1283–1294. [Google Scholar] [CrossRef]
- Yang, T.; Kim, H.J. Comparisons of nitrogen and phosphorus mass balance for tomato-, basil-, and lettuce-based aquaponic and hydroponic systems. J. Clean. Prod. 2020, 274, 122619. [Google Scholar] [CrossRef]
- Engler, N.; Krarti, M. Review of energy efficiency in controlled environment agriculture. Renew. Sustain. Energy Rev. 2021, 141, 110786. [Google Scholar] [CrossRef]
- Cetegen, S.A.; Stuber, M.D. Optimal design of controlled environment agricultural systems under market uncertainty. Comput. Chem. Eng. 2021, 149, 107285. [Google Scholar] [CrossRef]
- Specht, K.; Siebert, R.; Hartmann, I.; Freisinger, U.B.; Sawicka, M.; Werner, A.; Thomaier, S.; Henckel, D.; Walk, H.; Dierich, A. Urban Agriculture of the Future: An Overview of Sustainability Aspects of Food Production in and on Buildings. Agric. Hum. Values 2014, 31, 33–51. [Google Scholar] [CrossRef]
- Al-Kodmany, K. The Vertical Farm: A Review of Developments and Implications for the Vertical City. Buildings 2018, 8, 24. [Google Scholar] [CrossRef]
- Bihari, C.; Ahamad, S.; Kumar, M.; Kumar, A.; Kamboj, A.D.; Singh, S.; Gautam, P. Innovative Soilless Culture Techniques for Horticultural Crops: A Comprehensive Review. Int. J. Environ. Clim. Chang. 2023, 13, 4071–4084. [Google Scholar] [CrossRef]
- Benke, K.; Tomkins, B. Future food-production systems: Vertical farming and controlled-environment agriculture. Sustain. Sci. Pract. Policy 2017, 13, 13–26. [Google Scholar] [CrossRef]
- Jato-Espino, D.; Capra-Ribeiro, F.; Moscardó, V.; del Pino, L.E.B.; Mayor-Vitoria, F.; Gallardo, L.O.; Dietrich, K. A systematic review on the ecosystem services provided by green infrastructure. Urban For. Urban Green. 2023, 86, 127998. [Google Scholar] [CrossRef]
- Despommier, D. The Vertical Farm: Feeding the World in the 21st Century; Thomas Dunne Books: New York, NY, USA, 2010. [Google Scholar]
- Ragaveena, S.; Shirly Edward, A.; Surendran, U. Smart controlled environment agriculture methods: A holistic review. Rev. Environ. Sci. Bio/Technol. 2021, 20, 887–913. [Google Scholar] [CrossRef]
- Wortman, S.E. Crop physiological response to nutrient solution electrical conductivity and pH in an ebb-and-flow hydroponic system. Sci. Hortic. 2015, 194, 34–42. [Google Scholar] [CrossRef]
- Khan, S.; Purohit, A.; Vadsaria, N. Hydroponics: Current and future state of the art in farming. J. Plant Nutr. 2020, 44, 1515–1538. [Google Scholar] [CrossRef]
- Sanjuan-Delmás, D.; Llorach-Massana, P.; Nadal, A.; Ercilla-Montserrat, M.; Muñoz, P.; Montero, J.I.; Rieradevall, J. Environmental assessment of an integrated rooftop greenhouse for food production in cities. J. Clean. Prod. 2018, 177, 326–337. [Google Scholar] [CrossRef]
- Hashida, S.N.; Johkan, M.; Kitazaki, K.; Shoji, K.; Goto, F.; Yoshihara, T. Management of nitrogen fertilizer application, rather than functional gene abundance, governs nitrous oxide fluxes in hydroponics with rockwool. Plant Soil 2014, 374, 715–725. [Google Scholar] [CrossRef]
- FAO. Small-scale aquaponic food production. Integrate fish and plant farming. In FAO Fisheries and Aquaculture Technical Paper; Food and Agriculture Organization of the United Nations: Rome, Italy, 2014; Volume 589, p. 262. [Google Scholar]
- Oladimeji, A.S.; Olufeagba, S.O.; Ayuba, V.O.; Sololmon, S.G.; Okomoda, V.T. Effects of different growth media on water quality and plant yield in a catfish-pumpkin aquaponics system. J. King Saud Univ.-Sci. 2020, 32, 60–66. [Google Scholar] [CrossRef]
- Oladimeji, S.A.; Okomoda, V.T.; Olufeagba, S.O.; Solomon, S.G.; Abol-Munafi, A.B.; Alabi, K.I.; Hassan, A. Aquaponics production of catfish and pumpkin: Comparison with conventional production systems. Food Sci. Nutr. 2020, 8, 2307–2315. [Google Scholar] [CrossRef] [PubMed]
- Peterhans, H. Aquaponic nutrient model. In Thesis Biobased Chemistry and Technology; Wageningen University & Research: Wageningen, The Netherlands, 2015. [Google Scholar]
- Goddek, S.; Delaide, B.; Mankasingh, U.; Ragnarsdottir, K.V.; Jijakli, H.; Thorarinsdottir, R. Challenges of sustainable and commercial aquaponics. Sustainability 2015, 7, 4199–4224. [Google Scholar] [CrossRef]
- Rakocy, J.E.; Masser, M.P.; Losordo, T.M. Recirculating Aquaculture Tank Production Systems: Aquaponics–Integrating Fish and Plant Culture; Southern Regional Aquaculture Center, Mississippi State University: Stoneville, MI, USA, 2006; pp. 1–16. [Google Scholar]
- Wongkiew, S.; Park, M.R.; Chandran, K.; Khanal, S.K. Aquaponic systems for sustainable resource recovery: Linking nitrogen transformations to microbial communities. Environ. Sci. Technol. 2018, 52, 12728–12739. [Google Scholar] [CrossRef] [PubMed]
- Palm, H.W.; Knaus, U.; Appelbaum, S.; Goddek, S.; Strauch, S.M.; Vermeulen, T.; Haissam Jijakli, M.; Kotzen, B. Towards commercial aquaponics: A review of systems, designs, scales and nomenclature. Aquac. Int. 2018, 26, 813–842. [Google Scholar] [CrossRef]
- Lennard, W.A. AQUAPONICS: A nutrient dynamic process and the relationship to fish feeds. J. World Aquac. Soc. 2015, 46, 20–23. [Google Scholar]
- Bailey, D.S.; Ferrarezi, R.S. Valuation of vegetable crops produced in the UVI commercial aquaponic system. Aquac. Rep. 2017, 7, 77–82. [Google Scholar] [CrossRef]
- Yep, B.; Zheng, Y. Aquaponic trends and challenges—A review. J. Clean. Prod. 2019, 228, 1586–1599. [Google Scholar] [CrossRef]
- Aires, A. Hydroponic production systems: Impact on nutritional status and bioactive compounds of fresh vegetables. In Vegetables: Importance of Quality Vegetables to Human Health; IntechOpen: London, UK, 2018; p. 55. [Google Scholar] [CrossRef]
- Love, D.C.; Fry, J.P.; Li, X.; Hill, E.S.; Genello, L.; Semmens, K.; Thompson, R.E. Commercial aquaponics production and profitability: Findings from an international survey. Aquaculture 2005, 435, 67–74. [Google Scholar] [CrossRef]
- Donadio, G.; Bellone, M.L.; Mensitieri, F.; Parisi, V.; Santoro, V.; Vitiello, M.; De Tommasi, N. Characterization of health beneficial components in discarded leaves of three escarole (Cichorium endivia L.) cultivar and study of their antioxidant and anti-inflammatory activities. Antioxidants 2023, 12, 1402. [Google Scholar] [CrossRef]
- Navarrete, M.; Le Bail, M. SALADPLAN: A model of the decision-making process in lettuce and endive cropping. Agron. Sustain. Dev. 2007, 27, 209–221. [Google Scholar] [CrossRef]
- Crops: Areas and Production—Overall Data—Provinces. Available online: http://dati.istat.it/Index.aspx?QueryId=37850# (accessed on 23 July 2024).
- Wang, Y.J.; Yang, T.; Kim, H.J. pH Dynamics in Aquaponic Systems: Implications for Plant and Fish Crop Productivity and Yield. Sustainability 2023, 15, 7137. [Google Scholar] [CrossRef]
- Duarte, E.; Silva, E.D.B.; Moreira, F.D.C.; Braga, D.; Santos, S.G.D. Nutrients in lettuce production in aquaponics with tilapia fish compared to that with hydroponics. Rev. Caatinga 2023, 36, 21–32. [Google Scholar] [CrossRef]
- Yang, T.; Kim, H.J. Characterizing nutrient composition and concentration in tomato-, basil-, and lettuce-based aquaponic and hydroponic systems. Water 2020, 12, 1259. [Google Scholar] [CrossRef]
- Lennard, W.A.; Leonard, B.V. A comparison of three different hydroponic sub-systems (gravel bed, floating and nutrient film technique) in an aquaponic test system. Aquac. Int. 2006, 14, 539–550. [Google Scholar] [CrossRef]
- Modarelli, G.C.; Vanacore, L.; Langellotti, A.L.; Masi, P.; Cirillo, C.; De Pascale, S.; Rouphael, Y. Supplemental daily light integral by LED light to improve the growth of leafy vegetables in aquaponics system. Acta Hortic. 2022, 1345, 181–188. [Google Scholar] [CrossRef]
- Modarelli, G.C.; Vanacore, L.; Langellotti, A.L.; Masi, P.; De Pascale, S.; Rouphael, Y.; Cirillo, C. Nutrient accumulation, growth and quality of leafy vegetables in aquaponics system are modulated by supplemental LED lighting. Acta Hortic. 2022, 1356, 109–116. [Google Scholar] [CrossRef]
- Mendonça, V.V.; Silva, C.A.D.; Mendonça, C.R.; Silva, C.J.D.; Guimarães, C.M. Lettuce production in hydroponic and fish-farming aquaponic under different channel slopes and nutrient solutions in the NFT system. Rev. Bras. Eng. Agrícola E Ambient. 2023, 27, 746–754. [Google Scholar] [CrossRef]
- Atique, F.; Lindholm-Lehto, P.; Pirhonen, J. Is Aquaponics Beneficial in Terms of Fish and Plant Growth and Water Quality in Comparison to Separate Recirculating Aquaculture and Hydroponic Systems? Water 2022, 14, 1447. [Google Scholar] [CrossRef]
- Modarelli, G.C.; Vanacore, L.; Rouphael, Y.; Langellotti, A.L.; Masi, P.; De Pascale, S.; Cirillo, C. Hydroponic and Aquaponic Floating Raft Systems Elicit Differential Growth and Quality Responses to Consecutive Cuts of Basil Crop. Plants 2023, 12, 1355. [Google Scholar] [CrossRef]
- Lennard, W.; Ward, J. A comparison of plant growth rates between an NFT hydroponic system and an NFT aquaponic system. Horticulturae 2019, 5, 27. [Google Scholar] [CrossRef]
- Ayipio, E.; Wells, D.E.; McQuilling, A.; Wilson, A.E. Comparisons between Aquaponic and Conventional Hydroponic Crop Yields: A Meta-Analysis. Sustainability 2019, 11, 6511. [Google Scholar] [CrossRef]
- da Silva, M.G.; Gheyi, H.R.; da Silva, L.L.; de Souza, T.T.; Silva, P.C.C.; Queiroz, L.D.A.; Soares, T.M. Evaluation of salt and root-zone temperature stresses in leafy vegetables using hydroponics as a clean production cultivation technique in northeastern Brazil. Hortic. Environ. Biotechnol. 2023, 65, 95–118. [Google Scholar] [CrossRef]
- Ma, Y.; Chai, Y.; Guan, S.; Tuerti, T.; Liu, H.; Zhang, Z.; Diao, M. Effects of different levels of nitrogen supply on key enzyme activities of Nitrogen metabolism and growth stimulation of endive (Cichorium endivia L.). Sustainability 2022, 14, 15159. [Google Scholar] [CrossRef]
- Nicola, S.; Ertani, A. The Floating Growing System and New Growing System® to grow leafy vegetables and herbs. Acta Hortic. 2021, 1321, 251–258. [Google Scholar] [CrossRef]
- Sabatino, L.; Ntatsi, G.; Iapichino, G.; D’Anna, F.; De Pasquale, C. Effect of selenium enrichment and type of application on yield, functional quality and mineral composition of curly endive grown in a hydroponic system. Agronomy 2019, 9, 207. [Google Scholar] [CrossRef]
- Delaide, B.; Goddek, S.; Gott, J.; Soyeurt, H.; Jijakli, M.H. Lettuce (Lactuca sativa L. var. Sucrine) growth performance in complemented aquaponic solution outperforms hydroponics. Water 2016, 8, 467. [Google Scholar] [CrossRef]
- Rakocy, J.E. Aquaponics—Integrating fish and plant culture. In Aquaculture Production Systems; Tidwell, J.H., Ed.; Wiley & Sons Ltd.: Hoboken, NJ, USA, 2012; pp. 344–386. [Google Scholar]
- da Silva Cerozi, B.; Fitzsimmons, K. The effect of pH on phosphorus availability and speciation in an aquaponics nutrient solution. Bioresour. Technol. 2016, 219, 778–781. [Google Scholar] [CrossRef]
- Anderson, T.S.; De Villiers, D.; Timmons, M.B. Growth and tissue elemental composition response of butterhead lettuce (Lactuca sativa, cv. Flandria) to hydroponic and aquaponic conditions. Horticulturae 2017, 3, 43. [Google Scholar] [CrossRef]
- Buttery, B.R.; Buzzell, R.I. The relationship between chlorophyll content and rate of photosynthesis in soybeans. Can. J. Plant Sci. 1977, 57, 1–5. [Google Scholar] [CrossRef]
- Maxwell, K.; Johnson, G.N. Chlorophyll fluorescence—A practical guide. J. Exp. Bot. 2000, 51, 659–668. [Google Scholar] [CrossRef]
- Baker, N.R. Chlorophyll fluorescence: A probe of photosynthesis in vivo. Annu. Rev. Plant Biol. 2008, 59, 89–113. [Google Scholar] [CrossRef] [PubMed]
- Bjorkman, O.; Demmig, B. Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. Planta 1987, 170, 489–504. [Google Scholar] [CrossRef] [PubMed]
- Sharma, D.K.; Andersen, S.B.; Ottosen, C.O.; Rosenqvist, E. Wheat cultivars selected for high Fv/Fm under heat stress maintain high photosynthesis, total chlorophyll, stomatal conductance, transpiration and dry matter. Physiol. Plant. 2014, 153, 284–298. [Google Scholar] [CrossRef]
- Kumar, D.; Kumar, S.; Shekhar, C. Nutritional components in green leafy vegetables: A review. J. Pharmacogn. Phytochem. 2020, 9, 2498–2502. [Google Scholar]
- Santamaria, P. Nitrate in vegetables: Toxicity, content, intake and EC regulation. J. Sci. Food Agric. 2006, 86, 10–17. [Google Scholar] [CrossRef]
- Kmecl, V.; Knap, T.; Žnidarčič, D. Evaluation of the nitrate and nitrite content of vegetables commonly grown in Slovenia. Ital. J. Agron. 2017, 12, 79–84. [Google Scholar] [CrossRef]
- Nozzi, V.; Graber, A.; Schmautz, Z.; Mathis, A.; Junge, R. Nutrient management in aquaponics: Comparison of three approaches for cultivating lettuce, mint and mushroom herb. Agronomy 2018, 8, 27. [Google Scholar] [CrossRef]
- EFSA Panel on Contaminants in the Food Chain (CONTAM). Statement on Possible Public Health Risks for Infants and Young Children from the Presence of Nitrates in Leafy Vegetables. EFSA J. 2010, 8, 1935. [Google Scholar] [CrossRef]
- Monsees, H.; Suhl, J.; Paul, M.; Kloas, W.; Dannehl, D.; Würtz, S. Lettuce (Lactuca sativa, variety Salanova) production in decoupled aquaponic systems: Same yield and similar quality as in conventional hydroponic systems but drastically reduced greenhouse gas emissions by saving inorganic fertilizer. PLoS ONE 2019, 14, e0218368. [Google Scholar] [CrossRef]
- Resh, H.M. Hydroponic Food Production: A Definitive Guidebook for the Advanced Home Gardener and the Commercial Hydroponic Grower; CRC Press: Boca Raton, FL, USA, 2012. [Google Scholar]
- Kuhn, D.D.; Drahos, D.D.; Marsh, L.; Flick, G.J., Jr. Evaluation of nitrifying bacteria product to improve nitrification efficacy in recirculating aquaculture systems. Aquac. Eng. 2010, 43, 78–82. [Google Scholar] [CrossRef]
- Zou, Y.; Hu, Z.; Zhang, J.; Xie, H.; Guimbaud, C.; Fang, Y. Effects of PH on Nitrogen Transformations in Media-Based. Bioresour. Technol. 2016, 210, 81–87. [Google Scholar] [CrossRef] [PubMed]
- Somerville, C.; Cohen, M.; Pantanella, E.; Stankus, A.; Lovatelli, A. Small-scale aquaponic food production: Integrated fish and plant farming. In FAO Fisheries and Aquaculture Technical Paper; Technical Paper No. 589; FAO: Rome, Italy, 2014; Volume I. [Google Scholar]
- Madar, Á.K.; Rubóczki, T.; Hájos, M.T. Lettuce production in aquaponic and hydroponic systems. Acta Univ. Sapientiae Agric. Environ. 2019, 11, 51–59. [Google Scholar] [CrossRef]
- Roosta, H.R. Effects of foliar spray of K on mint, radish, parsley and coriander plants in aquaponic system. J. Plant Nutr. 2014, 37, 2236–2254. [Google Scholar] [CrossRef]
- Graber, A.; Junge, R. Aquaponic Systems: Nutrient recycling from fish wastewater by vegetable production. Desalination 2009, 246, 147–156. [Google Scholar] [CrossRef]
- Petrazzini, L.L.; Souza, G.A.; Rodas, C.L.; Emrich, E.B.; Carvalho, J.G.; Souza, R.J. Nutritional deficiency in crisphead lettuce grown in hydroponics. Hortic. Bras. 2014, 32, 310–313. [Google Scholar] [CrossRef]
- Villarroel, M.; Rodriguez Alvariño, J.M.; Duran Altisent, J.M. Aquaponics: Integrating fish feeding rates and ion waste production for strawberry hydroponics. Span. J. Agric. Res. 2011, 9, 537–545. [Google Scholar] [CrossRef]
- Kasozi, N.; Tandlich, R.; Fick, M.; Kaiser, H.; Wilhelmi, B. Iron supplementation and management in aquaponic systems: A review. Aquac. Rep. 2019, 15, 100221. [Google Scholar] [CrossRef]
- Kosegarten, H.; Wilson, G.H.; Esch, A. The effect of nitrate nutrition on iron chlorosis and leaf growth in sunflower (Helianthus annuus L.). Eur. J. Agron. 1998, 8, 283–292. [Google Scholar] [CrossRef]
- Brand, J.D.; Tang, C.; Graham, R.D. The effect of soil moisture on the tolerance of Lupinus pilosus genotypes to a calcareous soil. Plant Soil 2000, 219, 263–271. [Google Scholar] [CrossRef]
- Larbi, A.; Abadía, A.; Abadía, J.; Morales, F. Down co-regulation of light absorption, photochemistry, and carboxylation in Fe-deficient plants growing in different environments. Photosynth. Res. 2006, 89, 113–126. [Google Scholar] [CrossRef]
- Seawright, D.E.; Stickney, R.R.; Walker, R.B. Nutrient dynamics in integrated aquaculture–hydroponics systems. Aquaculture 1998, 160, 215–237. [Google Scholar] [CrossRef]
- Tokunaga, K.; Tamaru, C.; Ako, H.; Leung, P. Economics of small-scale commercial aquaponics in Hawai‘i. J. World Aquac. Soc. 2015, 46, 20–32. [Google Scholar] [CrossRef]
- Genty, B.; Briantais, J.-M.; Baker, N.R. The Relationship between the Quantum Yield of Photosynthetic Electron Transport and Quenching of Chlorophyll Fluorescence. Biochim. Biophys. Acta Gen. Subj. 1989, 990, 87–92. [Google Scholar] [CrossRef]
- Krall, J.P.; Edwards, G.E. Relationship between photosystem II activity and CO2 fixation in leaves. Physiol. Plant. 1992, 86, 180–187. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K.; Burkart, S. Photosynthesis and High Light Stress. Wild 1999, 25, 3–16. [Google Scholar]
- Pannico, A.; El-Nakhel, C.; Kyriacou, M.C.; Giordano, M.; Stazi, S.R.; De Pascale, S.; Rouphael, Y. Combating Micronutrient Deficiency and Enhancing Food Functional Quality Through Selenium Fortification of Select Lettuce Genotypes Grown in a Closed Soilless System. Front. Plant Sci. 2019, 10, 1495. [Google Scholar] [CrossRef]
Variables | Source of Variance | ||
---|---|---|---|
Species (S) | Cultivation System (C) | S × C | |
Canopy FW | ns | *** | *** |
Number of leaves | ** | ns | ns |
Total leaf area | ns | ** | ns |
C/R ratio | ns | *** | ns |
Roots FW | *** | ns | * |
Pn | ns | *** | ns |
iWUE | ns | *** | * |
Fv/Fm | ns | *** | ns |
ΦPSII | * | ** | ns |
ETR | ns | *** | * |
RWC | ns | ** | ns |
Total chlorophylls | ns | * | ns |
Total carotenoids | * | ns | ns |
SPAD index | ns | *** | ns |
NO3 | *** | ns | *** |
P | ns | ns | *** |
K | ns | *** | * |
Ca | * | * | ns |
Mg | ns | *** | ns |
Cl | ns | * | *** |
S | * | ns | *** |
Na | * | ns | * |
K/Na | * | * | * |
Species | Cultivation System | Canopy FW (g FW Plant −1) | Leaf Number (n Plant −1) | Total Leaf Area (cm2 Plant−1) | C/R Ratio | Roots FW (g FW Plant−1) |
---|---|---|---|---|---|---|
Lettuce | Aquaponics | 199.17 ± 9.04 b | 35.33 ± 1.17 | 3183.87 ± 51.35 | 3.74 ± 0.1 b | 17.69 ± 0.67 |
Hydroponics | 252.44 ± 13.42 a | 39.67 ± 1.76 | 3623.14 ± 229.43 | 6.9 ± 1.03 a | 15.71 ± 0.65 | |
* | ns | ns | * | ns | ||
Curly | Aquaponics | 121.18 ± 7.53 b | 43.22 ± 2.06 b | 2585.62 ± 90.2 b | 3.27 ± 0.15 b | 21.8 ± 1.29 |
endive | Hydroponics | 272.83 ± 7.41 a | 53 ± 2.08 a | 3534.92 ± 62.68 a | 7.68 ± 0.84 a | 23.81 ± 0.59 |
*** | * | *** | ** | ns |
Species | Cultivation System | Pn (mol CO2 m−2 s−1) | iWUE (µmol CO2 m−2 s−1/mol H2O m−2 s−1) | Fv/Fm | ΦPSII | ETR (µmol m−2 s−1) | RWC (%) |
---|---|---|---|---|---|---|---|
Lettuce | Aquaponics | 4.81 ± 0.83 b | 19.4 ± 3.07 b | 0.75 ± 0.01 b | 0.23 ± 0.01 b | 53.53 ± 6.13 b | 93.34 ± 0.87 |
Hydroponics | 10.49 ± 0.83 a | 57.71 ± 5.9 a | 0.79 ± 0.01 a | 0.36 ± 0.02 a | 123.17 ± 10.01 a | 90.34 ± 0.8 | |
** | ** | * | ** | ** | ns | ||
Curly | Aquaponics | 5.93 ± 0.65 b | 22.53 ± 2 b | 0.75 ± 0.01 b | 0.34 ± 0.03 b | 89.58 ± 9.71 b | 91.29 ± 0.73 a |
endive | Hydroponics | 9.34 ± 0.54 a | 41.91 ± 1.83 a | 0.79 ± 0.01 a | 0.47 ± 0.01 a | 118.83 ± 3.23 a | 86.14 ± 0.75 b |
* | ** | * | * | * | ** |
Species | Cultivation System | Total Chlorophylls (mg g−1 FW) | Total Carotenoids (mg g−1 FW) | SPAD Index |
---|---|---|---|---|
Lettuce | Aquaponics | 1.15 ± 0.05 b | 0.26 ± 0.01 b | 16.34 ± 0.82 b |
Hydroponics | 1.49 ± 0.08 a | 0.29 ± 0.01 a | 32.97 ± 1.34 a | |
* | * | *** | ||
Curly | Aquaponics | 1.07 ± 0.11 b | 0.25 ± 0.01 | 14.51 ± 0.68 b |
endive | Hydroponics | 1.84 ± 0.13 a | 0.24 ± 0.02 | 33.2 ± 1.42 a |
* | ns | *** |
Species | Cultivation System | NO3 | P | K | Ca | Mg | Cl | S | Na | K/Na |
---|---|---|---|---|---|---|---|---|---|---|
Lettuce | Aquaponics | 1456.51 ± 81.34 | 5.12 ± 0.31 | 61.49 ± 3.57 b | 10.61 ± 0.7 a | 3.92 ± 0.35 | 9.74 ± 0.9 | 0.97 ± 0.09 | 1.32 ± 0.09 a | 46.88 ± 2.76 b |
Hydroponics | 1433.43 ± 65.76 | 5.99 ± 0.13 | 100.53 ± 0.66 a | 7.69 ± 0.46 b | 2.46 ± 0.45 | 11.08 ± 0.23 | 1.19 ± 0.02 | 0.96 ± 0.08 b | 105.53 ± 8.5 a | |
ns | ns | *** | * | ns | ns | ns | * | ** | ||
Curly | Aquaponics | 2445.27 ± 157.07 b | 5.41 ± 0.2 a | 82.3 ± 5.88 | 7.35 ± 0.75 a | 3.2 ± 0.21 a | 21.68 ± 0.76 a | 3.63 ± 0.23 a | 4.82 ± 0.8 a | 17.69 ± 1.82 b |
endive | Hydroponics | 3809.69 ± 268.75 a | 4.17 ± 0.19 b | 97.83 ± 3.3 | 4.04 ± 0.32 b | 1.59 ± 0.13 b | 5.53 ± 0.5 b | 1.21 ± 0.1 b | 2 ± 0.07 b | 49 ± 0.42 a |
* | * | ns | * | ** | *** | *** | * | *** |
Cultivation System | Concentration (mg L−1) | ||||||||
---|---|---|---|---|---|---|---|---|---|
NO3 | NO2 | P | K | Ca | Mg | Cl | S | Na | |
H | 218.5 | 0.14 | 2.9 | 26.79 | 55.5 | 16.22 | 2.53 | 13.65 | 9.88 |
AQ | 336.49 | 0.21 | 7.75 | 19.55 | 77.09 | 20.11 | 23.72 | 5.78 | 26.38 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vanacore, L.; El-Nakhel, C.; Modarelli, G.C.; Rouphael, Y.; Pannico, A.; Langellotti, A.L.; Masi, P.; Cirillo, C.; De Pascale, S. Growth, Ecophysiological Responses, and Leaf Mineral Composition of Lettuce and Curly Endive in Hydroponic and Aquaponic Systems. Plants 2024, 13, 2852. https://doi.org/10.3390/plants13202852
Vanacore L, El-Nakhel C, Modarelli GC, Rouphael Y, Pannico A, Langellotti AL, Masi P, Cirillo C, De Pascale S. Growth, Ecophysiological Responses, and Leaf Mineral Composition of Lettuce and Curly Endive in Hydroponic and Aquaponic Systems. Plants. 2024; 13(20):2852. https://doi.org/10.3390/plants13202852
Chicago/Turabian StyleVanacore, Lucia, Christophe El-Nakhel, Giuseppe Carlo Modarelli, Youssef Rouphael, Antonio Pannico, Antonio Luca Langellotti, Paolo Masi, Chiara Cirillo, and Stefania De Pascale. 2024. "Growth, Ecophysiological Responses, and Leaf Mineral Composition of Lettuce and Curly Endive in Hydroponic and Aquaponic Systems" Plants 13, no. 20: 2852. https://doi.org/10.3390/plants13202852
APA StyleVanacore, L., El-Nakhel, C., Modarelli, G. C., Rouphael, Y., Pannico, A., Langellotti, A. L., Masi, P., Cirillo, C., & De Pascale, S. (2024). Growth, Ecophysiological Responses, and Leaf Mineral Composition of Lettuce and Curly Endive in Hydroponic and Aquaponic Systems. Plants, 13(20), 2852. https://doi.org/10.3390/plants13202852