Effects of Temperature and Packaging Atmosphere on Shelf Life, Biochemical, and Sensory Attributes of Glasswort (Salicornia europaea L.) Grown Hydroponically at Different Salinity Levels
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Hydroponic Cultivation
2.2. Chemical Characterization
2.2.1. Sodium
2.2.2. Total Polyphenols and Antioxidant Activity
2.2.3. Chlorophylls and Carotenoids
2.3. Gaseous Atmosphere inside the Packages and Respiratory Activity
2.4. Color Determination
2.5. Shelf Life Assessment
2.6. Sensory Analysis
2.7. Statistical Analysis
3. Results and Discussion
3.1. Effect of Salinity Level
3.1.1. Physical-Chemical Parameters at Harvest
3.1.2. Sensory Evaluation at Harvest
3.2. Shelf Life in Different Packaging Conditions
3.2.1. Dry Matter Content
3.2.2. Weight Loss and Respiratory Activity
3.2.3. Biochemical Compositions
3.2.4. Antioxidant Capacity
3.2.5. Color Parameters
3.3. Sensory Evaluation during Storage
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Searchinger, T.; Waite, R.; Hanson, C.; Ranganathan, J.; Dumas, P.; Matthews, E.; Klirs, C. Creating a Sustainable Food Future: A Menu of Solutions to Feed Nearly 10 Billion People by 2050; Final report; WRI: Washington, DC, USA, 2019. [Google Scholar]
- Bianchi, A.; Venturi, F.; Palermo, C.; Taglieri, I.; Angelini, G.L.; Tavarini, S.; Sanmartin, C. Primary and secondary shelf-life of bread as a function of formulation and MAP conditions: Focus on physical-chemical and sensory markers. Food Packag. Shelf Life 2024, 41, 101241. [Google Scholar] [CrossRef]
- Chaturvedi, T.; Christiansen, A.H.C.; Gołębiewska, I.; Thomsen, M.H. Salicornia Species: Current Status and Future Potential. In Future of Sustainable Agriculture in Saline Environments; Negacz, K., Vellinga, P., Barrett-Lennard, E., Choukr-Allah, R., Elzenga, T., Eds.; CRC Press: Boca Raton, FL, USA, 2021; p. 541. ISBN 9781003112327. [Google Scholar]
- Khan, N.; Ray, R.L.; Sargani, G.R.; Ihtisham, M.; Khayyam, M.; Ismail, S. Current Progress and Future Prospects of Agriculture Technology: Gateway to Sustainable Agriculture. Sustainability 2021, 13, 4883. [Google Scholar] [CrossRef]
- Ulian, T.; Diazgranados, M.; Pironon, S.; Padulosi, S.; Liu, U.; Davies, L.; Howes, M.-J.R.; Borrell, J.S.; Ondo, I.; Pérez-Escobar, O.A.; et al. Unlocking plant resources to support food security and promote sustainable agriculture. Plants People Planet 2020, 2, 421–445. [Google Scholar] [CrossRef]
- Atzori, G.; Mancuso, S.; Masi, E. Seawater potential use in soilless culture: A review. Sci. Hortic. 2019, 249, 199–207. [Google Scholar] [CrossRef]
- Ventura, Y.; Eshel, A.; Pasternak, D.; Sagi, M. The development of halophyte-based agriculture: Past and present. Ann. Bot. 2015, 115, 529–540. [Google Scholar] [CrossRef] [PubMed]
- Kong, Y.; Zheng, Y. Potential of Producing Salicornia bigelovii Hydroponically as a Vegetable at Moderate NaCl Salinity. HortScience Horts 2014, 49, 1154–1157. [Google Scholar] [CrossRef]
- Fussy, A.; Papenbrock, J. Molecular analysis of the reactions in Salicornia europaea to varying NaCl concentrations at various stages of development to better exploit its potential as a new crop plant. Front. Plant Sci. 2024, 15, 1454541. [Google Scholar] [CrossRef]
- Ahmad, F.; Hameed, M.; Ahmad, M.S.A.; Ashraf, M. Ensuring Food Security of Arid Regions through Sustainable Cultivation of Halophytes. In Handbook of Halophytes: From Molecules to Ecosystems towards Biosaline Agriculture; Grigore, M.-N., Ed.; Springer International Publishing: Cham, Switzerland, 2021; pp. 2191–2210. ISBN 978-3-030-57635-6. [Google Scholar]
- Lombardi, T.; Ventura, I.; Bertacchi, A. Floristic Inventory of Ethnobotanically Important Halophytes of North-Western Mediterranean Coastal Brackish Areas, Tuscany, Italy. Agronomy 2023, 13, 615. [Google Scholar] [CrossRef]
- Cárdenas-Pérez, S.; Piernik, A.; Chanona-Pérez, J.J.; Grigore, M.N.; Perea-Flores, M.J. An overview of the emerging trends of the Salicornia L. genus as a sustainable crop. Environ. Exp. Bot. 2021, 191, 104606. [Google Scholar] [CrossRef]
- Hamed, B.; Custódio, K. How Could Halophytes Provide a Sustainable Alternative to Achieve Food Security in Marginal Lands? In Ecophysiology, Abiotic Stress Responses and Utilization of Halophytes; Hasanuzzaman, M., Nahar, K., Öztürk, M., Eds.; Springer: Singapore, 2019; pp. 259–270. ISBN 978-981-13-3762-8. [Google Scholar]
- Lopes, M.; Sanches-Silva, A.; Castilho, M.; Cavaleiro, C.; Ramos, F. Halophytes as source of bioactive phenolic compounds and their potential applications. Crit. Rev. Food Sci. Nutr. 2023, 63, 1078–1101. [Google Scholar] [CrossRef] [PubMed]
- Nikalje, G.C.; Bhaskar, S.D.; Yadav, K.; Penna, S. Halophytes: Prospective Plants for Future. In Ecophysiology, Abiotic Stress Responses and Utilization of Halophytes; Hasanuzzaman, M., Nahar, K., Öztürk, M., Eds.; Springer: Singapore, 2019; pp. 221–234. ISBN 978-981-13-3762-8. [Google Scholar]
- Solanki, H.A.; Mehta, D.S. A review on Salicornia brachiata (roxb.) as a potential dietary supplement. Life Sci. Leafl. 2021, 137, 10–17. [Google Scholar]
- Lombardi, T.; Bertacchi, A.; Pistelli, L.; Pardossi, A.; Pecchia, S.; Toffanin, A.; Sanmartin, C. Biological and Agronomic Traits of the Main Halophytes Widespread in the Mediterranean Region as Potential New Vegetable Crops. Horticulturae 2022, 8, 195. [Google Scholar] [CrossRef]
- Alfheeaid, H.A.; Raheem, D.; Ahmed, F.; Alhodieb, F.S.; Alsharari, Z.D.; Alhaji, J.H.; BinMowyna, M.N.; Saraiva, A.; Raposo, A. Salicornia bigelovii, S. brachiata and S. herbacea: Their Nutritional Characteristics and an Evaluation of Their Potential as Salt Substitutes. Foods 2022, 11, 3402. [Google Scholar] [CrossRef] [PubMed]
- Lu, D.; Zhang, M.; Wang, S.; Cai, J.; Zhou, X.; Zhu, C. Nutritional characterization and changes in quality of Salicornia bigelovii Torr. during storage. LWT—Food Sci. Technol. 2010, 43, 519–524. [Google Scholar] [CrossRef]
- Puccinelli, M.; Marchioni, I.; Botrini, L.; Carmassi, G.; Pardossi, A.; Pistelli, L. Growing Salicornia europaea L. with Saline Hydroponic or Aquaculture Wastewater. Horticulturae 2024, 10, 196. [Google Scholar] [CrossRef]
- Ekanayake, S.; Egodawatta, C.; Attanayake, R.N.; Perera, D. From salt pan to saucepan: Salicornia, a halophytic vegetable with an array of potential health benefits. Food Front. 2023, 4, 641–676. [Google Scholar] [CrossRef]
- Ventura, Y.; Sagi, M. Halophyte crop cultivation: The case for Salicornia and Sarcocornia. Environ. Exp. Bot. 2013, 92, 144–153. [Google Scholar] [CrossRef]
- Gunning, D. Cultivating Salicornia europaea (marsh samphire). Dublin Irel. Irish Sea Fish. Board 2016, 4, 1–95. [Google Scholar]
- Castilla-Gavilán, M.; Muñoz-Martínez, M.; Zuasti, E.; Canoura-Baldonado, J.; Mondoñedo, R.; Hachero-Cruzado, I. Yield, nutrients uptake and lipid profile of the halophyte Salicornia ramosissima cultivated in two different integrated multi-trophic aquaculture systems (IMTA). Aquaculture 2024, 583, 740547. [Google Scholar] [CrossRef]
- Turcios, A.E.; Braem, L.; Jonard, C.; Lemans, T.; Cybulska, I.; Papenbrock, J. Compositional Changes in Hydroponically Cultivated Salicornia europaea at Different Growth Stages. Plants 2023, 12, 2472. [Google Scholar] [CrossRef] [PubMed]
- Cárdenas-Pérez, S.; Rajabi Dehnavi, A.; Leszczyński, K.; Lubińska-Mielińska, S.; Ludwiczak, A.; Piernik, A. Salicornia europaea L. Functional Traits Indicate Its Optimum Growth. Plants 2022, 11, 1051. [Google Scholar] [CrossRef] [PubMed]
- Sela Saldinger, S.; Rodov, V.; Kenigsbuch, D.; Bar-Tal, A. Hydroponic Agriculture and Microbial Safety of Vegetables: Promises, Challenges, and Solutions. Horticulturae 2023, 9, 51. [Google Scholar] [CrossRef]
- Lu, D.-H.; Zhang, M.; Wang, S.-J.; Cai, J.-L.; Zhu, C.-P.; Zhou, X. Effects of modified atmosphere packaging with different sizes of silicon gum film windows on Salicornia bigelovii Torr. storage. J. Sci. Food Agric. 2009, 89, 1559–1564. [Google Scholar] [CrossRef]
- Bianchi, A.; Taglieri, I.; Zinnai, A.; Macaluso, M.; Sanmartin, C.; Venturi, F. Effect of Argon as Filling Gas of the Storage Atmosphere on the Shelf-Life of Sourdough Bread—Case Study on PDO Tuscan Bread. Foods 2022, 11, 3470. [Google Scholar] [CrossRef] [PubMed]
- Cortellino, G.; Gobbi, S.; Bianchi, G.; Rizzolo, A. Modified atmosphere packaging for shelf life extension of fresh-cut apples. Trends Food Sci. Technol. 2015, 46, 320–330. [Google Scholar] [CrossRef]
- Wilson, M.D.; Stanley, R.A.; Eyles, A.; Ross, T. Innovative processes and technologies for modified atmosphere packaging of fresh and fresh-cut fruits and vegetables. Crit. Rev. Food Sci. Nutr. 2019, 59, 411–422. [Google Scholar] [CrossRef]
- Zhuang, H.; Barth, M.M.; Cisneros-Zevallos, L. Chapter 18–Modified Atmosphere Packaging for Fresh Fruits and Vegetables. In Food Science and Technology, 2nd ed.; Han, J.H., Ed.; Academic Press: San Diego, CA, USA, 2014; pp. 445–473. ISBN 978-0-12-394601-0. [Google Scholar]
- Reid, M.S.; Jiang, C.Z. Postharvest biology and technology of cut flowers and potted plants. Hortic. Rev. (Am. Soc. Hortic. Sci). 2012, 40, 1–54. [Google Scholar] [CrossRef]
- Dai, Y.; Zhao, X.; Zuo, J.; Zheng, Y. Effect of 100% Oxygen-Modified Atmosphere Packaging on Maintaining the Quality of Fresh-Cut Broccoli during Refrigerated Storage. Foods 2023, 12, 1524. [Google Scholar] [CrossRef]
- Fonseca, S.C.; Oliveira, F.A.R.; Brecht, J.K. Modelling respiration rate of fresh fruits and vegetables for modified atmosphere packages: A review. J. Food Eng. 2002, 52, 99–119. [Google Scholar] [CrossRef]
- Monacci, E.; Sanmartin, C.; Bianchi, A.; Pettinelli, S.; Taglieri, I.; Mencarelli, F. Plastic film packaging for the postharvest quality of fresh hop inflorescence (Humulus lupulus) cv. Cascade. Postharvest Biol. Technol. 2023, 206, 112575. [Google Scholar] [CrossRef]
- Mirmajidi Hashtjin, A.; Famil Momen, R.; Khoshkholgh Sima, N.A. Determination of suitable storage conditions for fresh Salicornia. Food Sci. Technol. 2021, 17, 1–11. [Google Scholar] [CrossRef]
- Raposo, M.F.d.J.; De Morais, R.M.S.C.; De Morais, A.M.M.B. Controlled atmosphere storage for preservation of Salicornia ramosissima. Int. J. Postharvest Technol. Innov. 2009, 1, 394–404. [Google Scholar] [CrossRef]
- Oliveira-Alves, S.C.; Andrade, F.; Prazeres, I.; Silva, A.B.; Capelo, J.; Duarte, B.; Caçador, I.; Coelho, J.; Serra, A.T.; Bronze, M.R. Impact of Drying Processes on the Nutritional Composition, Volatile Profile, Phytochemical Content and Bioactivity of Salicornia ramosissima J. Woods. Antioxidants 2021, 10, 1312. [Google Scholar] [CrossRef] [PubMed]
- Lima, A.R.; Cristofoli, N.L.; Filippidis, K.; Barreira, L.; Vieira, M.C. Shelf-life study of a Salicornia ramosissima vegetable salt: An alternative to kitchen salt. J. Food Process Eng. 2022, 45, e14154. [Google Scholar] [CrossRef]
- Castagnino, A.M.; Marina, J.A. Sea asparagus (Salicornia spp.), a valuable food productive alternative with agro industrial potential. Argent. Hortic./Hortic. Argent. 2022, 41, 95. [Google Scholar]
- Gago, C.; Sousa, A.R.; Julião, M.; Miguel, G.; Antunes, D.; Panagopoulos, T. Refrigeration needs for sustainable preservation of horticultural products. In Proceedings of the Recent Researches in Energy and Environment-6th IASME/WSEAS International Conference on Energy and Environment, EE’11, Cambridge, UK, 23–25 February 2011; pp. 53–57. [Google Scholar]
- Antunes, M.D.; Gago, C.; Guerreiro, A.; Sousa, A.R.; Julião, M.; Miguel, M.G.; Faleiro, M.L.; Panagopoulos, T. Nutritional Characterization and Storage Ability of Salicornia ramosissima and Sarcocornia perennis for Fresh Vegetable Salads. Horticulturae 2021, 7, 6. [Google Scholar] [CrossRef]
- Bianchi, A.; Sanmartin, C.; Taglieri, I.; Macaluso, M.; Venturi, F.; Napoli, M.; Mancini, M.; Fabbri, C.; Zinnai, A. Effect of Fertilization Regime of Common Wheat (Triticum aestivum) on Flour Quality and Shelf-Life of PDO Tuscan Bread. Foods 2023, 12, 2672. [Google Scholar] [CrossRef]
- Alegría, A.; Cilla, A.; Farré, R.; Lagarda, M.J. Inorganic Nutrients. In Handbook of Food Analysis—Two Volume Set; Nollet, L.M.L., Toldra, F., Eds.; CRC Press: Boca Raton, FL, USA, 2015; p. 22. ISBN 9780429153747. [Google Scholar]
- Bianchi, A.; Venturi, F.; Zinnai, A.; Taglieri, I.; Najar, B.; Macaluso, M.; Merlani, G.; Angelini, L.G.; Tavarini, S.; Clemente, C.; et al. Valorization of an Old Variety of Triticum aestivum: A Study of Its Suitability for Breadmaking Focusing on Sensory and Nutritional Quality. Foods 2023, 12, 1351. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K. [34] Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. In Methods in Enzymology; Packer, L., Douce, R., Eds.; Academic Press: Cambridge, MA, USA, 1987; Volume 148, pp. 350–382. ISBN 0076-6879. [Google Scholar]
- Modesti, M.; Shmuleviz, R.; Macaluso, M.; Bianchi, A.; Venturi, F.; Brizzolara, S.; Zinnai, A.; Tonutti, P. Pre-processing Cooling of Harvested Grapes Induces Changes in Berry Composition and Metabolism, and Affects Quality and Aroma Traits of the Resulting Wine. Front. Nutr. 2021, 8, 728510. [Google Scholar] [CrossRef]
- Custódio, L.; Rodrigues, M.J.; Pereira, C.G.; Castañeda-Loaiza, V.; Fernandes, E.; Standing, D.; Neori, A.; Shpigel, M.; Sagi, M. A Review on Sarcocornia Species: Ethnopharmacology, Nutritional Properties, Phytochemistry, Biological Activities and Propagation. Foods 2021, 10, 2778. [Google Scholar] [CrossRef]
- Alegbeleye, O.; Odeyemi, O.A.; Strateva, M.; Stratev, D. Microbial spoilage of vegetables, fruits and cereals. Appl. Food Res. 2022, 2, 100122. [Google Scholar] [CrossRef]
- Bumb, I.; Garnier, E.; Bastianelli, D.; Richarte, J.; Bonnal, L.; Kazakou, E. Influence of management regime and harvest date on the forage quality of rangelands plants: The importance of dry matter content. AoB Plants 2016, 8, plw045. [Google Scholar] [CrossRef]
- Amoruso, F.; Signore, A.; Gómez, P.A.; Martínez-Ballesta, M.D.; Giménez, A.; Franco, J.A.; Fernández, J.A.; Egea-Gilabert, C. Effect of Saline-Nutrient Solution on Yield, Quality, and Shelf-Life of Sea Fennel (Crithmum maritimum L.) Plants. Horticulturae 2022, 8, 127. [Google Scholar] [CrossRef]
- Tajeddin, B.; Mohammadshafii, A.; Hashemi, M.; Behmadi, H. The effect of modified atmosphere packaging on the postharvest shelf life of Salicornia bigelovii. Int. J. Postharvest Technol. Innov. 2020, 7, 257–270. [Google Scholar] [CrossRef]
- Shi, M.; Gu, J.; Wu, H.; Rauf, A.; Emran, T.B.; Khan, Z.; Mitra, S.; Aljohani, A.S.M.; Alhumaydhi, F.A.; Al-Awthan, Y.S.; et al. Phytochemicals, Nutrition, Metabolism, Bioavailability, and Health Benefits in Lettuce—A Comprehensive Review. Antioxidants 2022, 11, 1158. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Song, J.; Liu, J.; Dong, X.; Zhang, H.; Jeong, B.R. Prolonged Post-Harvest Preservation in Lettuce (Lactuca sativa L.) by Reducing Water Loss Rate and Chlorophyll Degradation Regulated through Lighting Direction-Induced Morphophysiological Improvements. Plants 2024, 13, 2564. [Google Scholar] [CrossRef]
- Hörtensteiner, S. The Pathway of Chlorophyll Degradation: Catabolites, Enzymes and Pathway Regulation. In Plastid Development in Leaves during Growth and Senescence; Biswal, B., Krupinska, K., Biswal, U.C., Eds.; Springer: Dordrecht, The Netherlands, 2013; pp. 363–392. ISBN 978-94-007-5724-0. [Google Scholar]
- Bungau, S.; Abdel-Daim, M.M.; Tit, D.M.; Ghanem, E.; Sato, S.; Maruyama-Inoue, M.; Yamane, S.; Kadonosono, K. Health Benefits of Polyphenols and Carotenoids in Age-Related Eye Diseases. Oxid. Med. Cell. Longev. 2019, 2019, 9783429. [Google Scholar] [CrossRef]
- Antonia Murcia, M.; Jiménez, A.M.; Martínez-Tomé, M. Vegetables antioxidant losses during industrial processing and refrigerated storage. Food Res. Int. 2009, 42, 1046–1052. [Google Scholar] [CrossRef]
- Poljsak, B.; Kovač, V.; Milisav, I. Antioxidants, Food Processing and Health. Antioxidants 2021, 10, 433. [Google Scholar] [CrossRef]
- Mastrangelo, N.; Bianchi, A.; Pettinelli, S.; Santini, G.; Merlani, G.; Bellincontro, A.; Baris, F.; Chinnici, F.; Mencarelli, F. Novelty of Italian Grape Ale (IGA) beer: Influence of the addition of Gamay macerated grape must or dehydrated Aleatico grape pomace on the aromatic profile. Heliyon 2023, 9, e20422. [Google Scholar] [CrossRef]
- Alam, T.; Goyal, G.K. Colour and pigment changes during modified atmosphere packaging storage of fruits and vegetables. Stewart Postharvest Rev. 2006, 2, 16. [Google Scholar] [CrossRef]
- Dini, M.; Raseira, M.d.C.B.; Scariotto, S.; Carra, B.; de Abreu, E.S.; Mello-Farias, P.; Cantillano, R.F.F. Color Shade Heritability of Peach Flesh. J. Agric. Sci. 2019, 11, 236. [Google Scholar] [CrossRef]
- Moon, K.M.; Kwon, E.-B.; Lee, B.; Kim, C.Y. Recent Trends in Controlling the Enzymatic Browning of Fruit and Vegetable Products. Molecules 2020, 25, 2754. [Google Scholar] [CrossRef] [PubMed]
Parameters | Units | C | T |
---|---|---|---|
Shoot fresh weight | g/plant | 103.33 ± 18.45 b | 271.80 ± 9.13 a |
Dry matter (dm) | % | 11.93 ± 0.21 a | 8.23 ± 0.18 b |
Succulence | g water/g dm | 7.38 ± 0.17 b | 11.15 ± 0.27 a |
Sodium | g/kg dm | 12.20 ± 0.20 b | 160.41 ± 10.51 a |
Total polyphenols | mg GAE/g dm | 15.59 ± 0.50 a | 14.24 ± 0.21 b |
Chlorophyll-a | µg/g dm | 889.42 ± 4.30 b | 1151.05 ± 6.13 a |
Chlorophyll-b | µg/g dm | 573.23 ± 8.42 b | 722.60 ± 7.84 a |
Total chlorophylls | µg/g dm | 1462.66 ± 6.36 b | 1873.66 ± 6.98 a |
Carotenoids | µg/g dm | 539.43 ± 10.55 b | 702.95 ± 10.63 a |
ABTS | µmol TE/g dm | 42.20 ± 0.50 a | 38.25 ± 0.38 b |
DPPH | µmol TE/g dm | 29.54 ± 0.35 a | 26.78 ± 0.36 b |
FRAP | µmol TE/g dm | 46.43 ± 0.55 a | 42.08 ± 0.49 b |
L* | 28.36 ± 0.05 b | 33.43 ± 0.06 a | |
a* | −10.32 ± 0.04 b | −12.95 ± 0.06 a | |
b* | 16.51 ± 0.07 b | 19.91 ± 0.03 a | |
C* | 19.47 ± 0.08 b | 23.75 ± 0.01 a | |
h* | −58.00 ± 0.02 b | −56.96 ± 0.15 a |
Salinity Level (g/L NaCl) | Temperature (°C) | Atmosphere | Dry Matter (%) | ||
---|---|---|---|---|---|
Time (h) | |||||
48 | 96 | 120 | |||
0 (C) | 4 | Air | 12.92 ± 0.20 A,c | 14.31 ± 0.13 A,b | 15.50 ± 0.02 B,a |
MAP | 12.91 ± 0.06 A,c | 14.20 ± 0.05 A,b | 15.48 ± 0.06 B,a | ||
20 | Air | 13.08 ± 0.21 A,c | 14.13 ± 0.14 A,b | 15.79 ± 0.07 A,a | |
MAP | 12.97 ± 0.10 A,c | 14.15 ± 0.11 A,b | 15.70 ± 0.08 A,a | ||
12.5 (T) | 4 | Air | 9.25 ± 0.15 B,c | 10.54 ± 0.14 B,b | 11.85 ± 0.18 C,a |
MAP | 9.23 ± 0.07 B,c | 10.51 ± 0.05 B,b | 11.80 ± 0.07 C,a | ||
20 | Air | 9.42 ± 0.16 B,c | 10.48 ± 0.04 B,b | 11.98 ± 0.16 C,a | |
MAP | 9.36 ± 0.11 B,c | 10.45 ± 0.05 B,b | 11.90 ± 0.12 C,a |
Salinity Level (g/L NaCl) | Temperature (°C) | Atmosphere | Total Chlorophylls (µg/g dm) | Carotenoids (µg/g dm) | Total Polyphenols (mg GAE/g dm) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Time (h) | Time (h) | Time (h) | |||||||||
48 | 96 | 120 | 48 | 96 | 120 | 48 | 96 | 120 | |||
0 (C) | 4 | Air | 1046.25 ± 1.58 E,a | 818.86 ± 4.85 D,b | 664.12 ± 7.81 F,c | 437.80 ± 14.85 E,a | 289.02 ± 9.30 E,b | 217.48 ± 2.03 E,c | 9.24 ± 0.12 C,a | 7.28 ± 0.07 D,b | 6.15 ± 0.14 D,c |
MAP | 1125.25 ± 9.48 D,a | 952.92 ± 9.38 C,b | 739.27 ± 6.91 D,c | 487.22 ± 7.16 C,a | 326.34 ± 1.75 D,b | 235.98 ± 12.86 D,c | 9.47 ± 0.30 BC,a | 7.34 ± 0.14 D,b | 6.41 ± 0.06 C,c | ||
20 | Air | 1042.08 ± 14.63 EF,a | 800.63 ± 9.42 E,b | 657.10 ± 4.16 F,c | 443.50 ± 11.25 E,a | 272.79 ± 5.48 F,b | 196.57 ± 1.70 F,c | 8.91 ± 0.17 D,a | 6.68 ± 0.13 E,b | 5.85 ± 0.12 E,c | |
MAP | 1029.70 ± 8.28 F,a | 805.20 ± 12.05 DE,b | 715.48 ± 8.65 E,c | 460.09 ± 2.57 D,a | 287.55 ± 3.49 E,b | 205.02 ± 8.84 E,c | 8.89 ± 0.27 D,a | 7.39 ± 0.09 D,b | 5.92 ± 0.05 E,c | ||
12.5 (T) | 4 | Air | 1260.50 ± 9.92 B,a | 1020.05 ± 3.76 B,b | 824.88 ± 5.11 B,c | 578.35 ± 7.69 A,a | 388.85 ± 6.24 B,b | 269.51 ± 2.47 B,c | 10.73 ± 0.22 A,a | 8.35 ± 0.04 B,b | 6.86 ± 0.11 AB,c |
MAP | 1311.04 ± 26.70 A,a | 1100.78 ± 28.86 A,b | 881.77 ± 12.83 A,c | 572.37 ± 2.01 A,a | 440.99 ± 4.92 A,b | 306.51 ± 1.45 A,c | 10.85 ± 0.37 A,a | 9.20 ± 0.24 A,b | 6.97 ± 0.075 A,c | ||
20 | Air | 1227.75 ± 14.42 C,a | 968.18 ± 16.37 C,b | 767.34 ± 11.90 C,c | 534.57 ± 10.70 B,a | 343.66 ± 6.15 C,b | 191.31 ± 11.52 F,c | 9.52 ± 0.12 C,a | 8.02 ± 0.11 C,b | 6.62 ± 0.07 B,c | |
MAP | 1246.51 ± 10.46 B,a | 1031.60 ± 11.19 B,b | 762.34 ± 9.41 C,c | 518.34 ± 9.53 B,a | 376.61 ± 7.46 B,b | 259.10 ± 1.30 C,c | 9.88 ± 0.12 B,a | 8.56 ± 0.15 B,b | 6.91 ± 0.15 A,c |
Salinity Level (g/L NaCl) | Temperature (°C) | Atmosphere | ABTS (µmol TE/g dm) | DPPH (µmol TE/g dm) | FRAP (µmol TE/g dm) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Time (h) | Time (h) | Time (h) | |||||||||
48 | 96 | 120 | 48 | 96 | 120 | 48 | 96 | 120 | |||
0 (C) | 4 | Air | 25.18 ± 0.85 E,a | 19.98 ± 0.23 E,b | 16.18 ± 0.41 E,c | 17.62 ± 0.40 E,a | 13.99 ± 0.22 E,b | 11.33 ± 0.50 CD,c | 27.69 ± 0.64 F,a | 21.65 ± 0.69 E,b | 17.80 ± 0.39 E,c |
MAP | 26.87 ± 0.82 D,a | 21.68 ± 0.29 D,b | 17.16 ± 0.28 D,c | 18.81 ± 0.58 D,a | 15.17 ± 0.20 D,b | 12.01 ± 0.20 C,c | 29.55 ± 0.51 E,a | 23.84 ± 0.32 D,b | 18.87 ± 0.31 D,c | ||
20 | Air | 23.87 ± 0.50 F,a | 19.68 ± 0.63 E,b | 15.28 ± 0.12 F,c | 16.71 ± 0.35 F,a | 13.49 ± 0.25 F,b | 10.94 ± 0.19 D,c | 25.06 ± 0.55 G,a | 20.23 ± 0.86 F,b | 16.41 ± 0.30 F,c | |
MAP | 24.07 ± 0.76 EF,a | 19.27 ± 0.78 E,b | 15.63 ± 0.28 EF,c | 16.85 ± 0.53 F,a | 13.78 ± 0.44 EF,b | 10.69 ± 0.18D,c | 26.48 ± 0.84 G,a | 21.98 ± 0.23 E,b | 16.80 ± 0.33 F,c | ||
12.5 (T) | 4 | Air | 35.04 ± 0.85 A,a | 26.09 ± 0.75 B,b | 20.79 ± 0.22 AB,c | 22.91 ± 0.30 B,a | 18.26 ± 0.53 B,b | 14.55 ± 0.21 A,c | 37.00 ± 0.57 B,a | 28.70 ± 0.83 B,b | 22.87 ± 0.23 AB,c |
MAP | 35.24 ± 0.51 A,a | 28.70 ± 0.33 A,b | 21.08 ± 0.65 A,c | 24.67 ± 0.36 A,a | 20.09 ± 0.93 A,b | 14.75 ± 0.66 A,c | 38.77 ± 0.24 A,a | 30.14 ± 0.46 A,b | 23.19 ± 0.24 A,c | ||
20 | Air | 31.65 ± 0.39 C,a | 24.00 ± 0.47 C,b | 19.23 ± 0.91 C,c | 22.16 ± 0.18 C,a | 15.60 ± 0.78 C,b | 13.46 ± 0.64B,c | 34.82 ± 0.43 D,a | 26.40 ± 0.38 C,b | 20.20 ± 0.21 C,c | |
MAP | 32.62 ± 0.30 B,a | 25.75 ± 0.80 B,b | 20.59 ± 0.28 B,c | 22.83 ± 0.21 B,a | 18.02 ± 0.56 B,b | 13.38 ± 0.76 B,c | 35.88 ± 0.33 C,a | 28.32 ± 0.88 B,b | 22.65 ± 0.29 B,c |
Salinity Level (g/L) | Temperature (°C) | Atmosphere | L* | a* | b* | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Time (h) | Time (h) | Time (h) | |||||||||
48 | 96 | 120 | 48 | 96 | 120 | 48 | 96 | 120 | |||
0 (C) | 4 | Air | 24.06 ± 1.04 C,c | 31.25 ± 0.05 AB,a | 27.33 ± 1.31 AB,b | −12.26 ± 1.06 A,a | −12.58 ± 0.31 A,a | −13.03 ± 0.46 AB,a | 15.86 ± 1.53 C,b | 18.23 ± 0.18 C,a | 19.06 ± 1.02 A,a |
MAP | 27.62 ± 1.12 B,b | 33.54 ± 0.11 A,a | 23.91 ± 0.04 AB,c | −12.81 ± 0.75 A,b | −14.28 ± 0.23 A,a | −10.94 ± 0.79 ABC,c | 17.81 ± 0.55 ABC,b | 22.00 ± 0.23 AB,a | 13.94 ± 1.08 BC,c | ||
20 | Air | 28.56 ± 0.43 B,a | 27.95 ± 0.03 CD,b | 23.62 ± 1.13 B,c | −12.64 ± 0.33 A,a | −12.25 ± 0.09 A,a | −10.08 ± 1.02 ABC,b | 16.43 ± 1.66 BC,b | 18.93 ± 0.05 BC,a | 17.29 ± 1.17 AB,ab | |
MAP | 31.10 ± 0.16 A,a | 29.88 ± 0.06 BCD,b | 19.33 ± 1.80 C,c | −14.07 ± 0.13 A,a | −13.01 ± 0.12 A,b | −7.67 ± 1.51 C,c | 20.23 ± 0.42 AB,b | 22.40 ± 0.16 A,a | 11.29 ± 1.16 C,c | ||
12.5 (T) | 4 | Air | 28.21 ± 0.18 B,b | 30.78 ± 1.27 ABC,a | 28.40 ± 0.26 A,b | −13.87 ± 0.23 A,a | −13.54 ± 0.39 A,a | −13.78 ± 0.57 A,a | 18.22 ± 1.42 ABC,a | 18.95 ± 1.58 BC,a | 20.57 ± 1.27 A,a |
MAP | 30.37 ± 1.12 AB,a | 23.47 ± 1.56 E,b | 17.82 ± 1.30 C,c | −13.97 ± 0.09 A,a | −11.79 ± 0.32 A,b | −9.97 ± 0.88 BC,c | 21.83 ± 0.28 A,a | 18.03 ± 1.23 C,b | 13.67 ± 1.12 BC,c | ||
20 | Air | 30.16 ± 1.07 B,a | 27.43 ± 1.67 D,b | 17.98 ± 1.33 C,c | −14.24 ± 1.31 A,a | −12.39 ± 1.94 A,a | −9.57 ± 1.87 BC,b | 19.90 ± 1.27 ABC,a | 20.35 ± 0.94 ABC,a | 14.56 ± 1.60 BC,b | |
MAP | 30.49 ± 0.57 AB,b | 31.96 ± 0.14 AB,a | 26.37 ± 1.94 AB,c | −14.18 ± 0.68 A,a | −13.44 ± 0.36 A,a | −11.46 ± 0.48 AB,b | 18.73 ± 1.35 ABC,a | 20.13 ± 1.41 ABC,a | 19.26 ± 1.08 A,a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sanmartin, C.; Taglieri, I.; Bianchi, A.; Parichanon, P.; Puccinelli, M.; Pardossi, A.; Venturi, F. Effects of Temperature and Packaging Atmosphere on Shelf Life, Biochemical, and Sensory Attributes of Glasswort (Salicornia europaea L.) Grown Hydroponically at Different Salinity Levels. Foods 2024, 13, 3260. https://doi.org/10.3390/foods13203260
Sanmartin C, Taglieri I, Bianchi A, Parichanon P, Puccinelli M, Pardossi A, Venturi F. Effects of Temperature and Packaging Atmosphere on Shelf Life, Biochemical, and Sensory Attributes of Glasswort (Salicornia europaea L.) Grown Hydroponically at Different Salinity Levels. Foods. 2024; 13(20):3260. https://doi.org/10.3390/foods13203260
Chicago/Turabian StyleSanmartin, Chiara, Isabella Taglieri, Alessandro Bianchi, Prangthip Parichanon, Martina Puccinelli, Alberto Pardossi, and Francesca Venturi. 2024. "Effects of Temperature and Packaging Atmosphere on Shelf Life, Biochemical, and Sensory Attributes of Glasswort (Salicornia europaea L.) Grown Hydroponically at Different Salinity Levels" Foods 13, no. 20: 3260. https://doi.org/10.3390/foods13203260
APA StyleSanmartin, C., Taglieri, I., Bianchi, A., Parichanon, P., Puccinelli, M., Pardossi, A., & Venturi, F. (2024). Effects of Temperature and Packaging Atmosphere on Shelf Life, Biochemical, and Sensory Attributes of Glasswort (Salicornia europaea L.) Grown Hydroponically at Different Salinity Levels. Foods, 13(20), 3260. https://doi.org/10.3390/foods13203260