Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Keywords = five-phase permanent magnet synchronous motor (PMSM)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 8651 KiB  
Article
Fault-Tolerant Direct Torque Control of Five-Phase Permanent Magnet Synchronous Motor under Single Open-Phase Fault Based on Virtual Vectors
by Changpan Zhou, Rundong Zhong, Guodong Sun, Dongdong Zhao, Xiaopeng Zhao and Guoxiu Jing
Energies 2024, 17(11), 2660; https://doi.org/10.3390/en17112660 - 30 May 2024
Cited by 1 | Viewed by 1798
Abstract
In the existing literature, direct torque control (DTC) by synthesizing virtual vectors can effectively suppress low-order harmonic currents under the single open-phase fault (OPF) of the five-phase permanent magnet synchronous motor (PMSM), but the sectors and the look-up tables need to be redesigned, [...] Read more.
In the existing literature, direct torque control (DTC) by synthesizing virtual vectors can effectively suppress low-order harmonic currents under the single open-phase fault (OPF) of the five-phase permanent magnet synchronous motor (PMSM), but the sectors and the look-up tables need to be redesigned, which makes the control process more complicated. In order to solve this problem, an indirect correction method of virtual vectors is proposed, and the amplitudes of the virtual vectors are maximized. The fault-tolerant DTC strategy under the OPF ensures that there is no need to re-divide the sectors under the fault. And the selection rules of the look-up tables are consistent with the healthy operation. The difference is that the amplitudes of ten virtual vectors in the faulty operation are reduced, which simplifies the control process and is easy to implement. Finally, the correctness and effectiveness of the proposed control strategy were verified by experiments. Full article
Show Figures

Figure 1

16 pages, 4889 KiB  
Article
Model-Free Predictive Current Control of Five-Phase PMSM Drives
by Wentao Huang, Yijia Huang and Dezhi Xu
Electronics 2023, 12(23), 4848; https://doi.org/10.3390/electronics12234848 - 30 Nov 2023
Cited by 12 | Viewed by 2295
Abstract
Model predictive control is highly dependent on accurate models and the parameters of electric motor drives. Multiphase permanent magnet synchronous motors (PMSMs) contain nonlinear parameters and mutual cross-coupling dynamics, resulting in challenges in modeling and parameter acquisition. To lessen the parameter dependence of [...] Read more.
Model predictive control is highly dependent on accurate models and the parameters of electric motor drives. Multiphase permanent magnet synchronous motors (PMSMs) contain nonlinear parameters and mutual cross-coupling dynamics, resulting in challenges in modeling and parameter acquisition. To lessen the parameter dependence of current predictions, a model-free predictive current control (MFPCC) strategy based on an ultra-local model and motor outputs is proposed for five-phase PMSM drives. The ultra-local model is constructed according to the differential equation of current. The inherent relation between the parameters in the predictive current model and the ultra-local model is analyzed in detail. The unknowns of the ultra-local model are estimated using the motor current and voltage at different time instants without requiring motor parameters or observers. Moreover, space vector modulation technology is employed to minimize the voltage tracking error. Finally, simulations and experiments are conducted to verify the effectiveness of the MFPCC with space vector modulation. The results confirm that the proposed method can effectively eliminate the impact of motor parameters and improve steady-state performance. Moreover, this control strategy demonstrates good robustness against load variations. Full article
(This article belongs to the Section Electrical and Autonomous Vehicles)
Show Figures

Figure 1

20 pages, 10239 KiB  
Article
Realization of Intelligent Observer for Sensorless PMSM Drive Control
by Dwi Sudarno Putra, Seng-Chi Chen, Hoai-Hung Khong and Chin-Feng Chang
Mathematics 2023, 11(5), 1254; https://doi.org/10.3390/math11051254 - 5 Mar 2023
Cited by 3 | Viewed by 2620
Abstract
An observer is a crucial part of the sensorless control of a permanent magnet synchronous motor (PMSM). An observer, based on mathematical equations, depends on information regarding several parameters of the controlled motor. If the motor is replaced, then we need to know [...] Read more.
An observer is a crucial part of the sensorless control of a permanent magnet synchronous motor (PMSM). An observer, based on mathematical equations, depends on information regarding several parameters of the controlled motor. If the motor is replaced, then we need to know the motor parameter values and reset the observer’s parameters. This article discusses an intelligent observer that can be used for several motors with different parameters. The proposed intelligent observer was developed using machine learning methods. This observer’s core algorithm is a modified Jordan neural network. It processes Iα, Iβ, vα, and vβ to produce Sin θ and Cos θ values. It is combined with a phase-locked loop function to generate position and speed feedback information. The offline learning process is carried out using data acquired from the simulations of PMSM motors. This study used five PMSMs with different parameters, three as the learning reference sources and two as testing sources. The proposed intelligent observer was successfully used to control motors with different parameters in both simulation and experimental hardware. The average error in position estimated for the simulation was 0.0078 p.u and the error was 0.0100 p.u for the experimental realization. Full article
Show Figures

Figure 1

14 pages, 3421 KiB  
Article
Torque Superposition Compensation Fault-Tolerant Control for Dual Three-Phase PMSM with an Inverter Single-Leg Open-Circuit Fault
by Yongyang Zhou, Fei Yao and Shuguang Zhao
Energies 2022, 15(16), 6053; https://doi.org/10.3390/en15166053 - 20 Aug 2022
Cited by 2 | Viewed by 1862
Abstract
Dual three-phase permanent-magnet synchronous motors (PMSM) have wide applications in electric vehicles due to advantages such as excellent control performance and outstanding fault tolerance capability. However, present fault-tolerant control of inverter single-leg open-circuit faults cannot make full use of each phase winding of [...] Read more.
Dual three-phase permanent-magnet synchronous motors (PMSM) have wide applications in electric vehicles due to advantages such as excellent control performance and outstanding fault tolerance capability. However, present fault-tolerant control of inverter single-leg open-circuit faults cannot make full use of each phase winding of the motor, which limits the torque-production capability. This paper proposes a torque superposition compensation (TSC) control which can minimize the stator copper losses while increasing the torque-production capability. The phase winding originally connected to the faulty inverter leg is then linked to the DC-link mid-point. Thus, the winding in the faulty phase can be utilized to generate an additional torque. The symmetric dual three-phase windings torque model and the asymmetric five-phase windings compensation torque model for Ud/2 voltage level are constructed according to the torque superposition, respectively. Then, the three-subplane decomposition transformation matrix for the post-fault dual three-phase PMSM is derived, and the decoupling model in the d-q subplane is constructed, which achieves the optimal enhancement of the torque-production capability. The simulation results verify the effectiveness of the proposed TSC fault-tolerant control. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

15 pages, 6925 KiB  
Article
An nth Harmonic Current Suppression Method Based on the Impulse Current PWM Technique for a Multi-Phase Permanent Magnet Synchronous Motor Fed with a Current Source Inverter
by Chao Chen, Zhen Chen, Congzhe Gao, Jing Zhao, Xiangdong Liu and Xiaoyong Sun
Energies 2022, 15(12), 4394; https://doi.org/10.3390/en15124394 - 16 Jun 2022
Cited by 4 | Viewed by 2014
Abstract
Among the existing harmonic current suppression methods, it is difficult and complicated to suppress any nth harmonic current accurately for multi-phase permanent magnet synchronous motors (PMSMs). To solve this problem, this paper takes a five-phase dual-rotor PMSM fed with a current source [...] Read more.
Among the existing harmonic current suppression methods, it is difficult and complicated to suppress any nth harmonic current accurately for multi-phase permanent magnet synchronous motors (PMSMs). To solve this problem, this paper takes a five-phase dual-rotor PMSM fed with a current source inverter (CSI) as an example, and proposes an nth harmonic current suppression method based on the impulse current PWM algorithm. Firstly, the analysis is conducted and presented for the nth harmonic current in the mth harmonic space. Then, based on the Sliding Discrete Fourier Transformation (SDFT), a low-pass filter (LPF) named SDFT-LPF is designed. Additionally, the impulse current PWM technique for the five-phase CSI is realized. In this paper, the experiments have confirmed that the SDFT-LPF has good filter performance. Compared with the SVPWM, the impulse current PWM technique has the same DC-link current utilization rate, but it is easier to implement. Moreover, the proposed harmonic current control method can accurately control any nth harmonic current without changing the PWM technique, which has significantly reduced the complexity of the harmonic current control. Additionally, the proposed scheme is easy to implement and can be directly extended to the multiple harmonic current’s control. Full article
Show Figures

Figure 1

23 pages, 11852 KiB  
Article
Design and Research on High Power Density Motor of Integrated Motor Drive System for Electric Vehicles
by Shaopeng Wu, Jinyang Zhou, Xinmiao Zhang and Jiaqiang Yu
Energies 2022, 15(10), 3542; https://doi.org/10.3390/en15103542 - 12 May 2022
Cited by 29 | Viewed by 6300
Abstract
Although many PMSMs are used as the driving source for electric vehicle motor drive systems, there is still a gap compared with the power density index in the DOE roadmap. Considering that the motor occupies a large space in the motor drive system, [...] Read more.
Although many PMSMs are used as the driving source for electric vehicle motor drive systems, there is still a gap compared with the power density index in the DOE roadmap. Considering that the motor occupies a large space in the motor drive system, it is of great significance for the system to increase the motor power density and thus reach the system power density index. This article starts with electrical machine basic design theory and finds the motor power density influence factors. Guided by the theory and considering motor driver influence, this article proposes a high power density motor for electric vehicle integrated motor drive system. The motor for the system is a five-phase interior permanent magnet synchronous motor (IPMSM) with a double-layer rotor structure and fractional slot distributed winding. Compared with Ver1.0 motor, Ver2.0 motor power density improves significantly. In order to prevent damage from excessive temperature, a temperature field solution model is established in this article to compare the cooling effect and pressure loss of the spiral, dial, and axial water jackets. The temperature is checked at motor main operating conditions using an optimal cooling structure. Finally, the power density of the designed Ver2.0 motor reaches 3.12 kW/kg in mass and 15.19 kW/L in volume. Full article
(This article belongs to the Special Issue Energy, Electrical and Power Engineering 2021-2022)
Show Figures

Figure 1

18 pages, 4113 KiB  
Article
Single Line/Phase Open Fault-Tolerant Decoupling Control of a Five-Phase Permanent Magnet Synchronous Motor under Different Stator Connections
by Bing Tian, Runze Lu and Jiasongyu Hu
Energies 2022, 15(9), 3366; https://doi.org/10.3390/en15093366 - 5 May 2022
Cited by 6 | Viewed by 2200
Abstract
Fault-tolerant control (FTC) of a star-connected Five-phase Permanent Magnet Synchronous Motor (5Φ-PMSM) under open-circuit faults has been extensively studied, among which the decoupled control is attractive and finds a broad application in many fields. Pentacle- and pentagon-connected (generally known as “Penta-connected”) 5Φ-PMSMs are [...] Read more.
Fault-tolerant control (FTC) of a star-connected Five-phase Permanent Magnet Synchronous Motor (5Φ-PMSM) under open-circuit faults has been extensively studied, among which the decoupled control is attractive and finds a broad application in many fields. Pentacle- and pentagon-connected (generally known as “Penta-connected”) 5Φ-PMSMs are popular due to their low voltage and high-power density, and especially, the demanded DC voltage level for the pentacle-connection mode accounting for merely 1/1.9021 of the star-connection mode, which is very appealing today. On the other hand, as one of the recent advances, the fault-tolerant decoupling control for penta-connections is still yet to be reviewed, and so this study investigates this issue and attempts to find the similarities and dissimilarities between star- and penta-connections under either single-line or single-phase open faults. Torque behavior analysis under, respectively, the fault-tolerant MPPT and id = 0 is conducted to confirm the validity of the presented FTC, and it is expected to provide a reference for selecting a 5Φ-PMSM for practical use. Full article
(This article belongs to the Special Issue Advanced Permanent Magnet Machines and Drives)
Show Figures

Figure 1

23 pages, 13171 KiB  
Article
Implementation of an FPGA-Based Current Control and SVPWM ASIC with Asymmetric Five-Segment Switching Scheme for AC Motor Drives
by Ming-Fa Tsai, Chung-Shi Tseng and Po-Jen Cheng
Energies 2021, 14(5), 1462; https://doi.org/10.3390/en14051462 - 7 Mar 2021
Cited by 14 | Viewed by 5462
Abstract
This paper presents the design and implementation of an application-specific integrated circuit (ASIC) for a discrete-time current control and space-vector pulse-width modulation (SVPWM) with asymmetric five-segment switching scheme for AC motor drives. As compared to a conventional three-phase symmetric seven-segment switching SVPWM scheme, [...] Read more.
This paper presents the design and implementation of an application-specific integrated circuit (ASIC) for a discrete-time current control and space-vector pulse-width modulation (SVPWM) with asymmetric five-segment switching scheme for AC motor drives. As compared to a conventional three-phase symmetric seven-segment switching SVPWM scheme, the proposed method involves five-segment two-phase switching in each switching period, so the inverter switching times and power loss can be reduced by 33%. In addition, the produced PWM signal is asymmetric with respect to the center-symmetric triangular carrier wave, and the voltage command signal from the discrete-time current control output can be given in each half period of the PWM switching time interval, hence increasing the system bandwidth and allowing the motor drive system with better dynamic response. For the verification of the proposed SVPWM modulation scheme, the current control function in the stationary reference frame is also included in the design of the ASIC. The design is firstly verified by using PSIM simulation tool. Then, a DE0-nano field programmable gate array (FPGA) control board is employed to drive a 300W permanent-magnet synchronous motor (PMSM) for the experimental verification of the ASIC. Full article
(This article belongs to the Special Issue Design and Control of Electrical Motor Drives)
Show Figures

Figure 1

17 pages, 13545 KiB  
Article
Interturn Short-Circuit Fault Detection of a Five-Phase Permanent Magnet Synchronous Motor
by Zhongyi Yang and Yiguang Chen
Energies 2021, 14(2), 434; https://doi.org/10.3390/en14020434 - 15 Jan 2021
Cited by 12 | Viewed by 2730
Abstract
Interturn short circuits are a common fault of permanent magnet synchronous motors (PMSMs). This paper proposes a new method to detect the interturn short-circuit fault (ISCF) of a five-phase PMSM. The method first takes the command voltage and measured current of each phase [...] Read more.
Interturn short circuits are a common fault of permanent magnet synchronous motors (PMSMs). This paper proposes a new method to detect the interturn short-circuit fault (ISCF) of a five-phase PMSM. The method first takes the command voltage and measured current of each phase winding as the original signal and then obtains the delay signal orthogonal to the original signal via Hilbert transform. Then, the generalized instantaneous reactive power of each phase can be calculated from the orthogonal voltage and current signals of each phase. Finally, the influence of the ISCF on the generalized instantaneous reactive power of each phase is analyzed under different working conditions. By comparing the difference in the generalized instantaneous reactive power of each phase, it can be determined which phase winding has the ISCF. The proposed method is verified by simulated and experimental results. Full article
(This article belongs to the Special Issue Design and Analysis of Electric Machines)
Show Figures

Figure 1

19 pages, 10840 KiB  
Article
Fault-Tolerant Control of Coil Inter-Turn Short-Circuit in Five-Phase Permanent Magnet Synchronous Motor
by Dingyu Wang and Yiguang Chen
Energies 2020, 13(21), 5669; https://doi.org/10.3390/en13215669 - 29 Oct 2020
Cited by 6 | Viewed by 2684
Abstract
In the five-phase permanent magnet synchronous motor (PMSM) control system, the torque ripple caused by coil inter-turn short-circuit (ITSC)fault will make the motor performance worse. Due to the existence of the short-circuit current in the faulty phase and the third harmonic component in [...] Read more.
In the five-phase permanent magnet synchronous motor (PMSM) control system, the torque ripple caused by coil inter-turn short-circuit (ITSC)fault will make the motor performance worse. Due to the existence of the short-circuit current in the faulty phase and the third harmonic component in the permanent magnet flux linkage, the electromagnetic torque will contain even-order ripple components when the faulty phase is removed. Torque ripple also cause speed ripple. In this paper, the repetitive controller (RC) is used to perform proportional gain compensation for speed ripple. By designing the RC and connecting RC and proportional integral (PI) controller in parallel for the speed loop, the torque ripple amplitude can be reduced. It can be seen from the simulation and experimental results that the torque ripple suppression strategy based on RC can effectively suppress the torque ripple under ITSC fault. Full article
(This article belongs to the Section A1: Smart Grids and Microgrids)
Show Figures

Figure 1

19 pages, 2697 KiB  
Article
Extended Kalman Filter Based Sliding Mode Control of Parallel-Connected Two Five-Phase PMSM Drive System
by Tounsi Kamel, Djahbar Abdelkader, Barkat Said, Sanjeevikumar Padmanaban and Atif Iqbal
Electronics 2018, 7(2), 14; https://doi.org/10.3390/electronics7020014 - 26 Jan 2018
Cited by 32 | Viewed by 7104
Abstract
This paper presents sliding mode control of sensor-less parallel-connected two five-phase permanent magnet synchronous machines (PMSMs) fed by a single five-leg inverter. For both machines, the rotor speeds and rotor positions as well as load torques are estimated by using Extended Kalman Filter [...] Read more.
This paper presents sliding mode control of sensor-less parallel-connected two five-phase permanent magnet synchronous machines (PMSMs) fed by a single five-leg inverter. For both machines, the rotor speeds and rotor positions as well as load torques are estimated by using Extended Kalman Filter (EKF) scheme. Fully decoupled control of both machines is possible via an appropriate phase transposition while connecting the stator windings parallel and employing proposed speed sensor-less method. In the resulting parallel-connected two-machine drive, the independent control of each machine in the group is achieved by controlling the stator currents and speed of each machine under vector control consideration. The effectiveness of the proposed Extended Kalman Filter in conjunction with the sliding mode control is confirmed through application of different load torques for wide speed range operation. Comparison between sliding mode control and PI control of the proposed two-motor drive is provided. The speed response shows a short rise time, an overshoot during reverse operation and settling times is 0.075 s when PI control is used. The speed response obtained by SMC is without overshoot and follows its reference and settling time is 0.028 s. Simulation results confirm that, in transient periods, sliding mode controller remarkably outperforms its counterpart PI controller. Full article
(This article belongs to the Special Issue Applications of Power Electronics)
Show Figures

Figure 1

21 pages, 4370 KiB  
Article
Speed Control of Matrix Converter-Fed Five-Phase Permanent Magnet Synchronous Motors under Unbalanced Voltages
by Borzou Yousefi, Soodabeh Soleymani, Babak Mozafari and Seid Asghar Gholamian
Energies 2017, 10(10), 1509; https://doi.org/10.3390/en10101509 - 28 Sep 2017
Cited by 5 | Viewed by 4247
Abstract
Five-phase permanent magnet synchronous motors (PMSM) have special applications in which highly accurate speed and torque control of the motor are a strong requirement. Direct Torque Control (DTC) is a suitable method for the driver structure of these motors. If in this method, [...] Read more.
Five-phase permanent magnet synchronous motors (PMSM) have special applications in which highly accurate speed and torque control of the motor are a strong requirement. Direct Torque Control (DTC) is a suitable method for the driver structure of these motors. If in this method, instead of using a common five-phase voltage source inverter, a three-phase to five-phase matrix converter is used, the low-frequency current harmonics and the high torque ripple are limited, and an improved input power factor is obtained. Because the input voltages of such converters are directly supplied by input three-phase supply voltages, an imbalance in the voltages will cause problems such as unbalanced stator currents and electromagnetic torque fluctuations. In this paper, a new method is introduced to remove speed and torque oscillator factors. For this purpose, motor torque equations were developed and the oscillation components created by the unbalanced source voltage, determined. Then, using the active and reactive power reference generator, the controller power reference was adjusted in such a way that the electromagnetic torque of the motor did not change. By this means, a number of features including speed, torque, and flux of the motor were improved in terms of the above-mentioned conditions. Simulations were analyzed using Matlab/Simulink software. Full article
Show Figures

Figure 1

29 pages, 9927 KiB  
Article
Open-Phase Fault Tolerance Techniques of Five-Phase Dual-Rotor Permanent Magnet Synchronous Motor
by Jing Zhao, Xu Gao, Bin Li, Xiangdong Liu and Xing Guan
Energies 2015, 8(11), 12810-12838; https://doi.org/10.3390/en81112342 - 12 Nov 2015
Cited by 19 | Viewed by 8552
Abstract
Multi-phase motors are gaining more attention due to the advantages of good fault tolerance capability and high power density, etc. By applying dual-rotor technology to multi-phase machines, a five-phase dual-rotor permanent magnet synchronous motor (DRPMSM) is researched in this paper to further promote [...] Read more.
Multi-phase motors are gaining more attention due to the advantages of good fault tolerance capability and high power density, etc. By applying dual-rotor technology to multi-phase machines, a five-phase dual-rotor permanent magnet synchronous motor (DRPMSM) is researched in this paper to further promote their torque density and fault tolerance capability. It has two rotors and two sets of stator windings, and it can adopt a series drive mode or parallel drive mode. The fault-tolerance capability of the five-phase DRPMSM is researched. All open circuit fault types and corresponding fault tolerance techniques in different drive modes are analyzed. A fault-tolerance control strategy of injecting currents containing a certain third harmonic component is proposed for five-phase DRPMSM to ensure performance after faults in the motor or drive circuit. For adjacent double-phase faults in the motor, based on where the additional degrees of freedom are used, two different fault-tolerance current calculation schemes are adopted and the torque results are compared. Decoupling of the inner motor and outer motor is investigated under fault-tolerant conditions in parallel drive mode. The finite element analysis (FMA) results and co-simulation results based on Simulink-Simplorer-Maxwell verify the effectiveness of the techniques. Full article
(This article belongs to the Collection Electric and Hybrid Vehicles Collection)
Show Figures

Figure 1

30 pages, 3888 KiB  
Article
Investigation of a Five-Phase Dual-Rotor Permanent Magnet Synchronous Motor Used for Electric Vehicles
by Yumeng Li, Jing Zhao, Zhen Chen and Xiangdong Liu
Energies 2014, 7(6), 3955-3984; https://doi.org/10.3390/en7063955 - 24 Jun 2014
Cited by 13 | Viewed by 14309
Abstract
This paper presents a novel five-phase permanent magnet synchronous motor (PMSM), which contains dual rotors and a single stator, equivalent to two five-phase motors working together. Thus, this kind of motor has the potential of good fault tolerant capability and high torque density, [...] Read more.
This paper presents a novel five-phase permanent magnet synchronous motor (PMSM), which contains dual rotors and a single stator, equivalent to two five-phase motors working together. Thus, this kind of motor has the potential of good fault tolerant capability and high torque density, which makes it appropriate for use in electric vehicles. In view of the different connection types, the inside and outside stator windings can be driven in series or parallel, which results in the different performances of the magnetomotive force (MMF) and torque under open-circuit fault conditions. By decomposing the MMF, the reason that torque ripple increases after open-circuit faults is explained, and the relationship between MMF and torque is revealed. Then, the current control strategy is applied to adjust the open-circuit faults, and the electromagnetic analysis and MMF harmonics analysis are performed to interpret the phenomenon that the torque ripple is still larger than in the normal situation. The investigations are verified by finite element analysis results. Full article
(This article belongs to the Special Issue Advances in Hybrid Vehicles)
Show Figures

Graphical abstract

Back to TopTop