Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (780)

Search Parameters:
Keywords = fire risk management

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 3908 KB  
Article
A Multi-Temporal Sentinel-2 and Machine Learning Approach for Precision Burned Area Mapping: The Sardinia Case Study
by Claudia Collu, Dario Simonetti, Francesco Dessì, Marco Casu, Costantino Pala and Maria Teresa Melis
Remote Sens. 2026, 18(2), 267; https://doi.org/10.3390/rs18020267 - 14 Jan 2026
Abstract
The escalating threat of wildfires under global climate change necessitates rigorous monitoring to mitigate environmental and socio-economic risks. Burned area (BA) mapping is crucial for understanding fire dynamics, assessing ecosystem impacts, and supporting sustainable land management under increasing fire frequency. This study aims [...] Read more.
The escalating threat of wildfires under global climate change necessitates rigorous monitoring to mitigate environmental and socio-economic risks. Burned area (BA) mapping is crucial for understanding fire dynamics, assessing ecosystem impacts, and supporting sustainable land management under increasing fire frequency. This study aims to develop a high-resolution detection framework specifically calibrated for Mediterranean environmental conditions, ensuring the production of consistent and accurate annual BA maps. Using Sentinel-2 MSI time series over Sardinia (Italy), the research objectives were to: (i) integrate field surveys with high-resolution photointerpretation to build a robust, locally tuned training dataset; (ii) evaluate the discriminative power of multi-temporal spectral indices; and (iii) implement a Random Forest classifier capable of providing higher spatial precision than current operational products. Validation results show a Dice Coefficient (DC) of 91.8%, significantly outperforming the EFFIS Burnt Area product (DC = 79.9%). The approach proved particularly effective in detecting small and rapidly recovering fires, often underrepresented in existing datasets. While inaccuracies persist due to cloud cover and landscape heterogeneity, this study demonstrates the effectiveness of a machine learning approach for long-term monitoring, for generating multi-year wildfire inventories, offering a vital tool for data-driven forest policy, vegetation recovery assessment and land-use change analysis in fire-prone regions. Full article
17 pages, 1277 KB  
Article
Experimental Study on the Influence of Fire Source Location on the Ceiling Temperature Distribution in Enclosed Tunnels
by Zhenwei Wang, Ke An, Xueyong Zhou, Jianjun Xiao, Yuanfu Zhou and Linjie Li
Fire 2026, 9(1), 35; https://doi.org/10.3390/fire9010035 - 12 Jan 2026
Abstract
Sealing tunnel portals is widely recognized as a pivotal strategy for mitigating fire hazards in tunnel safety management. Nevertheless, the interplay between fire source locations—both longitudinally and transversely—and its impact on flame behavior and ceiling temperature profiles within enclosed structures has not been [...] Read more.
Sealing tunnel portals is widely recognized as a pivotal strategy for mitigating fire hazards in tunnel safety management. Nevertheless, the interplay between fire source locations—both longitudinally and transversely—and its impact on flame behavior and ceiling temperature profiles within enclosed structures has not been fully elucidated. Utilizing a 1:15 reduced-scale rectangular tunnel model, this research investigates how varying the fire source position affects the maximum ceiling temperature under enclosed scenarios. Dimensionless parameters, including the longitudinal dimensionless distance D and transverse dimensionless distance Z′, were derived through dimensional analysis. Observations indicate that as the fire approaches the enclosed end, the flame initially leans toward the boundary, peaking in inclination at D = 0.73, and subsequently exhibits a “wall-attached combustion” pattern due to wall confinement. While lateral displacement of the fire source pushes the high-temperature zone toward the corresponding side wall, the longitudinal temperature rise follows a non-monotonic pattern: declining continuously in in Region I (0 ≤ D ≤ 0.73) and rebounding in Region II (0.73 < D < 1). Based on these findings, a dimensionless prediction model incorporating heat release rate (HRR), transverse offset, and longitudinal fire location was developed. Furthermore, a thermal accumulation factor was introduced to refine the predictive model in Region II. The results offer theoretical insights to support fire protection design and risk assessment in enclosed tunnels. Full article
(This article belongs to the Special Issue Modeling, Experiment and Simulation of Tunnel Fire)
14 pages, 1030 KB  
Review
How Can Grazing Mitigate Wildfires? A Review of Fuel Management, Ecological Trade-Offs, and Adaptive Frameworks
by Shiying Xu, Xilong Zhu, Hang Ren, Xiangxiang Yan, Xiangyang Fang, Sazal Ahmed and Qiuhua Wang
Sustainability 2026, 18(2), 718; https://doi.org/10.3390/su18020718 - 10 Jan 2026
Viewed by 144
Abstract
Under the influence of multiple factors such as climate change and human activities, the frequency, intensity, and destructiveness of forest fires are increasing, which may trigger multiple ecological crises. Forest fires can be scientifically prevented, and their risks can be mitigated through specific [...] Read more.
Under the influence of multiple factors such as climate change and human activities, the frequency, intensity, and destructiveness of forest fires are increasing, which may trigger multiple ecological crises. Forest fires can be scientifically prevented, and their risks can be mitigated through specific approaches, particularly by managing forest combustible materials. Common methods include mechanical clearance, prescribed burning, and the establishment of biological firebreak belts, along with the application of grazing to regulate forest fuels. This paper presents a review of studies on grazing and fire risk, both domestically and internationally. Research indicates that livestock grazing has complex effects on forest fire risk: appropriate grazing can manage fuels and modify ecosystem structure to reduce fire hazards—for instance, by decreasing the accumulation of surface flammable materials and promoting the regeneration of fire-resistant tree species. Conversely, overgrazing may disrupt ecological balance and increase fire risk, such as by exacerbating soil erosion and encouraging the invasion of flammable weed species. Case studies from different ecological regions worldwide demonstrate varied effects of grazing on fire prevention, though research in this area exhibits geographical disparities. Adaptive management should integrate targeted grazing, prescribed burning, and mechanical treatments in a synergistic manner. Future efforts should prioritize cross-scale studies, investigate the mechanisms of woody fuel modulation, and refine fire ecology models to enhance the precision and global applicability of grazing-based fire management. Full article
Show Figures

Figure 1

14 pages, 1865 KB  
Article
Quality Management of Inert Material During Fluidized Bed Combustion of Biomass
by Marta Wesolowska, Krystian Wisniewski, Jaroslaw Krzywanski, Wojciech Nowak and Agnieszka Kijo-Kleczkowska
Materials 2026, 19(2), 288; https://doi.org/10.3390/ma19020288 - 10 Jan 2026
Viewed by 168
Abstract
Fluidized bed combustion of biomass requires maintaining stable properties of the inert bed material, which plays a key role in heat transfer, temperature stabilization and uniform fuel distribution in circulating fluidized bed (CFB) boilers. During long-term operation, quartz sand, i.e., the most commonly [...] Read more.
Fluidized bed combustion of biomass requires maintaining stable properties of the inert bed material, which plays a key role in heat transfer, temperature stabilization and uniform fuel distribution in circulating fluidized bed (CFB) boilers. During long-term operation, quartz sand, i.e., the most commonly used inert material, undergoes physical and chemical degradation processes such as attrition, sintering and coating with alkali-rich ash, leading to changes in particle size distribution (PSD), deterioration of fluidization quality, temperature non-uniformities and an increased risk of bed agglomeration. This study analyzes quality management strategies for inert bed materials in biomass-fired CFB systems, with particular emphasis on the influence of PSD on boiler hydrodynamics and thermal behavior. Based on industrial operating data, sieve analyses and CFD simulations performed under representative operating conditions, a recommended mean particle diameter range of approximately 150–200 μm is identified as critical for maintaining stable circulation and uniform temperature fields. Numerical results demonstrate that deviations toward coarser bed materials significantly reduce solids circulation, promote segregation in the lower furnace region and lead to local temperature increases, thereby increasing agglomeration risk. The study further discusses practical approaches to bed material monitoring, regeneration and make-up management in relation to biomass type and ash characteristics. The results confirm that systematic control of inert bed material quality is an essential prerequisite for reliable, efficient and low-emission operation of biomass-fired CFB boilers. Full article
Show Figures

Figure 1

21 pages, 7982 KB  
Article
Wildfire Dynamics and Risk in the Wildland–Urban Interface in Gran Canaria (Spain): Influence of Climate Change, Land Management, and Civil Protection Policies
by Fernando Medina Morales, Pablo Máyer Suárez, Feliciano Tavío Álvarez and Lorenzo Quesada Ruiz
Geographies 2026, 6(1), 9; https://doi.org/10.3390/geographies6010009 - 8 Jan 2026
Viewed by 195
Abstract
The island of Gran Canaria (Spain) has undergone a significant transformation in wildfire dynamics over the past two decades, characterized by a decline in wildfire frequency but a marked increase in the severity and spatial impact of extreme events, particularly within the wildland–urban [...] Read more.
The island of Gran Canaria (Spain) has undergone a significant transformation in wildfire dynamics over the past two decades, characterized by a decline in wildfire frequency but a marked increase in the severity and spatial impact of extreme events, particularly within the wildland–urban interface (WUI). This study analyzes wildfire activity between 2000 and 2020 using official datasets and statistical trend analyses, incorporating robust severity indicators and measures of burned area concentration. Results show a statistically significant decreasing trend in the number of wildfires, while burned area is extremely concentrated in a small number of high-intensity events, with four large wildfires accounting for more than 97% of the total affected area. Climatic influences on wildfire activity were assessed through the analysis of long-term meteorological indicators, focusing on trends in extreme heat days and precipitation as proxies for thermal stress and fuel moisture availability. The results indicate a substantial modification of the background climatic framework under which wildfires develop, although no direct causal relationships are inferred. In parallel, territorial processes—such as rural abandonment, increased fuel continuity, and the expansion of dispersed housing beyond consolidated settlements—act as key amplifiers of wildfire risk. Overall, the findings highlight a transition from emergency-oriented fire suppression toward resilience-based wildfire management, emphasizing the need to integrate climate adaptation, territorial planning, and stricter land-use regulation in WUI areas. Full article
Show Figures

Figure 1

21 pages, 14110 KB  
Article
Estimating Cloud Base Height via Shadow-Based Remote Sensing
by Lipi Mukherjee and Dong L. Wu
Remote Sens. 2026, 18(1), 147; https://doi.org/10.3390/rs18010147 - 1 Jan 2026
Viewed by 207
Abstract
Low clouds significantly impact weather, climate, and multiple environmental and economic sectors such as agriculture, fire risk management, aviation, and renewable energy. Accurate knowledge of cloud base height (CBH) is critical for optimizing crop yields, improving fire danger forecasts, enhancing flight safety, and [...] Read more.
Low clouds significantly impact weather, climate, and multiple environmental and economic sectors such as agriculture, fire risk management, aviation, and renewable energy. Accurate knowledge of cloud base height (CBH) is critical for optimizing crop yields, improving fire danger forecasts, enhancing flight safety, and increasing solar energy efficiency. This study evaluates a shadow-based CBH retrieval method using Moderate Resolution Imaging Spectroradiometer (MODIS) satellite visible imagery and compares the results against collocated lidar measurements from the Micro-Pulse Lidar Network (MPLNET) ground stations. The shadow method leverages sun–sensor geometry to estimate CBH from the displacement of cloud shadows on the surface, offering a practical and high-resolution passive remote sensing technique, especially useful where active sensors are unavailable. The validation results show strong agreement, with a correlation coefficient (R) = 0.96 between shadow-based and lidar-derived CBH estimates, confirming the robustness of the approach for shallow, isolated cumulus clouds. The method’s advantages include direct physical height estimation without reliance on cloud top heights or stereo imaging, applicability across archived datasets, and suitability for diurnal studies. This work highlights the potential of shadow-based retrievals as a reliable, cost-effective tool for global low cloud monitoring, with important implications for atmospheric research and operational forecasting. Full article
Show Figures

Figure 1

18 pages, 12268 KB  
Article
Peat Hydrological Properties and Vulnerability to Fire Risk
by Budi Kartiwa, Setyono Hari Adi, Hendri Sosiawan, Setiari Marwanto, Maswar, Suratman, Bastoni, Andree Ekadinata, Wahyu Widiyono and Fahmuddin Agus
Fire 2026, 9(1), 24; https://doi.org/10.3390/fire9010024 - 31 Dec 2025
Viewed by 497
Abstract
Peatlands provide essential ecological services but are highly vulnerable to degradation from drainage, leading to greenhouse gas emissions, land subsidence, and increased fire susceptibility. This study investigates peat hydrology and its relationship to fire risk in a fire-prone area in South Sumatra, Indonesia. [...] Read more.
Peatlands provide essential ecological services but are highly vulnerable to degradation from drainage, leading to greenhouse gas emissions, land subsidence, and increased fire susceptibility. This study investigates peat hydrology and its relationship to fire risk in a fire-prone area in South Sumatra, Indonesia. Groundwater levels and soil moisture were continuously monitored using automated loggers, and recession analysis quantified their rates of decline. Multispectral drone imagery (NDVI, NDWI) over a 44.1-ha area assessed vegetation and surface wetness, while fire occurrences (2019–2024) were analyzed using the Fire Information for Resource Management System (FIRMS). During a 58-day dry period, groundwater depth reached 78.5 cm with a recession rate of 9.68 mm day−1, while soil moisture decreased by 0.00291 m3 m−3 per day over 27 consecutive dry days. Drone imagery revealed that unhealthy and dead grass covered nearly 90% of the site, although wetness remained moderate (NDWI = 0.02–0.58). FIRMS data indicated that rainfall below 2000 mm year−1 and prolonged dry spells (>30 days) strongly trigger peat fires. These findings correspond with early-warning model outputs based on soil moisture recession and ignition thresholds. Maintaining a high groundwater level is, therefore, crucial for reducing peat fire vulnerability under extended dry conditions. Full article
Show Figures

Figure 1

24 pages, 5359 KB  
Article
Fire and the Vulnerability of the Caatinga Biome to Droughts and Heatwaves
by Katyelle F. S. Bezerra, Helber B. Gomes, Janaína P. Nascimento, Dirceu Luís Herdies, Hakki Baltaci, Maria Cristina L. Silva, Gabriel de Oliveira, Erin Koster, Heliofábio B. Gomes, Madson T. Silva, Fabrício Daniel S. Silva, Rafaela L. Costa and Daniel M. C. Lima
Atmosphere 2026, 17(1), 46; https://doi.org/10.3390/atmos17010046 - 29 Dec 2025
Viewed by 259
Abstract
This study analyzes the relationship between fires and climate extremes in the Caatinga biome from 2012 to 2023 by integrating Fire Radiative Power (FRP) from VIIRS (S-NPP and NOAA-20), Vapor Pressure Deficit (VPD) and air temperature from ERA5, drought indices (SPI-1 and SPI-6), [...] Read more.
This study analyzes the relationship between fires and climate extremes in the Caatinga biome from 2012 to 2023 by integrating Fire Radiative Power (FRP) from VIIRS (S-NPP and NOAA-20), Vapor Pressure Deficit (VPD) and air temperature from ERA5, drought indices (SPI-1 and SPI-6), and heatwave events from the Xavier database. Daily percentiles of maximum (CTX90pct) and minimum (CTN90pct) temperatures were used to characterize heatwaves. Spatial and temporal dynamics of fire patterns were identified using the HDBSCAN algorithm, an unsupervised Machine Learning clustering method applied in three-dimensional space (latitude, longitude, and time). A marked seasonality was observed, with fire activity peaking from August to November, especially in October, when FRP reached ~1000 MW/h. The years 2015, 2019, 2021, and 2023 exhibited the highest fire intensities. A statistically significant upward trend in cluster frequency was detected (+1094.96 events/year; p < 0.001). Cross-correlations revealed that precipitation deficits (SPI) preceded FRP peaks by about four months, while VPD and air temperature exerted immediate positive effects. FRP correlated positively with heatwave frequency (r = 0.62) and negatively with SPI (r = −0.69). These findings highlight the high vulnerability of the Caatinga to compound drought and heat events, indicating that fire management strategies should account for both antecedent drought conditions, monitored through SPI, and real-time atmospheric dryness, measured by VPD, to effectively mitigate fire risks. Full article
(This article belongs to the Special Issue Weather and Climate Extremes: Past, Current and Future)
Show Figures

Figure 1

30 pages, 3031 KB  
Article
Enhancing Fire Safety in Taiwan’s Elderly Welfare Institutions: An Analysis Based on Disaster Management Theory
by Chung-Hwei Su, Sung-Ming Hung and Shiuan-Cheng Wang
Sustainability 2026, 18(1), 347; https://doi.org/10.3390/su18010347 - 29 Dec 2025
Viewed by 233
Abstract
Elderly welfare institutions in Taiwan have experienced multiple severe fire incidents, with smoke inhalation accounting for the majority of fatalities. Hot smoke can rapidly propagate through interconnected ceiling spaces, complicating evacuation for residents with limited mobility who depend heavily on caregiving staff and [...] Read more.
Elderly welfare institutions in Taiwan have experienced multiple severe fire incidents, with smoke inhalation accounting for the majority of fatalities. Hot smoke can rapidly propagate through interconnected ceiling spaces, complicating evacuation for residents with limited mobility who depend heavily on caregiving staff and external responders. Field inspections conducted in this study indicate that 82% of residents require assisted evacuation, underscoring the critical role of early detection, staff-mediated response, and effective smoke control. Drawing on disaster management theory, this study examines key determinants of fire safety performance in elderly welfare institutions, where caregiving staff are primarily trained in medical care rather than fire safety. A total of 64 licensed institutions in Tainan City were investigated through on-site inspections, structured checklist-based surveys, and statistical analyses of fire protection systems. In addition, a comparative review of building and fire safety regulations in Taiwan, the United States, Japan, and China was conducted to contextualize the findings. Using the defense-in-depth framework, this study proposes a three-layer fire safety strategy comprising (1) prevention of fire occurrence, (2) rapid fire detection and early suppression, and (3) containment of fire and smoke spread. From a sustainability perspective, this study conceptualizes fire safety in elderly welfare institutions as a problem of risk governance, illustrating how defense-in-depth can be operationalized as a governance-oriented framework for managing fire and smoke risks, safeguarding vulnerable older adults, and sustaining the resilience and continuity of long-term care systems in an aging society. Full article
Show Figures

Figure 1

22 pages, 7556 KB  
Article
Integrating VIIRS Fire Detections and ERA5-Land Reanalysis for Modeling Wildfire Probability in Arid Mountain Systems of the Arabian Peninsula
by Rahmah Al-Qthanin and Zubairul Islam
Information 2026, 17(1), 13; https://doi.org/10.3390/info17010013 - 23 Dec 2025
Viewed by 384
Abstract
Wildfire occurrence in arid and semiarid landscapes is increasingly driven by shifts in climatic and biophysical conditions, yet its dynamics remain poorly understood in the mountainous environments of western Saudi Arabia. This study modeled wildfire probabilities across the Aseer, Al Baha, Makkah Al-Mukarramah, [...] Read more.
Wildfire occurrence in arid and semiarid landscapes is increasingly driven by shifts in climatic and biophysical conditions, yet its dynamics remain poorly understood in the mountainous environments of western Saudi Arabia. This study modeled wildfire probabilities across the Aseer, Al Baha, Makkah Al-Mukarramah, and Jazan regions via multisource Earth observation datasets from 2012–2025. Active fire detections from VIIRS were integrated with ERA5-Land reanalysis variables, vegetation indices, and Copernicus DEM GLO30 topography. A random forest classifier was trained and validated via stratified sampling and cross-validation to predict monthly burn probabilities. Calibration, reliability assessment, and independent temporal validation confirmed strong model performance (AUC-ROC = 0.96; Brier = 0.03). Climatic dryness (dew-point deficit), vegetation structure (LAI_lv), and surface soil moisture emerged as dominant predictors, underscoring the coupling between energy balance and fuel desiccation. Temporal trend analyses (Kendall’s τ and Sen’s slope) revealed the gradual intensification of fire probability during the dry-to-transition seasons (February–April and September–November), with Aseer showing the most persistent risk. These findings establish a scalable framework for wildfire early warning and landscape management in arid ecosystems under accelerating climatic stress. Full article
(This article belongs to the Special Issue Predictive Analytics and Data Science, 3rd Edition)
Show Figures

Graphical abstract

25 pages, 3501 KB  
Article
Characterisation and Analysis of Large Forest Fires (LFFs) in the Canary Islands, 2012–2024
by Nerea Martín-Raya, Abel López-Díez and Álvaro Lillo Ezquerra
Fire 2026, 9(1), 7; https://doi.org/10.3390/fire9010007 - 23 Dec 2025
Viewed by 406
Abstract
In recent decades, forest fires have become one of the most disruptive and complex natural hazards from both environmental and territorial perspectives. The Canary Islands represent a particularly suitable setting for analysing wildfire risk. This study aims to characterise the Large Forest Fires [...] Read more.
In recent decades, forest fires have become one of the most disruptive and complex natural hazards from both environmental and territorial perspectives. The Canary Islands represent a particularly suitable setting for analysing wildfire risk. This study aims to characterise the Large Forest Fires (LFFs) that occurred across the archipelago between 2012 and 2024 through an integrative approach combining geospatial, meteorological, and socio-environmental information. A total of 13 LFFs were identified in Tenerife, Gran Canaria, La Palma, and La Gomera, affecting 55,167 hectares—equivalent to 7.4% of the islands’ total land area. The results indicate a temporal concentration during the summer months and an altitudinal range between 750 and 1500 m, corresponding to transitional zones between laurel forest and Canary pine woodland. Meteorological conditions showed average temperatures of 24.3 °C, minimum relative humidity of 23.7%, and thermal inversion layers at around 270 m a.s.l., creating an environment conducive to fire spread. Approximately 81% of the affected area lies within protected natural spaces, highlighting a high level of ecological vulnerability. Analysis of the Normalized Burn Ratio (NBR) index reveals a growing trend in fire severity, while social impacts include the evacuation of more than 43,000 people. These findings underscore the urgency of moving towards proactive territorial management that integrates prevention, ecological restoration, and climate change adaptation as fundamental pillars of any disaster risk reduction strategy. Full article
Show Figures

Figure 1

22 pages, 2558 KB  
Article
Post-Fire Restauration in Mediterranean Watersheds: Coupling WiMMed Modeling with LiDAR–Landsat Vegetation Recovery
by Edward A. Velasco Pereira and Rafael Mª Navarro Cerrillo
Remote Sens. 2026, 18(1), 26; https://doi.org/10.3390/rs18010026 - 22 Dec 2025
Viewed by 429
Abstract
Wildfires are among the most severe disturbances in Mediterranean ecosystems, altering vegetation structure, soil properties, and hydrological functioning. Understanding post-fire hydrological dynamics is crucial for predicting flood and erosion risks and vegetation restoration in fire-prone regions. This study investigates the hydrological responses of [...] Read more.
Wildfires are among the most severe disturbances in Mediterranean ecosystems, altering vegetation structure, soil properties, and hydrological functioning. Understanding post-fire hydrological dynamics is crucial for predicting flood and erosion risks and vegetation restoration in fire-prone regions. This study investigates the hydrological responses of Mediterranean watersheds following a wildfire event by integrating WiMMed (Watershed Integrated Management in Mediterranean Environments), a distributed, physically based hydrological model, with high-resolution vegetation data derived from LiDAR and Landsat imagery. A Priority Post-Fire Restoration Index (PPRI) was calculated as the weighted sum of the six parameters runoff (mm), flow accumulation (mm), distance to drainage network (m), slope (%), erodibility (K), lithology, and LiDAR index under a sediment reduction and runoff peak reduction scenario. The post-fire hydrological processes modeled with WiMMed described the dynamics of surface runoff and soil moisture redistribution across the upper soil layers after fire, and their gradual attenuation with vegetation regrowth. The spatial distribution of the PPRI identified specific zones within the burned watershed that require urgent restoration measures (10% and 4.55% under sediment reduction and peak reduction scenarios, respectively). The combined use of process-based modeling and remote sensing offers valuable insights into watershed-scale hydrological resilience and supports the design of post-fire restoration strategies in Mediterranean landscapes. Full article
Show Figures

Figure 1

23 pages, 4955 KB  
Article
Earth Observation and Geospatial Analysis for Fire Risk Assessment in Wildland–Urban Interfaces: The Case of the Highly Dense Urban Area of Attica, Greece
by Antonia Oikonomou, Marilou Avramidou and Emmanouil Psomiadis
Remote Sens. 2025, 17(24), 4052; https://doi.org/10.3390/rs17244052 - 17 Dec 2025
Viewed by 702
Abstract
Wildfires increasingly threaten Mediterranean landscapes, particularly in regions like Attica, Greece, where urban sprawl, agricultural abandonment, and climatic conditions heighten the risk at the Wildland–Urban Interface (WUI). The Mediterranean basin, recognized as one of the global wildfire “hotspots”, has witnessed a steady increase [...] Read more.
Wildfires increasingly threaten Mediterranean landscapes, particularly in regions like Attica, Greece, where urban sprawl, agricultural abandonment, and climatic conditions heighten the risk at the Wildland–Urban Interface (WUI). The Mediterranean basin, recognized as one of the global wildfire “hotspots”, has witnessed a steady increase in both fire severity, frequency, and burned area during the last four decades, a trend amplified by urban sprawl and agricultural land abandonment. This study represents the first integrated, region-wide mapping of the WUI and associated wildfire risk in Attica, the most densely urbanized area in Greece and one of the most fire-exposed metropolitan regions in Southern Europe, utilizing advanced techniques such as Earth Observation and GIS analysis. For this purpose, various geospatial datasets were coupled, including Copernicus High Resolution Layers, multi-decadal Landsat fire history archive, UCR-STAR building footprints, and CORINE Land Cover, among others. The research delineated WUI zones into 40 interface and intermix categories, revealing that WUI encompasses 26.29% of Attica, predominantly in shrub-dominated areas. An analysis of fire frequency history from 1983 to 2023 indicated that approximately 102,366 hectares have been affected by wildfires. Risk assessments indicate that moderate hazard zones are most prevalent, covering 36.85% of the region, while approximately 25% of Attica is classified as moderate, high, or very high susceptibility zones. The integrated risk map indicates that 37.74% of Attica is situated in high- and very high-risk zones, principally concentrated in peri-urban areas. These findings underscore Attica’s designation as one of the most fire-prone metropolitan regions in Southern Europe and offer a viable methodology for enhancing land-use planning, fuel management, and civil protection efforts. Full article
(This article belongs to the Special Issue Remote Sensing in Natural Hazard Exploration and Impact Assessment)
Show Figures

Figure 1

22 pages, 1545 KB  
Article
The Diffusion of Risk Management Assistance for Wildland Fire Management in the United States
by Tyler A. Beeton, Tyler Aldworth, Melanie M. Colavito, Nicolena vonHedemann, Ch’aska Huayhuaca and Michael D. Caggiano
Fire 2025, 8(12), 478; https://doi.org/10.3390/fire8120478 - 17 Dec 2025
Viewed by 379
Abstract
The wildland fire management system is increasingly complex and uncertain, which challenges suppression actions and increases stress on an already strained system. Researchers and managers have called for the use of strategic, risk-informed decision making and decision support tools (DSTs) in wildfire management [...] Read more.
The wildland fire management system is increasingly complex and uncertain, which challenges suppression actions and increases stress on an already strained system. Researchers and managers have called for the use of strategic, risk-informed decision making and decision support tools (DSTs) in wildfire management to manage complexity and mitigate uncertainty. This paper evaluated the use of an emerging wildfire DST, the Risk Management Assistance (RMA) dashboard, during the 2021 and 2022 wildfire seasons. We used a mixed-method approach, consisting of an online survey and in-depth interviews with fire managers. Our objectives were the following: (1) to determine what factors at multiple scales facilitated and frustrated the adoption of RMA; and (2) to identify actionable recommendations to facilitate uptake of RMA. We situate our findings within the diffusion of innovations literature and use-inspired research. Most respondents indicated RMA tools were easy to use, accurate, and relevant to decision-making processes. We found evidence that the tools were used throughout the fire management cycle. Previous experience with RMA and training in risk management, trust in models, leadership support, and perceptions of current and future fire risk affected RMA adoption. Recommendations to improve RMA included articulating how the tools integrate with existing wildland fire DSTs, new tools that consider dynamic forecasting of risk, and both formal and informal learning opportunities in the pre-season, during incidents, and in post-fire reviews. We conclude with research and management considerations to increase the use of RMA and other DSTs in support of safe, effective, and informed wildfire decision making. Full article
(This article belongs to the Section Fire Social Science)
Show Figures

Figure 1

17 pages, 2894 KB  
Article
From Forestation to Invasion: A Remote Sensing Assessment of Exotic Pinaceae in the Northwestern Patagonian Wildland–Urban Interface
by Camilo Ernesto Bagnato, Jaime Moyano, Sofía Laura Gonzalez, Melisa Blackhall, Jorgelina Franzese, Rodrigo Freire, Cecilia Nuñez, Valeria Susana Ojeda and Luciana Ghermandi
Forests 2025, 16(12), 1853; https://doi.org/10.3390/f16121853 - 13 Dec 2025
Viewed by 317
Abstract
Biological invasions are major threats to global biodiversity, and mapping their distribution is essential to prioritizing management efforts. The Pinaceae family (hereafter pines) includes invasive trees, particularly in Southern Hemisphere regions where they are non-native. These invasions can increase the severity of fires [...] Read more.
Biological invasions are major threats to global biodiversity, and mapping their distribution is essential to prioritizing management efforts. The Pinaceae family (hereafter pines) includes invasive trees, particularly in Southern Hemisphere regions where they are non-native. These invasions can increase the severity of fires in wildland–urban interfaces (WUIs). We mapped pine invasion in the Bariloche WUI (≈150,000 ha, northwest Patagonia, Argentina) using supervised land cover classification of Sentinel-2 imagery with a Random Forest algorithm on Google Earth Engine, achieving 90% overall accuracy but underestimating the pine invasion area by about 25%. We then assessed in which main vegetation context pine invasions occurred relying on major vegetation units across the precipitation gradient of our study area. Invasions cover 2% of the study area, mainly in forests (61%), steppes (25.4%), and shrublands (13.4%). Most invaded areas (89.1%) are on private land; nearly 70% are on large properties (>10 ha), where state financial incentives could support removal. Another 13.5% occur on many small properties (<1 ha), where awareness campaigns could enable decentralized, low-effort control. Our land cover map can be developed further to integrate invasion dynamics, inform fire risk and behavior models, optimize management actions, and guide territorial planning. Overall, it provides a valuable tool for targeted, scale-appropriate strategies to mitigate ecological and fire-related impacts of invasive pines. Full article
(This article belongs to the Special Issue Forest Fire Detection, Prevention and Management)
Show Figures

Figure 1

Back to TopTop