Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,612)

Search Parameters:
Keywords = filling information

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1905 KiB  
Article
Fuzzy Frankot–Chellappa Algorithm for Surface Normal Integration
by Saeide Hajighasemi and Michael Breuß
Algorithms 2025, 18(8), 488; https://doi.org/10.3390/a18080488 - 6 Aug 2025
Abstract
In this paper, we propose a fuzzy formulation of the classic Frankot–Chellappa algorithm by which surfaces can be reconstructed using normal vectors. In the fuzzy formulation, the surface normal vectors may be uncertain or ambiguous, yielding a fuzzy Poisson partial differential equation that [...] Read more.
In this paper, we propose a fuzzy formulation of the classic Frankot–Chellappa algorithm by which surfaces can be reconstructed using normal vectors. In the fuzzy formulation, the surface normal vectors may be uncertain or ambiguous, yielding a fuzzy Poisson partial differential equation that requires appropriate definitions of fuzzy derivatives. The solution of the resulting fuzzy model is approached by adopting a fuzzy variant of the discrete sine transform, which results in a fast and robust algorithm for surface reconstruction. An adaptive defuzzification strategy is also introduced to improve noise handling in highly uncertain regions. In experiments, we demonstrate that our fuzzy Frankot–Chellappa algorithm achieves accuracy on par with the classic approach for smooth surfaces and offers improved robustness in the presence of noisy normal data. We also show that it can naturally handle missing data (such as gaps) in the normal field by filling them using neighboring information. Full article
(This article belongs to the Collection Feature Papers in Algorithms for Multidisciplinary Applications)
Show Figures

Figure 1

16 pages, 882 KiB  
Article
MatBYIB: A MATLAB-Based Toolkit for Parameter Estimation of Eccentric Gravitational Waves from EMRIs
by Genliang Li, Shujie Zhao, Huaike Guo, Jingyu Su and Zhenheng Lin
Universe 2025, 11(8), 259; https://doi.org/10.3390/universe11080259 - 6 Aug 2025
Abstract
Accurate parameter estimation is essential for gravitational wave data analysis. In extreme mass-ratio inspiral binary systems, orbital eccentricity is a critical parameter for parameter estimation. However, the current software for the parameter estimation of the gravitational wave often neglects the direct estimation of [...] Read more.
Accurate parameter estimation is essential for gravitational wave data analysis. In extreme mass-ratio inspiral binary systems, orbital eccentricity is a critical parameter for parameter estimation. However, the current software for the parameter estimation of the gravitational wave often neglects the direct estimation of orbital eccentricity. To fill this gap, we have developed the MatBYIB, a MATLAB-based software (Version 1.0) package for the parameter estimation of the gravitational wave with arbitrary eccentricity. The MatBYIB employs the Analytical Kludge waveform as a computationally efficient signal generator and computes parameter uncertainties via the Fisher Information Matrix and the Markov Chain Monte Carlo. For Bayesian inference, we implement the Metropolis–Hastings algorithm to derive posterior distributions. To guarantee convergence, the Gelman–Rubin convergence criterion (the Potential Scale Reduction Factor R^) is used to determine sampling adequacy, with MatBYIB dynamically increasing the sample size until R^<1.05 for all parameters. Our results demonstrate strong agreement between predictions based on the Fisher Information Matrix and full MCMC sampling. This program is user-friendly and allows for the estimation of the gravitational wave parameters with arbitrary eccentricity on standard personal computers. Full article
Show Figures

Figure 1

22 pages, 3440 KiB  
Article
Effect of Dynamic Point Symbol Visual Coding on User Search Performance in Map-Based Visualizations
by Weijia Ge, Jing Zhang, Xingjian Shi, Wenzhe Tang and Longlong Qian
ISPRS Int. J. Geo-Inf. 2025, 14(8), 305; https://doi.org/10.3390/ijgi14080305 - 5 Aug 2025
Abstract
As geographic information visualization continues to gain prominence, dynamic symbols are increasingly employed in map-based applications. However, the optimal visual coding for dynamic point symbols—particularly concerning encoding type, animation rate, and modulation area—remains underexplored. This study examines how these factors influence user performance [...] Read more.
As geographic information visualization continues to gain prominence, dynamic symbols are increasingly employed in map-based applications. However, the optimal visual coding for dynamic point symbols—particularly concerning encoding type, animation rate, and modulation area—remains underexplored. This study examines how these factors influence user performance in visual search tasks through two eye-tracking experiments. Experiment 1 investigated the effects of two visual coding factors: encoding types (flashing, pulsation, and lightness modulation) and animation rates (low, medium, and high). Experiment 2 focused on the interaction between encoding types and modulation areas (fill, contour, and entire symbol) under a fixed animation rate condition. The results revealed that search performance deteriorates as the animation rate of the fastest target symbol exceeds 10 fps. Flashing and lightness modulation outperformed pulsation, and modulation areas significantly impacted efficiency and accuracy, with notable interaction effects. Based on the experimental results, three visual coding strategies are recommended for optimal performance in map-based interfaces: contour pulsation, contour flashing, and entire symbol lightness modulation. These findings provide valuable insights for optimizing the design of dynamic point symbols, contributing to improved user engagement and task performance in cartographic and geovisual applications. Full article
(This article belongs to the Topic Theories and Applications of Human-Computer Interaction)
16 pages, 3766 KiB  
Article
Evaluation of Energy and CO2 Reduction Through Envelope Retrofitting: A Case Study of a Public Building in South Korea Conducted Using Utility Billing Data
by Hansol Lee and Gyeong-Seok Choi
Energies 2025, 18(15), 4129; https://doi.org/10.3390/en18154129 - 4 Aug 2025
Abstract
This study empirically evaluates the energy and carbon reduction effects of an envelope retrofit applied to an aging public building in South Korea. Unlike previous studies that primarily relied on simulation-based analyses, this work fills the empirical research gap by using actual utility [...] Read more.
This study empirically evaluates the energy and carbon reduction effects of an envelope retrofit applied to an aging public building in South Korea. Unlike previous studies that primarily relied on simulation-based analyses, this work fills the empirical research gap by using actual utility billing data collected over one pre-retrofit year (2019) and two post-retrofit years (2023–2024). The retrofit included improvements to exterior walls, roofs, and windows, aiming to enhance thermal insulation and airtightness. The analysis revealed that monthly electricity consumption was reduced by 14.7% in 2023 and 8.0% in 2024 compared to that in the baseline year, with corresponding decreases in electricity costs and carbon dioxide emissions. Seasonal variations were evident: energy savings were significant in the winter due to reduced heating demand, while cooling energy use slightly increased in the summer, likely due to diminished solar heat gains resulting from improved insulation. By addressing both heating and cooling impacts, this study offers practical insights into the trade-offs of envelope retrofitting. The findings contribute to the body of knowledge by demonstrating the real-world performance of retrofit technologies and providing data-driven evidence that can inform policies and strategies for improving energy efficiency in public buildings. Full article
Show Figures

Figure 1

17 pages, 506 KiB  
Article
The Use of Filled Pauses Across Multiple Discourse Contexts in Children Who Are Hard of Hearing and Children with Typical Hearing
by Charlotte Hilker, Jacob J. Oleson, Mariia Tertyshnaia, Ryan W. McCreery and Elizabeth A. Walker
Behav. Sci. 2025, 15(8), 1053; https://doi.org/10.3390/bs15081053 - 4 Aug 2025
Viewed by 46
Abstract
Filled pauses are thought to be reflections of linguistic processes (e.g., lexical retrieval, speech planning and execution). Uh may be a self-directed cue for when a speaker needs more time to retrieve lexical–semantic representations, whereas um serves as a listener-directed, pragmatic cue. The [...] Read more.
Filled pauses are thought to be reflections of linguistic processes (e.g., lexical retrieval, speech planning and execution). Uh may be a self-directed cue for when a speaker needs more time to retrieve lexical–semantic representations, whereas um serves as a listener-directed, pragmatic cue. The use of filled pauses has not been examined in children who are hard of hearing (CHH). Participants included 68 CHH and 33 children with typical hearing (CTH). Participants engaged in conversations, expository discourse, and fable retells. We analyzed filled pauses as a function of hearing status and discourse contexts and evaluated the relationship between filled pauses and language ability. CHH produced uh across discourse contexts more often than their hearing peers. CHH did not differ in their use of um relative to CTH. Both um and uh were used more often in conversational samples compared to other types of discourse. Spearman’s correlations did not show any significant associations between the rate of filled pauses and standardized language scores. These results indicate that CHH produces uh more often than CTH, suggesting that they may have difficulty retrieving lexical–semantic items during ongoing speech. This information may be useful for interventionists who are collecting language samples during assessment. Full article
(This article belongs to the Special Issue Language and Cognitive Development in Deaf Children)
Show Figures

Figure 1

20 pages, 4961 KiB  
Article
Optimization of Thermal Conductivity of Bismaleimide/h-BN Composite Materials Based on Molecular Structure Design
by Weizhuo Li, Run Gu, Xuan Wang, Chenglong Wang, Mingzhe Qu, Xiaoming Wang and Jiahao Shi
Polymers 2025, 17(15), 2133; https://doi.org/10.3390/polym17152133 - 3 Aug 2025
Viewed by 173
Abstract
With the rapid development of information technology and semiconductor technology, the iteration speed of electronic devices has accelerated in an unprecedented manner, and the market demand for miniaturized, highly integrated, and highly intelligent devices continues to rise. But when these electronic devices operate [...] Read more.
With the rapid development of information technology and semiconductor technology, the iteration speed of electronic devices has accelerated in an unprecedented manner, and the market demand for miniaturized, highly integrated, and highly intelligent devices continues to rise. But when these electronic devices operate at high power, the electronic components generate a large amount of integrated heat. Due to the limitations of existing heat dissipation channels, the current heat dissipation performance of electronic packaging materials is struggling to meet practical needs, resulting in heat accumulation and high temperatures inside the equipment, seriously affecting operational stability. For electronic devices that require high energy density and fast signal transmission, improving the heat dissipation capability of electronic packaging materials can significantly enhance their application prospects. In order to improve the thermal conductivity of composite materials, hexagonal boron nitride (h-BN) was selected as the thermal filling material in this paper. The BMI resin was structurally modified through molecular structure design. The results showed that the micro-branched structure and h-BN synergistically improved the thermal conductivity and insulation performance of the composite material, with a thermal conductivity coefficient of 1.51 W/(m·K) and a significant improvement in insulation performance. The core mechanism is the optimization of the dispersion state of h-BN filler in the matrix resin through the free volume in the micro-branched structure, which improves the thermal conductivity of the composite material while maintaining high insulation. Full article
(This article belongs to the Special Issue Electrical Properties of Polymer Composites)
Show Figures

Figure 1

26 pages, 5287 KiB  
Article
Influence of Sample Mass and Pouring Temperature on the Effectiveness of Thermal Analysis for Estimating Gray Iron Inoculation Potential
by Raymundo del Campo-Castro, Manuel Castro-Román, Edgar-Ivan Castro-Cedeno and Martín Herrera-Trejo
Materials 2025, 18(15), 3640; https://doi.org/10.3390/ma18153640 - 2 Aug 2025
Viewed by 150
Abstract
Thermal analysis (TA) has been a valuable tool for controlling the carbon equivalent (CE) of cast irons. Additionally, this technique can provide enhanced control over melt quality, allowing for the avoidance of defects such as undesirable graphite morphology and the formation of carbides. [...] Read more.
Thermal analysis (TA) has been a valuable tool for controlling the carbon equivalent (CE) of cast irons. Additionally, this technique can provide enhanced control over melt quality, allowing for the avoidance of defects such as undesirable graphite morphology and the formation of carbides. To obtain the most valuable information from the TA, it is necessary to minimize the variations in the filling operation of the TA cups. However, the mass and pouring temperature of TA cups can vary in TA’s typical foundry operations. A design of experiments was performed to determine whether specific parameters of cooling curves used for quality control can distinguish the inoculation effect in the melt when the mass and the pouring temperature of TA cups are varied. The minimum temperature of the eutectic arrest proved to be a robust inoculation potential control parameter when variations in the cup’s mass were within a range of 268–390 g and were filled at any pouring temperature between 1235 and 1369 °C. Lighter cups under 268 g and poured at a low temperature are not suitable for controlling inoculation potential by TA; however, they remain helpful in controlling CE. These later cups are related to cooling times of less than 180 s, which can serve as a criterion for discarding unsuitable samples. A bimodal population of cell surfaces was revealed in the samples, with the population of small cells being proportionally more numerous in samples with lower TEmin values. Full article
Show Figures

Figure 1

35 pages, 782 KiB  
Systematic Review
A Systematic Literature Review on PHM Strategies for (Hydraulic) Primary Flight Control Actuation Systems
by Leonardo Baldo, Andrea De Martin, Giovanni Jacazio and Massimo Sorli
Actuators 2025, 14(8), 382; https://doi.org/10.3390/act14080382 - 2 Aug 2025
Viewed by 93
Abstract
Prognostic and Health Management (PHM) strategies are gaining increasingly more traction in almost every field of engineering, offering stakeholders advanced capabilities in system monitoring, anomaly detection, and predictive maintenance. Primary flight control actuators are safety-critical elements within aircraft flight control systems (FCSs), and [...] Read more.
Prognostic and Health Management (PHM) strategies are gaining increasingly more traction in almost every field of engineering, offering stakeholders advanced capabilities in system monitoring, anomaly detection, and predictive maintenance. Primary flight control actuators are safety-critical elements within aircraft flight control systems (FCSs), and currently, they are mainly based on Electro-Hydraulic Actuators (EHAs) or Electro-Hydrostatic Actuators (EHSAs). Despite the widespread diffusion of PHM methodologies, the application of these technologies for EHAs is still somewhat limited, and the available information is often restricted to the industrial sector. To fill this gap, this paper provides an in-depth analysis of state-of-the-art EHA PHM strategies for aerospace applications, as well as their limitations and further developments through a Systematic Literature Review (SLR). An objective and clear methodology, combined with the use of attractive and informative graphics, guides the reader towards a thorough investigation of the state of the art, as well as the challenges in the field that limit a wider implementation. It is deemed that the information presented in this review will be useful for new researchers and industry engineers as it provides indications for conducting research in this specific and still not very investigated sector. Full article
Show Figures

Figure 1

25 pages, 953 KiB  
Article
Command Redefined: Neural-Adaptive Leadership in the Age of Autonomous Intelligence
by Raul Ionuț Riti, Claudiu Ioan Abrudan, Laura Bacali and Nicolae Bâlc
AI 2025, 6(8), 176; https://doi.org/10.3390/ai6080176 - 1 Aug 2025
Viewed by 190
Abstract
Artificial intelligence has taken a seat at the executive table and is threatening the fact that human beings are the only ones who should be in a position of power. This article gives conjectures on the future of leadership in which managers will [...] Read more.
Artificial intelligence has taken a seat at the executive table and is threatening the fact that human beings are the only ones who should be in a position of power. This article gives conjectures on the future of leadership in which managers will collaborate with learning algorithms in the Neural Adaptive Artificial Intelligence Leadership Model, which is informed by the transformational literature on leadership and socio-technical systems, as well as the literature on algorithmic governance. We assessed the model with thirty in-depth interviews, system-level traces of behavior, and a verified survey, and we explored six hypotheses that relate to algorithmic delegation and ethical oversight, as well as human judgment versus machine insight in terms of agility and performance. We discovered that decisions are made quicker, change is more effective, and interaction is more vivid where agile practices and good digital understanding exist, and statistical tests propose that human flexibility and definite governance augment those benefits as well. It is single-industry research that contains self-reported measures, which causes research to be limited to other industries that contain more objective measures. Practitioners are provided with a practical playbook on how to make algorithmic jobs meaningful, introduce moral fail-safes, and build learning feedback to ensure people and machines are kept in line. Socially, the practice is capable of minimizing bias and establishing inclusion by visualizing accountability in the code and practice. Filling the gap between the theory of leadership and the reality of algorithms, the study provides a model of intelligent systems leading in organizations that can be reproduced. Full article
(This article belongs to the Section AI Systems: Theory and Applications)
25 pages, 2069 KiB  
Article
How Does Port Logistics Service Innovation Enhance Cross-Border e-Commerce Enterprise Performance? An Empirical Study in Ningbo-Zhoushan Port, China
by Weitao Jiang, Hongxu Lu, Zexin Wang and Ying Jing
J. Theor. Appl. Electron. Commer. Res. 2025, 20(3), 188; https://doi.org/10.3390/jtaer20030188 - 1 Aug 2025
Viewed by 205
Abstract
The port logistics service innovation (PLSI) is closely associated with cross-border e-commerce (CBEC) enterprise performance, given that the port, as the spatial carrier and the joint point of goods, information, customs house affairs, etc., is essentially a key node of the CBEC logistics [...] Read more.
The port logistics service innovation (PLSI) is closely associated with cross-border e-commerce (CBEC) enterprise performance, given that the port, as the spatial carrier and the joint point of goods, information, customs house affairs, etc., is essentially a key node of the CBEC logistics chain. However, the influence mechanism of PLSI on CBEC enterprise performance has still not yet been elaborated by consensus. To fill this gap, this study aims to figure out the effect mechanism integrating the probe into two variables (i.e., information interaction and environmental upgrade) in a moderated mediation model. Specifically, this study collects questionnaire survey data of logistics enterprises and CBEC enterprises in the Ningbo-Zhoushan Port of China by the Bootstrap method in the software SPSS 26.0. The results show the following: (1) PLSI can positively affect the CBEC enterprise performance; (2) information interaction plays an intermediary role between PLSI and CBEC enterprise performance; and (3) environmental upgrade can not only positively regulate the relationship between information interaction and CBEC enterprise performance, but also enhance the mediating role of information interaction with a moderated intermediary effect. Full article
(This article belongs to the Topic Data Science and Intelligent Management)
Show Figures

Figure 1

35 pages, 5094 KiB  
Article
Analysis of Influencing Factors on Spatial Distribution Characteristics of Traditional Villages in the Liaoxi Corridor
by Han Cao and Eunyoung Kim
Land 2025, 14(8), 1572; https://doi.org/10.3390/land14081572 - 31 Jul 2025
Viewed by 191
Abstract
As a cultural corridor connecting the Central Plains and Northeast China, the Liaoxi Corridor has a special position in the transmission of traditional Chinese culture. Traditional villages in the region have preserved rich intangible cultural heritage and traditional architectural features, which highlight the [...] Read more.
As a cultural corridor connecting the Central Plains and Northeast China, the Liaoxi Corridor has a special position in the transmission of traditional Chinese culture. Traditional villages in the region have preserved rich intangible cultural heritage and traditional architectural features, which highlight the historical heritage of multicultural intermingling. This study fills the gap in the spatial distribution of traditional villages in the Liaoxi Corridor and reveals their spatial distribution pattern, which is of great theoretical significance. Using Geographic Information System (GIS) spatial analysis and quantitative geography, this study analyzes the spatial pattern of traditional villages and the influencing factors. The results show that traditional villages in the Liaoxi Corridor are clustered, forming high-density settlement areas in Chaoyang County and Beizhen City. Most villages are located in hilly and mountainous areas and river valleys and are affected by the natural geographic environment (topography and water sources) and historical and human factors (immigration and settlement, border defense, ethnic integration, etc.). In conclusion, this study provides a scientific basis and practical reference for rural revitalization, cultural heritage protection, and regional coordinated development, aiming at revealing the geographical and cultural mechanisms behind the spatial distribution of traditional villages. Full article
Show Figures

Figure 1

30 pages, 7259 KiB  
Article
Multimodal Data-Driven Hourly Dynamic Assessment of Walkability on Urban Streets and Exploration of Regulatory Mechanisms for Diurnal Changes: A Case Study of Wuhan City
by Xingyao Wang, Ziyi Peng and Xue Yang
Land 2025, 14(8), 1551; https://doi.org/10.3390/land14081551 - 28 Jul 2025
Viewed by 300
Abstract
The use of multimodal data can effectively compensate for the lack of temporal resolution in streetscape imagery-based studies and achieve hourly refinement in the study of street walkability dynamics. Exploring the 24 h dynamic pattern of urban street walkability and its diurnal variation [...] Read more.
The use of multimodal data can effectively compensate for the lack of temporal resolution in streetscape imagery-based studies and achieve hourly refinement in the study of street walkability dynamics. Exploring the 24 h dynamic pattern of urban street walkability and its diurnal variation characteristics is a crucial step in understanding and responding to the accelerated urban metabolism. Aiming at the shortcomings of existing studies, which are mostly limited to static assessment or only at coarse time scales, this study integrates multimodal data such as streetscape images, remote sensing images of nighttime lights, and text-described crowd activity information and introduces a novel approach to enhance the simulation of pedestrian perception through a visual–textual multimodal deep learning model. A baseline model for dynamic assessment of walkability with street as a spatial unit and hour as a time granularity is generated. In order to deeply explore the dynamic regulation mechanism of street walkability under the influence of diurnal shift, the 24 h dynamic score of walkability is calculated, and the quantification system of walkability diurnal change characteristics is further proposed. The results of spatio-temporal cluster analysis and quantitative calculations show that the intensity of economic activities and pedestrian experience significantly shape the diurnal pattern of walkability, e.g., urban high-energy areas (e.g., along the riverside) show unique nocturnal activity characteristics and abnormal recovery speeds during the dawn transition. This study fills the gap in the study of hourly street dynamics at the micro-scale, and its multimodal assessment framework and dynamic quantitative index system provide important references for future urban spatial dynamics planning. Full article
Show Figures

Figure 1

25 pages, 2913 KiB  
Review
The Art of Interpreting Antinuclear Antibodies (ANAs) in Everyday Practice
by Marcelina Kądziela, Aleksandra Fijałkowska, Marzena Kraska-Gacka and Anna Woźniacka
J. Clin. Med. 2025, 14(15), 5322; https://doi.org/10.3390/jcm14155322 - 28 Jul 2025
Viewed by 337
Abstract
Background: Antinuclear antibodies (ANAs) serve as crucial biomarkers for diagnosing systemic autoimmune diseases; however, their interpretation can be complex and may not always correlate with clinical symptoms. Methods: A comprehensive narrative review was conducted to evaluate the peer-reviewed literature published between 1961 and [...] Read more.
Background: Antinuclear antibodies (ANAs) serve as crucial biomarkers for diagnosing systemic autoimmune diseases; however, their interpretation can be complex and may not always correlate with clinical symptoms. Methods: A comprehensive narrative review was conducted to evaluate the peer-reviewed literature published between 1961 and 2025. Databases, including PubMed and Scopus, were searched using combinations of controlled vocabulary and free-text terms relating to antinuclear antibodies and their clinical significance. The objective was to gather and synthesize information regarding the diagnostic utility and interpretation of ANA testing in routine medical practice. Discussion: The indirect immunofluorescence assay (IIF) on HEp-2 cells is established as the gold standard for detecting ANAs, facilitating the classification of various fluorescent patterns. While a positive ANA test can suggest autoimmune disorders, the presence and titre must be interpreted alongside clinical findings, as low titres often lack diagnostic significance. Findings indicate that titres higher than 1:160 may provide greater specificity in differentiating true positives from false positives in healthy individuals. The study also emphasizes the relevance of fluorescence patterns, with specific patterns linked to particular diseases, although many do not have strong clinical correlations. Moreover, certain autoantibodies demonstrate high specificity for diseases like systemic lupus erythematosus (SLE) and mixed connective tissue disease (MCTD). Ultimately, while ANA testing is invaluable for diagnosing connective tissue diseases, healthcare providers must consider its limitations to avoid misdiagnosis and unnecessary treatment. Conclusions: ANA testing is a valuable tool in the diagnosis of connective tissue diseases, but its interpretation must be approached with caution. Clinical context remains crucial when evaluating ANA results to avoid misdiagnosis and overtreatment. This review is about the diagnostic aspects and clinical consequences of ANA testing, as well as highlighting both the diagnostic benefits and the potential limitations of this procedure in everyday clinical practice. The review fills a gap in the literature by integrating the diagnostic and clinical aspects of ANA testing, with a focus on real-world interpretation challenges. Full article
(This article belongs to the Section Immunology)
14 pages, 1577 KiB  
Article
Determination of Acidity of Edible Oils for Renewable Fuels Using Experimental and Digitally Blended Mid-Infrared Spectra
by Collin G. White, Ayuba Fasasi, Chanda Swalley and Barry K. Lavine
J. Exp. Theor. Anal. 2025, 3(3), 20; https://doi.org/10.3390/jeta3030020 - 28 Jul 2025
Viewed by 183
Abstract
Renewable fuels produced from animal- and plant-based edible oils have emerged as an alternative to oil and natural gas. Burgeoning interest in renewables can be attributed to the rapid depletion of fossil fuels caused by the global energy demand and the environmental advantages [...] Read more.
Renewable fuels produced from animal- and plant-based edible oils have emerged as an alternative to oil and natural gas. Burgeoning interest in renewables can be attributed to the rapid depletion of fossil fuels caused by the global energy demand and the environmental advantages of renewables, specifically reduced emissions of greenhouse gases. An important property of the feedstock that is crucial for the conversion of edible oils to renewable fuels is the total acid number (TAN), as even a small increase in TAN for the feedstock can lead to corrosion of the catalyst in the refining process. Currently, the TAN is determined by potentiometric titration, which is time-consuming, expensive, and requires the preparation of reagents. As part of an effort to promote the use of renewable fuels, a partial least squares regression method with orthogonal signal correction to remove spectral information related to the sample background was developed to determine the TAN from the mid-infrared (IR) spectra of the feedstock. Digitally blended mid-IR spectral data were generated to fill in regions of the PLS calibration where there were very few samples. By combining experimental and digitally blended mid-IR spectral data to ensure adequate sample representation in all regions of the spectra–property calibration and better understand the spectra–property relationship through the identification of sample outliers in the original data that can be difficult to detect because of swamping, a PLS regression model for TAN (R2 = 0.992, cross-validated root mean square error = 0.468, and bias = 0.0036) has been developed from 118 experimental and digitally blended mid-IR spectra of commercial feedstock. Thus, feedstock whose TAN value is too high for refining can be flagged using the proposed mid-IR method, which is faster and easier to use than the current titrimetric method. Full article
Show Figures

Figure 1

30 pages, 3451 KiB  
Article
Integrating Google Maps and Smooth Street View Videos for Route Planning
by Federica Massimi, Antonio Tedeschi, Kalapraveen Bagadi and Francesco Benedetto
J. Imaging 2025, 11(8), 251; https://doi.org/10.3390/jimaging11080251 - 25 Jul 2025
Viewed by 358
Abstract
This research addresses the long-standing dependence on printed maps for navigation and highlights the limitations of existing digital services like Google Street View and Google Street View Player in providing comprehensive solutions for route analysis and understanding. The absence of a systematic approach [...] Read more.
This research addresses the long-standing dependence on printed maps for navigation and highlights the limitations of existing digital services like Google Street View and Google Street View Player in providing comprehensive solutions for route analysis and understanding. The absence of a systematic approach to route analysis, issues related to insufficient street view images, and the lack of proper image mapping for desired roads remain unaddressed by current applications, which are predominantly client-based. In response, we propose an innovative automatic system designed to generate videos depicting road routes between two geographic locations. The system calculates and presents the route conventionally, emphasizing the path on a two-dimensional representation, and in a multimedia format. A prototype is developed based on a cloud-based client–server architecture, featuring three core modules: frames acquisition, frames analysis and elaboration, and the persistence of metadata information and computed videos. The tests, encompassing both real-world and synthetic scenarios, have produced promising results, showcasing the efficiency of our system. By providing users with a real and immersive understanding of requested routes, our approach fills a crucial gap in existing navigation solutions. This research contributes to the advancement of route planning technologies, offering a comprehensive and user-friendly system that leverages cloud computing and multimedia visualization for an enhanced navigation experience. Full article
(This article belongs to the Section Computer Vision and Pattern Recognition)
Show Figures

Figure 1

Back to TopTop