Effect of Dynamic Point Symbol Visual Coding on User Search Performance in Map-Based Visualizations
Abstract
1. Introduction
2. Methods
2.1. Experiment 1: Encoding Type and Animation Rate
2.1.1. Participants
2.1.2. Apparatus
2.1.3. Stimuli
2.1.4. Procedure
2.2. Experiment 2: Encoding Type and Modulation Area
2.2.1. Participants
2.2.2. Apparatus
2.2.3. Stimuli
2.2.4. Procedure
2.3. Efficiency and Eye Movement Metrics
3. Results
3.1. Data Collection and Analysis
3.2. Experiment 1: Encoding Type and Animation Rate
3.2.1. Behavioral Data
3.2.2. Eye Movement Data
3.3. Experiment 2: Encoding Type and Modulation Area
3.3.1. Behavioral Data
3.3.2. Eye Movement Data
4. Discussion
4.1. Effects of Encoding Type and Animation Rate
4.2. Effects of Encoding Type and Modulation Area
4.3. Preattentive Processing and Perceptual Grouping
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Olberding, H.; Vetter, M. Dynamic 3D-Cartographic Symbols for VR Geovisualizations. KN—J. Cartogr. Geogr. Inf. 2023, 73, 265–275. [Google Scholar] [CrossRef]
- Bertin, J. Semiology of Graphics; University of Wisconsin Press: Madison, WI, USA, 1983; ISBN 978-0-299-09060-9. [Google Scholar]
- Roth, R.E. Visual Variables. In International Encyclopedia of Geography; Richardson, D., Castree, N., Goodchild, M.F., Kobayashi, A., Liu, W., Marston, R.A., Eds.; Wiley: Hoboken, NJ, USA, 2017; pp. 1–11. ISBN 978-0-470-65963-2. [Google Scholar]
- Stevens, S.S. On the Psychophysical Law. Psychol. Rev. 1957, 64, 153–181. [Google Scholar] [CrossRef]
- Cybulski, P.; Wielebski, Ł. Effectiveness of Dynamic Point Symbols in Quantitative Mapping. Cartogr. J. 2019, 56, 146–160. [Google Scholar] [CrossRef]
- Spalek, T.M.; Kawahara, J.; Di Lollo, V. Flicker Is a Primitive Visual Attribute in Visual Search. Can. J. Exp. Psychol./Rev. Can. Psychol. Expérimentale 2009, 63, 319–322. [Google Scholar] [CrossRef]
- Masumitsu, T.; Mizokami, Y. Influence of Naturalness of Chroma and Lightness Contrast Modulation on Colorfulness Adaptation in Natural Images. J. Opt. Soc. Am. A 2020, 37, A294–A304. [Google Scholar] [CrossRef]
- Vinke, L.N.; Yazdanbakhsh, A. Lightness Induction Enhancements and Limitations at Low Frequency Modulations across a Variety of Stimulus Contexts. PeerJ 2020, 8, e8918. [Google Scholar] [CrossRef]
- Cybulski, P.; Krassanakis, V. Motion Velocity as a Preattentive Feature in Cartographic Symbolization. J. Eye Mov. Res. 2023, 16, 10–16910. [Google Scholar] [CrossRef] [PubMed]
- Lewandowska, A.; Dziśko, M.; Jankowski, J. Investigation the Role of Contrast on Habituation and Sensitisation Effects in Peripheral Areas of Graphical User Interfaces. Sci. Rep. 2022, 12, 15281. [Google Scholar] [CrossRef]
- Tong, M.; Chen, S.; Niu, Y.; Xue, C. Effects of Speed, Motion Type, and Stimulus Size on Dynamic Visual Search: A Study of Radar Human–Machine Interface. Displays 2023, 77, 102374. [Google Scholar] [CrossRef]
- Konstantinou, E.N.; Skopeliti, A.; Nakos, B. POI Symbol Design in Web Cartography—A Comparative Study. ISPRS Int. J. Geo-Inf. 2023, 12, 254. [Google Scholar] [CrossRef]
- Gong, X.; Lan, T.; Ti, P. Metric and Color Modifications for the Automated Construction of Map Symbols. ISPRS Int. J. Geo-Inf. 2023, 12, 331. [Google Scholar] [CrossRef]
- Cybulski, P. Animating Cartographic Meaning: Unveiling the Impact of Pictorial Symbol Motion Speed in Preattentive Processing. ISPRS Int. J. Geo-Inf. 2024, 13, 118. [Google Scholar] [CrossRef]
- Deng, L.; Zhang, Z.; Zhou, F.; Liu, R. Effects of App Icon Border Form and Interface Background Color Saturation on User Visual Experience and Search Performance. Adv. Multimed. 2022, 2022, 1166656. [Google Scholar] [CrossRef]
- Pisetta, J.A.; Faria Andrade, A.; Camboim, S.P. Proposal and Evaluation of Pictorial Symbols for Reference Mapping on Mobile Devices. Int. J. Cartogr. 2025, 11, 24–41. [Google Scholar] [CrossRef]
- Lai, P.-C.; Yeh, A.G.-O. Assessing the Effectiveness of Dynamic Symbols in Cartographic Communication. Cartogr. J. 2004, 41, 229–244. [Google Scholar] [CrossRef]
- Muller, K. Statistical Power Analysis for the Behavioral Sciences. Technometrics 1989, 31, 499–500. [Google Scholar] [CrossRef]
- Cohen, J. A Power Primer. Psychol. Bull. 1992, 112, 155–159. [Google Scholar] [CrossRef] [PubMed]
- Van Laar, D.L. Psychological and Cartographic Principles for the Production of Visual Layering Effects in Computer Displays. Displays 2001, 22, 125–135. [Google Scholar] [CrossRef]
- Yu, B.; Sui, L. Effects of Motion Type on Motion-Onset and Steady-State Visual Evoked Potentials: Rotation vs. Flicker. NeuroReport 2024, 35, 191–199. [Google Scholar] [CrossRef]
- Dong, W.; Ran, J.; Wang, J. Effectiveness and Efficiency of Map Symbols for Dynamic Geographic Information Visualization. Cartogr. Geogr. Inf. Sci. 2012, 39, 98–106. [Google Scholar] [CrossRef]
- Le Pelley, M.E.; Ung, R.; Mine, C.; Most, S.B.; Watson, P.; Pearson, D.; Theeuwes, J. Reward Learning and Statistical Learning Independently Influence Attentional Priority of Salient Distractors in Visual Search. Atten. Percept. Psychophys. 2022, 84, 1446–1459. [Google Scholar] [CrossRef]
- Zhang, N.; Zhang, J.; Jiang, S.; Ge, W. The Effects of Layout Order on Interface Complexity: An Eye-Tracking Study for Dashboard Design. Sensors 2024, 24, 5966. [Google Scholar] [CrossRef]
- Park, J.; Bae, J.; Cho, K. Eye Tracking Research on Cinemagraph E-Magazine. Agribus. Inf. Manag. 2015, 7, 1–11. [Google Scholar] [CrossRef]
- Wang, Y.; Song, F.; Liu, Y.; Li, Y.; Ma, X.; Wang, W. Research on the Correlation Mechanism between Eye-Tracking Data and Aesthetic Ratings in Product Aesthetic Evaluation. J. Eng. Des. 2023, 34, 55–80. [Google Scholar] [CrossRef]
- Gao, W.; Shen, S.; Ji, Y.; Tian, Y. Human Perception of the Emotional Expressions of Humanoid Robot Body Movements: Evidence from Survey and Eye-Tracking Measurements. Biomimetics 2024, 9, 684. [Google Scholar] [CrossRef]
- Tang, Y.; Chen, C. Can Stylized Products Generated by AI Better Attract User Attention? Using Eye-Tracking Technology for Research. Appl. Sci. 2024, 14, 7729. [Google Scholar] [CrossRef]
- Wan, Y.; Yang, J.; Ren, X.; Yu, Z.; Zhang, R.; Li, X. Evaluation of Eye Movements and Visual Performance in Patients with Cataract. Sci. Rep. 2020, 10, 9875. [Google Scholar] [CrossRef] [PubMed]
- Ernst, D.; Wolfe, J.M. How Fixation Durations Are Affected by Search Difficulty Manipulations. Vis. Cogn. 2022, 30, 339–353. [Google Scholar] [CrossRef]
- Harris, A.M.; Eayrs, J.O.; Lavie, N. The Effect of Perceptual Load on Gaze and EEG Signals in Multi-Target Visual Search with Free Eye-Movements. J. Vis. 2019, 19, 273. [Google Scholar] [CrossRef]
- Drews, M.; Dierkes, K. Strategies for Enhancing Automatic Fixation Detection in Head-Mounted Eye Tracking. Behav. Res. 2024, 56, 6276–6298. [Google Scholar] [CrossRef]
- Ge, W.; Zhang, J.; Jiang, S.; Shi, X.; Zhou, Y. Effects of Dynamic Visual Coding of Point Symbols in Map-Based Information Visualization Design: An Eye-Tracking Study. In Human Interface and the Management of Information; Mori, H., Asahi, Y., Eds.; Lecture Notes in Computer Science; Springer Nature Switzerland: Cham, Switzerland, 2025; Volume 15773, pp. 29–40. ISBN 978-3-031-93818-4. [Google Scholar]
- Guo, F.; Chen, J.; Li, M.; Lyu, W.; Zhang, J. Effects of Visual Complexity on User Search Behavior and Satisfaction: An Eye-Tracking Study of Mobile News Apps. Univers. Access Inf. Soc. 2022, 21, 795–808. [Google Scholar] [CrossRef]
- Samiei, M.; Clark, J.J. Target Features Affect Visual Search, a Study of Eye Fixations. arXiv 2022. [Google Scholar] [CrossRef]
- Chen, C.; Huang, K. Fewer Clicks, Lower Emissions: Eye-Tracking Analysis of Eco-Friendly Navigation in Tourism Websites. Sustainability 2025, 17, 5462. [Google Scholar] [CrossRef]
- Bonev, B.; Chuang, L.L.; Escolano, F. How Do Image Complexity, Task Demands and Looking Biases Influence Human Gaze Behavior? Pattern Recognit. Lett. 2013, 34, 723–730. [Google Scholar] [CrossRef]
- Tseng, F.Y.; Chao, C.J.; Yau, Y.J.; Feng, W.Y. Design and Evaluation of Military Geographical Intelligence System: An Ergonomics Case Study. Displays 2018, 51, 36–42. [Google Scholar] [CrossRef]
- Lei, X.; Wang, Y.; Han, W.; Song, W. Knowledge Graph Representation of Multi-Source Urban Storm Surge Hazard Information Based on Spatio-Temporal Coding and the Hazard Events Ontology Model. ISPRS Int. J. Geo-Inf. 2024, 13, 88. [Google Scholar] [CrossRef]
- Lavie, N.; Hirst, A.; De Fockert, J.W.; Viding, E. Load Theory of Selective Attention and Cognitive Control. J. Exp. Psychol. Gen. 2004, 133, 339–354. [Google Scholar] [CrossRef] [PubMed]
- Cosman, J.D.; Vecera, S.P. Attentional Capture by Motion Onsets Is Modulated by Perceptual Load. Atten. Percept. Psychophys. 2010, 72, 2096–2105. [Google Scholar] [CrossRef]
- Brehaut, J.C.; Enns, J.T.; Di Lollo, V. Visual Masking Plays Two Roles in the Attentional Blink. Percept. Psychophys. 1999, 61, 1436–1448. [Google Scholar] [CrossRef]
- Stolte, M.; Ansorge, U. Automatic Capture of Attention by Flicker. Atten. Percept. Psychophys. 2021, 83, 1407–1415. [Google Scholar] [CrossRef]
- Enns, J.T.; Di Lollo, V. Object Substitution: A New Form of Masking in Unattended Visual Locations. Psychol. Sci. 1997, 8, 135–139. [Google Scholar] [CrossRef]
- Zhao, C.; Kong, Y.; Li, D.; Huang, J.; Kong, L.; Li, X.; Jensen, O.; Song, Y. Suppression of Distracting Inputs by Visual-Spatial Cues Is Driven by Anticipatory Alpha Activity. PLoS Biol. 2023, 21, 1–29. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Cao, R.; Zhu, X.; Zhou, H.; Wang, S. Distinct Attentional Characteristics of Neurons with Visual Feature Coding in the Primate Brain. Sci. Adv. 2025, 11, eadq0332. [Google Scholar] [CrossRef] [PubMed]
- Kuveždić Divjak, A.; Lapaine, M. Crisis Maps—Observed Shortcomings and Recommendations for Improvement. ISPRS Int. J. Geo-Inf. 2018, 7, 436. [Google Scholar] [CrossRef]
- Ma, X.; Cui, K.; Matta, N.; He, Z. Interacting with VDL-Based Structured Icons on Crisis Map for Emergency Coordination: Interactive Design and Experimental Demonstration. Displays 2021, 70, 102059. [Google Scholar] [CrossRef]
- Peng, G.; Yue, S.; Li, Y.; Song, Z.; Wen, Y. A Procedural Construction Method for Interactive Map Symbols Used for Disasters and Emergency Response. ISPRS Int. J. Geo-Inf. 2017, 6, 95. [Google Scholar] [CrossRef]
- Kostelnick, J.C.; Hoeniges, L.C. Map Symbols for Crisis Mapping: Challenges and Prospects. Cartogr. J. 2019, 56, 59–72. [Google Scholar] [CrossRef]
- Du, P.; Li, D.; Liu, T.; Zhang, L.; Yang, X.; Li, Y. Crisis Map Design Considering Map Cognition. ISPRS Int. J. Geo-Inf. 2021, 10, 692. [Google Scholar] [CrossRef]
- Castronovo, D.A.; Chui, K.K.; Naumova, E.N. Dynamic Maps: A Visual-Analytic Methodology for Exploring Spatio-Temporal Disease Patterns. Environ. Health 2009, 8, 61. [Google Scholar] [CrossRef]
- Nass, A.; van Gasselt, S. Dynamic Cartography: A Concept for Multidimensional Point Symbols. In Progress in Cartography: EuroCarto 2015; Gartner, G., Jobst, M., Huang, H., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 17–30. ISBN 978-3-319-19602-2. [Google Scholar] [CrossRef]
- Maiouak, M.; Taleb, T. Dynamic Maps for Automated Driving and UAV Geofencing. IEEE Wirel. Commun. 2019, 26, 54–59. [Google Scholar] [CrossRef]
- Li, J.; Wang, C.; Chen, M. Effects of Driving Background Complexity and Interface Opacity on Visual Cognition in AR-HUD Systems. J. Soc. Inf. Disp. 2025, 1–18. [Google Scholar] [CrossRef]
- Hollingworth, A.; Beck, V.M. Memory-Based Attention Capture When Multiple Items Are Maintained in Visual Working Memory. J. Exp. Psychol. Hum. Percept. Perform. 2016, 42, 911–917. [Google Scholar] [CrossRef]
- Lamme, V.A.F.; Roelfsema, P.R. The Distinct Modes of Vision Offered by Feedforward and Recurrent Processing. Trends Neurosci. 2000, 23, 571–579. [Google Scholar] [CrossRef]
- Livingstone, M.; Hubel, D. Psychophysical Evidence for Separate Channels for the Perception of Form, Color, Movement, and Depth. J. Neurosci. 1987, 7, 3416–3468. [Google Scholar] [CrossRef]
- Wagemans, J.; Elder, J.H.; Kubovy, M.; Palmer, S.E.; Peterson, M.A.; Singh, M.; Von Der Heydt, R. A Century of Gestalt Psychology in Visual Perception: I. Perceptual Grouping and Figure–Ground Organization. Psychol. Bull. 2012, 138, 1172–1217. [Google Scholar] [CrossRef]
- Egly, R.; Driver, J.; Rafal, R. Shifting Visual Attention Between Objects and Locations: Evidence From Normal and Parietal Lesion Subjects. J. Exp. Psychol. Gen. 1994, 123, 161–177. [Google Scholar] [CrossRef]
- Palmer, S.E. Vision Science: Photons to Phenomenology; MIT Press: Cambridge, MA, USA, 1999; ISBN 0262161834. [Google Scholar]
- Treisman, A.M.; Gelade, G. A Feature-Integration Theory of Attention. Cogn. Psychol. 1980, 12, 97–136. [Google Scholar] [CrossRef] [PubMed]
- Wolfe, J.M.; Horowitz, T.S. Five Factors That Guide Attention in Visual Search. Nat. Hum. Behav. 2017, 1, 0058. [Google Scholar] [CrossRef] [PubMed]
- Shaqiri, A.; Roinishvili, M.; Grzeczkowski, L.; Chkonia, E.; Pilz, K.; Mohr, C.; Brand, A.; Kunchulia, M.; Herzog, M.H. Sex-Related Differences in Vision Are Heterogeneous. Sci. Rep. 2018, 8, 7521. [Google Scholar] [CrossRef] [PubMed]
- Solianik, R.; Brazaitis, M.; Skurvydas, A. Sex-Related Differences in Attention and Memory. Medicina 2016, 52, 372–377. [Google Scholar] [CrossRef] [PubMed]
- Inukai, T.; Kawahara, J.I. Sex Differences in Temporal but Not Spatial Attentional Capture. Front. Psychol. 2018, 9, 1893. [Google Scholar] [CrossRef] [PubMed]
- English, M.C.W.; Maybery, M.T.; Visser, T.A.W. Magnitude of Sex Differences in Visual Search Varies with Target Eccentricity. Psychon. Bull. Rev. 2021, 28, 178–188. [Google Scholar] [CrossRef] [PubMed]
Variables | TVD | TFD | TFC | ||||
---|---|---|---|---|---|---|---|
Animation Rate | Encoding Type | Mean | SD | Mean | SD | Mean | SD |
low | pulsation | 5.60 | 3.66 | 4.56 | 3.08 | 13.27 | 6.86 |
flashing | 5.69 | 2.85 | 4.60 | 2.37 | 14.61 | 7.48 | |
lightness modulation | 5.50 | 2.56 | 4.45 | 2.17 | 13.83 | 6.15 | |
medium | pulsation | 5.44 | 2.59 | 4.36 | 2.09 | 12.84 | 5.47 |
flashing | 4.78 | 2.80 | 4.01 | 2.37 | 12.57 | 6.62 | |
lightness modulation | 5.89 | 3.38 | 4.76 | 2.83 | 14.27 | 7.47 | |
high | pulsation | 8.36 | 5.03 | 6.85 | 4.11 | 18.80 | 10.15 |
flashing | 7.47 | 5.27 | 6.33 | 4.65 | 16.76 | 9.35 | |
lightness modulation | 7.70 | 4.31 | 6.39 | 3.66 | 17.62 | 8.96 |
Variables | TVD | TFD | TFC | ||||
---|---|---|---|---|---|---|---|
Encoding Type | Modulation Area | Mean | SD | Mean | SD | Mean | SD |
pulsation | entire symbol | 5.63 | 3.67 | 4.59 | 3.10 | 13.28 | 6.86 |
contour | 3.92 | 2.95 | 3.29 | 2.42 | 10.44 | 7.16 | |
fill | 5.09 | 2.24 | 4.22 | 1.93 | 11.90 | 4.94 | |
flashing | entire symbol | 5.26 | 2.67 | 4.28 | 2.31 | 13.11 | 6.38 |
contour | 5.27 | 2.52 | 4.25 | 2.10 | 13.58 | 6.81 | |
fill | 5.95 | 3.08 | 4.95 | 2.62 | 14.20 | 6.34 | |
lightness modulation | entire symbol | 5.49 | 2.58 | 4.44 | 2.18 | 13.79 | 6.19 |
contour | 4.43 | 2.39 | 3.65 | 2.00 | 11.76 | 5.82 | |
fill | 5.60 | 3.03 | 4.62 | 2.55 | 14.37 | 6.98 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the International Society for Photogrammetry and Remote Sensing. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ge, W.; Zhang, J.; Shi, X.; Tang, W.; Qian, L. Effect of Dynamic Point Symbol Visual Coding on User Search Performance in Map-Based Visualizations. ISPRS Int. J. Geo-Inf. 2025, 14, 305. https://doi.org/10.3390/ijgi14080305
Ge W, Zhang J, Shi X, Tang W, Qian L. Effect of Dynamic Point Symbol Visual Coding on User Search Performance in Map-Based Visualizations. ISPRS International Journal of Geo-Information. 2025; 14(8):305. https://doi.org/10.3390/ijgi14080305
Chicago/Turabian StyleGe, Weijia, Jing Zhang, Xingjian Shi, Wenzhe Tang, and Longlong Qian. 2025. "Effect of Dynamic Point Symbol Visual Coding on User Search Performance in Map-Based Visualizations" ISPRS International Journal of Geo-Information 14, no. 8: 305. https://doi.org/10.3390/ijgi14080305
APA StyleGe, W., Zhang, J., Shi, X., Tang, W., & Qian, L. (2025). Effect of Dynamic Point Symbol Visual Coding on User Search Performance in Map-Based Visualizations. ISPRS International Journal of Geo-Information, 14(8), 305. https://doi.org/10.3390/ijgi14080305