Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (193)

Search Parameters:
Keywords = filaggrin-2

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 7287 KB  
Article
Gardeniae Fructus Enhances Skin Barrier Function via AHR-Mediated FLG/LOR/IVL Expression
by Kaile Zong, Fangni Zhou, Kewei Xu, Junzi Dong, Qing Huang and Jianxin Wu
Molecules 2025, 30(18), 3764; https://doi.org/10.3390/molecules30183764 - 16 Sep 2025
Viewed by 315
Abstract
Gardeniae Fructus (GF), a traditional Chinese medicine rich in iridoids, has demonstrated skin-improving effects. However, its mechanisms for enhancing epidermal barrier function remain unclear. In this study, the iridoids in GF were characterized using UPLC-MS/MS. The improvement in the barrier function by GF [...] Read more.
Gardeniae Fructus (GF), a traditional Chinese medicine rich in iridoids, has demonstrated skin-improving effects. However, its mechanisms for enhancing epidermal barrier function remain unclear. In this study, the iridoids in GF were characterized using UPLC-MS/MS. The improvement in the barrier function by GF was assessed through in vitro experiments and a human efficacy assessment. In addition, the potential targets were predicted through proteomics analysis, molecular docking, and molecular dynamics (MD), and verified in HaCaT cells and three-dimensional epidermal models. Nine iridoids were identified in GF. In vitro, GF effectively promoted cell migration and reduced cell damage and oxidative stress. Proteomics analysis combined with molecular docking and MD simulations predicted that the primary iridoids in GF ameliorate barrier function by binding to the aryl hydrocarbon receptor (AHR) with high affinity and stability. Subsequent validation demonstrated that GF significantly upregulated AHR, filaggrin (FLG), loricrin (LOR), and involucrin (IVL) mRNA and protein expression. A 28-day randomized double-blind human efficacy assessment in subjects with sensitive skin showed that the gel with GF increased stratum corneum hydration, reduced transepidermal water loss (TEWL), and lowered erythema index and lactic acid tingling. These findings suggest that GF enhances the skin barrier via AHR activation-mediated upregulation of barrier proteins, supporting its cosmeceutical potential. Full article
Show Figures

Figure 1

16 pages, 500 KB  
Review
The Skin Barrier: A System Driven by Phase Separation
by Fengjiao Yu, Lu Leng, Haowen Wang, Mengmeng Du, Liang Wang and Wenhua Xu
Cells 2025, 14(18), 1438; https://doi.org/10.3390/cells14181438 - 15 Sep 2025
Viewed by 406
Abstract
The mammalian epidermis forms a critical barrier against environmental insults and water loss. The formation of its outermost layer, the stratum corneum, involves a rapid terminal differentiation process that has traditionally been explained by the “bricks and mortar” model. Recent advances reveal a [...] Read more.
The mammalian epidermis forms a critical barrier against environmental insults and water loss. The formation of its outermost layer, the stratum corneum, involves a rapid terminal differentiation process that has traditionally been explained by the “bricks and mortar” model. Recent advances reveal a more dynamic mechanism governed by intracellular liquid–liquid phase separation (LLPS). This review proposes that the lifecycle of the granular layer is orchestrated by LLPS. Evidence is synthesized showing that keratohyalin granules (KGs) are biomolecular condensates formed by the phase separation of the intrinsically disordered protein filaggrin (FLG). The assembly, maturation, and pH-triggered dissolution of these condensates are essential for cytoplasmic remodeling and the programmed flattening of keratinocytes, a process known as corneoptosis. In parallel, an LLPS-based signaling pathway is described in which the kinase RIPK4 forms condensates that activate the Hippo pathway, promoting transcriptional reprogramming and differentiation. Together, these structural and signaling condensates drive skin barrier formation. This review further reinterprets atopic dermatitis, ichthyosis vulgaris, and Bartsocas-Papas syndrome as diseases of aberrant phase behavior, in which pathogenic mutations alter condensate formation or material properties. This integrative framework offers new insight into skin biology and suggests novel opportunities for therapeutic intervention through biophysics-informed biomaterial and regenerative design. Full article
(This article belongs to the Section Cellular Biophysics)
Show Figures

Figure 1

21 pages, 3678 KB  
Review
Amino Acid Metabolism of the Skin: Control by Specific Enzymes and Contribution to Protective Functions
by Corina Dörner, Julia Steinbinder, Attila Placido Sachslehner, Supawadee Sukseree and Leopold Eckhart
Metabolites 2025, 15(9), 601; https://doi.org/10.3390/metabo15090601 - 9 Sep 2025
Viewed by 526
Abstract
The skin protects the body from damaging external stressors. The function of its outermost compartment, the epidermis, depends on high rates of protein synthesis and the production of protective molecules, both requiring amino acids as precursors. Conversely, the degradation of the epidermal barrier [...] Read more.
The skin protects the body from damaging external stressors. The function of its outermost compartment, the epidermis, depends on high rates of protein synthesis and the production of protective molecules, both requiring amino acids as precursors. Conversely, the degradation of the epidermal barrier protein filaggrin releases free amino acids. Here, we review the epidermal amino acid metabolism, focusing on the metabolism of histidine, arginine and tyrosine, which are subjected to epidermal cell-specific control mechanisms. Histidine and arginine are metabolized by enzymes that are transcriptionally upregulated during terminal differentiation of keratinocytes, while tyrosine is specifically metabolized in melanocytes. Arginase converts arginine into ornithine and urea. While ornithine is decarboxylated to putrescine, a regulator of cellular proliferation, urea contributes to the moisturization of the skin surface. Histidase, also known as histidine ammonia lyase, converts histidine into urocanic acid (UCA) and ammonia. UCA is the main ultraviolet-absorbing molecule of the cornified layer of the epidermis, serving as a natural sunscreen of human skin. In melanocytes, tyrosinase initiates the polymerization of tyrosine to melanin, the main skin pigment that absorbs both visible light and ultraviolet radiation. The current evidence indicates that the metabolism of histidine, arginine, tyrosine and other amino acids critically influences normal and diseased skin. Full article
(This article belongs to the Section Cell Metabolism)
Show Figures

Figure 1

15 pages, 1809 KB  
Article
Effects of ε-Viniferin and ε-Viniferin-Enriched Extract from Vitis labruscana B. ‘Campbell Early’ Cell Cultures on Wound Healing and Epidermal Barrier Restoration in Human Skin Cells
by Daeun Kim, Jimin Lim, Kyuri Lee, Gisol Kim, Jaeho Pyee, Minkyoung You and Jaesung Hwang
Cosmetics 2025, 12(5), 181; https://doi.org/10.3390/cosmetics12050181 - 25 Aug 2025
Viewed by 1086
Abstract
Skin wound healing and barrier restoration are complex, tightly regulated processes critical for maintaining skin integrity, particularly in aged or compromised skin. This study investigated the wound healing efficacy and epidermal barrier-restoring effects of ε-Viniferin, a bioactive resveratrol dimer, and Vino Chocolate™, a [...] Read more.
Skin wound healing and barrier restoration are complex, tightly regulated processes critical for maintaining skin integrity, particularly in aged or compromised skin. This study investigated the wound healing efficacy and epidermal barrier-restoring effects of ε-Viniferin, a bioactive resveratrol dimer, and Vino Chocolate™, a grape flower-derived extract from Vitis labruscana ‘Campbell Early’ cell cultures enriched with ε-Viniferin. An HPLC analysis confirmed a high concentration of ε-Viniferin (547.58 ppm) in the cell culture-derived extract. In vitro assays conducted on HaCaT keratinocytes and HDFn fibroblasts demonstrated that the treatment with ε-Viniferin and Vino Chocolate™ significantly enhanced fibroblast migration. ELISA analyses showed that both treatments induced a dose-dependent increase in pro-collagen type I (COL1A1), with ε-Viniferin at 1 ppm demonstrating superior efficacy compared to TGF-β1. Additionally, these compounds notably suppressed the expression of matrix metalloproteinases MMP-1 and MMP-3, displaying effects comparable to or greater than retinoic acid. The Western blot analysis further revealed an increased filaggrin expression in keratinocytes, suggesting an improved epidermal barrier function. Collectively, these results indicate that ε-Viniferin and Vino Chocolate™ effectively promote extracellular matrix remodeling, modulate inflammatory responses, and enhance epidermal barrier integrity. These findings highlight their potential as multifunctional bioactive agents for cosmeceutical applications and emphasize the advantages of plant cell culture technology as a sustainable, innovative platform for advanced skincare ingredient development. Full article
(This article belongs to the Section Cosmetic Dermatology)
Show Figures

Figure 1

14 pages, 1050 KB  
Article
Harringtonine Attenuates Extracellular Matrix Degradation, Skin Barrier Dysfunction, and Inflammation in an In Vitro Skin Aging Model
by Sullim Lee and Sanghyun Lee
Curr. Issues Mol. Biol. 2025, 47(8), 642; https://doi.org/10.3390/cimb47080642 - 10 Aug 2025
Viewed by 590
Abstract
With the growing interest in natural strategies for preventing skin aging, plant-derived compounds are being actively investigated for their potential protective effects against skin inflammation and extracellular matrix (ECM) degradation. In this study, we explored the anti-aging and anti-inflammatory effects of harringtonine, an [...] Read more.
With the growing interest in natural strategies for preventing skin aging, plant-derived compounds are being actively investigated for their potential protective effects against skin inflammation and extracellular matrix (ECM) degradation. In this study, we explored the anti-aging and anti-inflammatory effects of harringtonine, an alkaloid isolated from Cephalotaxus harringtonia, in normal human epidermal keratinocytes (NHEKs) under inflammatory stress induced by tumor necrosis factor-alpha (TNF-α) and interferon-gamma (IFN-γ). Harringtonine significantly suppressed the expression of matrix metalloproteinases (MMP)-1, MMP-2, and MMP-9 and restored the expression of collagen synthesis-related genes [collagen type I alpha 1 chain (COL1A1), collagen type I alpha 2 chain (COL1A2), and collagen type IV alpha 1 chain COL4A1)], indicating its protective role in ECM degradation. Additionally, harringtonine improved the expression of skin barrier-related genes, such as serine peptidase inhibitor kazal type 5 (SPINK5), loricrin (LOR), quaporin-3 (AQP3), filaggrin (FLG), and keratin 1 (KRT1) although it had no significant effect on involucrin (IVL). Harringtonine also markedly reduced the production of pro-inflammatory cytokines [interleukin (IL)-1β, IL-6, and IL-8] and inflammatory mediators, including prostaglandin E2 (PGE2), cyclooxygenase-2 (COX-2), and nitric oxide (NO). Our findings suggest that harringtonine may serve as a promising natural compound for mitigating skin aging and inflammation through multi-targeted modulation of ECM remodeling, skin barrier function, and inflammatory response. Full article
(This article belongs to the Section Biochemistry, Molecular and Cellular Biology)
Show Figures

Figure 1

17 pages, 3690 KB  
Article
Evaluating the Effect of Fresh and Aged Antioxidant Formulations in Skin Protection Against UV Damage
by John Ivarsson, Patricia Brieva, Hina Choudhary and Giuseppe Valacchi
Cosmetics 2025, 12(4), 166; https://doi.org/10.3390/cosmetics12040166 - 7 Aug 2025
Viewed by 1283
Abstract
Introduction: Extrinsic skin damage is often a result of oxidative stress caused by exposure to environmental factors such as ultraviolet (UV) radiation, ozone (O3), and various pollutants. As a result, topical antioxidants have been evaluated for their effectiveness in mitigating or [...] Read more.
Introduction: Extrinsic skin damage is often a result of oxidative stress caused by exposure to environmental factors such as ultraviolet (UV) radiation, ozone (O3), and various pollutants. As a result, topical antioxidants have been evaluated for their effectiveness in mitigating or reversing skin damage caused by environmental factors. Topical antioxidants containing a combination of l-ascorbic acid, tocopherol, and ferulic acid have significantly improved markers of skin health after exposure to environment-induced skin damage. However, research suggests that l-ascorbic acid and tocopherol tend to be relatively unstable, possibly affecting their efficacy against outdoor stressor damage. It has been shown that ferulic acid significantly improves the stability of both l-ascorbic acid and tocopherol, but its long-term stabilization effects on these antioxidants are relatively unknown. Material and Methods: This study evaluated the time-dependent effectiveness of a topical antioxidant mix containing 15% l-ascorbic acid, 1% tocopherol, and 0.5% ferulic acid (AOX) on UV-induced skin damage. Skin biopsies (12 mm, n = 60) were placed in a 6-well plate with medium and incubated at 37 °C and 5% CO2 overnight. The day after, skin samples were pretreated with 10 µL of differently aged AOX (0-, 6-, 12-, and 36-month-old) and then exposed to different doses of UV light (100, 200, 400 mJ/cm2) daily over four days. AOX formulations were stored in a cool, dry, and dark place at approximately 20–22 °C during the whole study. This study evaluated 4-hydroxynonenal (4-HNE) and 8-hydroxy-2′-deoxyguanosine (8-OHdG) as oxidative damage and skin DNA damage markers, Collagen1 and Filaggrin as skin structure, and IL-8 and Nrf2 as inflammatory and defensive response. Results: UV exposure significantly increased oxidative and inflammatory markers in human skin explants affecting also filaggrin and collagen levels. However, pre-treatment with the antioxidant formulation, particularly in its younger formulations (0-, 6-, and 12-month-old), significantly reduced the damaging effect of UV. Additionally, all antioxidant formulations effectively mitigated UV-induced damage across all doses. Conclusions: Our results indicate that pre-treatment with this formulation consistently reduces UV-induced oxidative damage and DNA damage in human skin explants, regardless of the formulation age and the discoloration state. Although effective, the protective capacity of aged formulations may be reduced only when extreme UV exposure is tested, a condition that is unlikely to occur under typical environmental conditions. These results support ferulic acid as a stabilization agent for topical antioxidant mixtures. Full article
(This article belongs to the Section Cosmetic Formulations)
Show Figures

Figure 1

17 pages, 3907 KB  
Article
Safety Validation of Plant-Derived Materials for Skin Application
by Euihyun Kim, Hyo Hyun Seo, Dong Sun Shin, Jihyeok Song, Seon Kyu Yun, Jeong Hun Lee and Sang Hyun Moh
Cosmetics 2025, 12(4), 153; https://doi.org/10.3390/cosmetics12040153 - 21 Jul 2025
Viewed by 1885
Abstract
The cosmetic industry faces a critical need to balance commercial innovation with scientific validation, especially regarding the safety and efficacy of raw materials. Plant-derived materials (PDMs) offer a promising alternative to animal-derived ingredients in cosmetics, particularly due to their safety and compliance with [...] Read more.
The cosmetic industry faces a critical need to balance commercial innovation with scientific validation, especially regarding the safety and efficacy of raw materials. Plant-derived materials (PDMs) offer a promising alternative to animal-derived ingredients in cosmetics, particularly due to their safety and compliance with vegan and ethical standards. Unlike compounds such as polydeoxyribonucleotide (PDRN), which is derived from the testis or seminal fluid of Salmonidae species and raises concerns regarding its origin, sustainability, and consumer acceptability, PDMs provide a cleaner, ethically preferable profile. In this study, we evaluated 50 PDM candidates using in vitro cell viability, wound healing, and immunocytochemistry assays, along with primary skin irritation tests in human participants. None of the samples showed harmful effects. Notably, sample Nos. 38 and 42 demonstrated significant wound-healing capacity and upregulated filaggrin expression without causing notable irritation in clinical testing. These findings support the biological activity and safety of specific PDMs as functional cosmetic ingredients. This study presents scientifically validated evidence for plant-based alternatives to animal-derived materials and offers a new milestone in the shift toward sustainable and ethical cosmetic development. By bridging the gap between consumer demand and scientific rigor, this study provides a robust platform for future innovations in vegan cosmetics. Full article
Show Figures

Graphical abstract

17 pages, 1758 KB  
Article
Bioactive Polysaccharides from Fermented Dendrobium officinale: Structural Insights and Their Role in Skin Barrier Repair
by Wanshuai Wang, Anqi Zou, Qingtao Yu, Zhe Wang, Daotong Tan, Kaiye Yang, Chao Cai and Guangli Yu
Molecules 2025, 30(13), 2875; https://doi.org/10.3390/molecules30132875 - 6 Jul 2025
Viewed by 1015
Abstract
Dendrobium, a prominent genus in the Orchidaceae family, has generated significant research attention due to its demonstrated biological potential, particularly its notable anti-inflammatory and antioxidant activities. In this study, two fractions of fermented Dendrobium officinale polysaccharides (FDOPs) were successfully isolated through a [...] Read more.
Dendrobium, a prominent genus in the Orchidaceae family, has generated significant research attention due to its demonstrated biological potential, particularly its notable anti-inflammatory and antioxidant activities. In this study, two fractions of fermented Dendrobium officinale polysaccharides (FDOPs) were successfully isolated through a multi-stage purification strategy including gradient ethanol precipitation, gel column chromatography, and ion exchange chromatography with Lactobacillus reuteri CCFM863. Structural characterization revealed that both Dendrobium officinale polysaccharide fractions consisted of (1→4)-β-D-Manp, (1→4)-β-D-Glcp, and (1→4)-α-D-Glcp residues. The anti-inflammatory efficacy and keratinocyte-protective potential of FDOPs (FDOP-1A and FDOP-2A) were investigated by using lipopolysaccharide (LPS)-induced RAW264.7 and HaCaT cells models, which showed significant inhibitions on the inflammatory factors of monocyte chemoattractant protein-1 (MCP-1), tumor necrosis factor-alpha (TNF-α), nitric oxide (NO), and interleukin-1 beta (IL-1β); recovered levels of filaggrin (FLG), aquaporin 3 (AQP3), transient receptor potential vanilloid 4 (TRPV4), cathelicidin antimicrobial peptide (CAMP)/LL-37, and adiponectin (ADIPOQ); and the reduced protein expression of the TLR4/IκB-α/NF-κB/NLRP3 pathway. Notably, the FDOPs exhibited a remarkable reactive oxygen species (ROS) scavenging capacity, demonstrating superior antioxidant activity. Therefore, FDOPs show dual anti-inflammatory and antioxidant properties, making them suitable as active ingredients for modulating epidermal inflammation and promoting skin barrier repair. Full article
(This article belongs to the Special Issue Biotechnology and Biomass Valorization)
Show Figures

Figure 1

27 pages, 7392 KB  
Article
Skin-Whitening, Antiwrinkle, and Moisturizing Effects of Astilboides tabularis (Hemsl.) Engl. Root Extracts in Cell-Based Assays and Three-Dimensional Artificial Skin Models
by Nam Ho Yoo, Hyun Sook Lee, Sung Min Park, Young Sun Baek and Myong Jo Kim
Int. J. Mol. Sci. 2025, 26(12), 5725; https://doi.org/10.3390/ijms26125725 - 15 Jun 2025
Viewed by 806
Abstract
This study investigated the potential cosmetic properties of the ethyl acetate (EtOAc) fraction obtained from the roots of Astilboides tabularis (Hemsl.) Engl., focusing on skin-whitening, antiwrinkle, and moisturizing effects using cell-based assays and three-dimensional (3D) artificial skin models (Neoderm-ED and Neoderm-ME). The EtOAc [...] Read more.
This study investigated the potential cosmetic properties of the ethyl acetate (EtOAc) fraction obtained from the roots of Astilboides tabularis (Hemsl.) Engl., focusing on skin-whitening, antiwrinkle, and moisturizing effects using cell-based assays and three-dimensional (3D) artificial skin models (Neoderm-ED and Neoderm-ME). The EtOAc fraction showed significant dose-dependent inhibitory activity against tyrosinase (TYR) (72.0% inhibition at 50 µg/mL), comparable to that of kojic acid. In α-melanocyte-stimulating hormone (α-MSH)-stimulated Neoderm-ME artificial skin containing melanocytes, the EtOAc fraction reduced melanin synthesis at concentrations of 50 and 75 µg/mL and decreased melanogenesis-related gene expression, including TYR, microphthalmia-associated transcription factor (MITF), tyrosinase-related protein-1 (TRP-1) and TRP-2. In the antiwrinkle assays, the EtOAc fraction effectively inhibited elastase activity (41.5% inhibition at 10 µg/mL), exceeding the efficacy of ursolic acid. In the Neoderm-ED artificial skin model, the EtOAc fraction reversed structural damage induced by particulate matter (PM10), restoring epidermal thickness and dermal density. This improvement was supported by the increased expression of skin barrier and antiwrinkle genes, including filaggrin, hyaluronic acid synthase-1 (HAS-1), HAS-2, aquaporin-3 (AQP-3), collagen type I alpha 1 chain (COL1A1), elastin, tissue inhibitor of metalloproteinases-1 (TIMP-1), and TIMP-2, as well as decreased expression of matrix metalloproteinases (MMP-1, MMP-3, and MMP-9). Our results indicate that the EtOAc fraction from A. tabularis root has considerable potential as a multifunctional cosmetic. Full article
(This article belongs to the Section Bioactives and Nutraceuticals)
Show Figures

Graphical abstract

15 pages, 18796 KB  
Article
Study of the Repair Action and Mechanisms of a Moisturizing Cream on an SLS-Damaged Skin Model Using Two-Photon Microscopy
by Yixin Shen, Ying Ye, Lina Wang, Huiping Hu, Caixia Wang, Yuxuan Wu, Dingqiao Lin, Jiaqi Shen, Hong Zhang, Yanan Li and Peiwen Sun
Cosmetics 2025, 12(3), 119; https://doi.org/10.3390/cosmetics12030119 - 10 Jun 2025
Viewed by 1941
Abstract
This study evaluates the efficacy of a novel moisturizing cream using a sodium lauryl sulfate (SLS)-induced skin damage model, supported by advanced imaging with two-photon microscopy (TPM). TPM’s capabilities allow for in-depth, non-invasive visualization of skin repair processes, surpassing traditional imaging methods. The [...] Read more.
This study evaluates the efficacy of a novel moisturizing cream using a sodium lauryl sulfate (SLS)-induced skin damage model, supported by advanced imaging with two-photon microscopy (TPM). TPM’s capabilities allow for in-depth, non-invasive visualization of skin repair processes, surpassing traditional imaging methods. The innovative formulation of the cream includes ceramide NP, ceramide NS, ceramide AP, lactobacillus/soybean ferment extract, and bacillus ferment, targeting the enhancement of skin hydration, barrier function, and structural integrity. In SLS-stimulated 3D skin models and clinical settings, the cream significantly improved the expression of key barrier proteins such as filaggrin (FLG), loricrin (LOR), and transglutaminase 1 (TGM1), while reducing inflammatory markers like IL-1α, TNF-α, and PGE2. Notably, the cream facilitated a significant increase in epidermal thickness and improved the dermal–epidermal junction index (DEJI), as observed through TPM, indicating profound skin repair and enhanced barrier functionality. Clinical trials further demonstrated the cream’s reparative effects, significantly reducing symptoms in participants with sensitive skin and post-intense pulsed light (IPL) treatment scenarios. This study highlights the utility of TPM as a groundbreaking tool in cosmetic dermatology, offering real-time analysis of the effects of skincare products on skin structure and function. Full article
(This article belongs to the Section Cosmetic Dermatology)
Show Figures

Figure 1

16 pages, 7796 KB  
Article
Glycine soja Leaf and Stem Extract Ameliorates Atopic Dermatitis-like Skin Inflammation by Inhibiting JAK/STAT Signaling
by Yoon-Young Sung, Misun Kim, Dong-Seon Kim and Eunjung Son
Int. J. Mol. Sci. 2025, 26(10), 4560; https://doi.org/10.3390/ijms26104560 - 9 May 2025
Viewed by 1165
Abstract
Wild soybean (Glycine soja, GS) is a traditional medicine used to treat inflammation. In this study, the anti-atopic properties of GS leaf and stem extract on skin inflammation were evaluated in the Dermatophagoides farinae-extract-induced mouse model and keratinocytes. Oral administration [...] Read more.
Wild soybean (Glycine soja, GS) is a traditional medicine used to treat inflammation. In this study, the anti-atopic properties of GS leaf and stem extract on skin inflammation were evaluated in the Dermatophagoides farinae-extract-induced mouse model and keratinocytes. Oral administration of the GS extract reduced scratching, dermatitis score, transepidermal water loss, thickness of epidermis, inflammatory cell accumulation, and serum concentrations of thymic stromal lymphopoietin and immunoglobulin E. GS downregulated the expression of inflammatory gene markers of atopic dermatitis (AD), including interleukin (IL)-6; regulated on activation, normal T cell expressed and secreted (RANTES); thymus- and activation-regulated chemokine (TARC); and macrophage-derived chemokine (MDC) and upregulated the expression of filaggrin, a keratinocyte differentiation marker, in skin tissue. GS downregulated Janus kinase 1, signal transducer and activation of transcription (STAT) 1, and STAT3 pathways. Using ultra-performance liquid chromatography, we identified seven flavonoids in GS extract, including apigenin, epicatechin, genistein, genistin, daidzin, daidzein, and soyasaponin Bb. GS, apigenin, and genistein reduced the expression of IL-6, MDC, TARC, and RANTES and increased filaggrin via the downregulation of STAT3 phosphorylation in interferon-γ/tumor necrosis factor-α-stimulated keratinocytes. Our results suggest that GS leaf and stem extract ameliorates AD-like skin inflammation by regulating the immune response and restoring skin barrier function. Full article
(This article belongs to the Special Issue Anti-Inflammatory and Anti-Oxidant Effects of Extracts from Plants)
Show Figures

Figure 1

25 pages, 9543 KB  
Article
Systematic Evaluation and Identification of Anti-Inflammatory and Anti-Aging Ginseng Peptides for Skincare Applications
by Ze Xia, Wei Liu, Fanmo Zeng, Sining Kang, Junxiang Li, Wenfei Xu, Pingxiang Tang, Xinyi Zheng, Dandan Li, Xuebin Yang, Qing Sheng and Xuhui Li
Cosmetics 2025, 12(2), 85; https://doi.org/10.3390/cosmetics12020085 - 21 Apr 2025
Viewed by 2082
Abstract
This study explores the potential of ginseng-derived peptides (GPs) as multifunctional bioactive agents for skincare. Unlike previous research into ginseng saponins and polysaccharides, we identified that ginseng extracts containing water-soluble small molecules and polypeptides exhibit potent antioxidant, anti-inflammatory, and anti-aging properties. In vitro [...] Read more.
This study explores the potential of ginseng-derived peptides (GPs) as multifunctional bioactive agents for skincare. Unlike previous research into ginseng saponins and polysaccharides, we identified that ginseng extracts containing water-soluble small molecules and polypeptides exhibit potent antioxidant, anti-inflammatory, and anti-aging properties. In vitro assays revealed that ginseng peptide extract (GPE) reduced reactive oxygen species (ROS) and inflammatory cytokines (IL-6, TNF-α, IL-1β) in RAW264.7 macrophages while enhancing collagen synthesis in human skin fibroblasts (HSFs). Validation using 3D epidermal and dermal models further confirmed GPE’s ability to mitigate UV-induced damage, restore skin barrier proteins (filaggrin, loricrin), and increase collagen content. In addition, we screened 19 candidate peptides from ginseng extract using machine learning and prioritized their interaction with skin aging and inflammation-related targets. Three peptides (QEGIYPNNDLYRPK, VDCPTDDATDDYRLK, and ADEVVHHPLDKSSEVE) demonstrated significant collagen-promoting, antioxidant, and anti-inflammatory effects in cellular models. These findings highlight the efficacy of computational approaches in identifying natural bioactive ingredients, positioning ginseng peptides as promising candidates for innovative cosmeceutical formulations targeting inflammaging and skin rejuvenation. Full article
(This article belongs to the Special Issue Skin Anti-Aging Strategies)
Show Figures

Graphical abstract

12 pages, 4292 KB  
Article
Photoprotective Effect and Potential Mechanisms of Gardeniae Fructus Extract in UVB-Irradiated HaCaT Cells
by Kaile Zong, Xiang Li, Fangni Zhou, Junzi Dong, Qing Huang and Jianxin Wu
Cosmetics 2025, 12(2), 72; https://doi.org/10.3390/cosmetics12020072 - 9 Apr 2025
Cited by 1 | Viewed by 1169
Abstract
Gardeniae Fructus (GF), the desiccative mature fruitage of Gardenia jasminoides J. Ellis (G. jasminoides), is a traditional herbal medicine in China with potential value against skin photodamage. However, the phytochemical basis and mechanisms underlying GF’s anti-photodamage effects remain unclear. In this [...] Read more.
Gardeniae Fructus (GF), the desiccative mature fruitage of Gardenia jasminoides J. Ellis (G. jasminoides), is a traditional herbal medicine in China with potential value against skin photodamage. However, the phytochemical basis and mechanisms underlying GF’s anti-photodamage effects remain unclear. In this study, the chemical components in GF extract (GFE) were analyzed using ultra-high-performance liquid chromatography coupled with tandem mass spectrometry (UPLC-MS/MS), and iridoids were identified as the main components. The antioxidant, anti-inflammatory, and barrier-repair effects of GFE in UVB-induced photodamage were assessed through in vitro experiments. Additionally, the potential mechanisms of GFE against skin photodamage were predicted using proteomics and network pharmacology. The results showed that GFE significantly increased the levels of total superoxide dismutase (T-SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) induced by UVB, while decreasing reactive oxygen species (ROS) and malondialdehyde (MDA) contents. GFE also inhibited the secretion of interleukin-6 (IL-6) and interleukin-1β (IL-1β). Additionally, GFE upregulated the expression of filaggrin (FLG), loricrin (LOR), and involucrin (IVL) in 3D epidermal skin models. Proteomic analysis and network pharmacology indicated that the iridoid components identified in GFE ameliorated UVB-induced damage probably by regulating cell cycle-related proteins and signaling pathways, though this requires further experimental confirmation. Overall, the results provide essential evidence to support the development of GFE as a skincare active ingredient. Full article
(This article belongs to the Special Issue Skin Anti-Aging Strategies)
Show Figures

Figure 1

13 pages, 2089 KB  
Article
The Beneficial Effects of a N-(1-Carbamoyl-2-phenyl-ethyl) Butyramide on Human Keratinocytes
by Franca Oglio, Serena Coppola, Alessandra Agizza, Antonio Masino, Chiara Luongo, Roberta Di Santillo, Ludovica D’Auria, Roberto Russo, Ilaria Neri, Lucia Grumetto, Laura Carucci, Erika Caldaria, Rita Nocerino, Ritamaria Di Lorenzo, Antonio Calignano, Sonia Laneri, Lorella Paparo and Roberto Berni Canani
Pharmaceuticals 2025, 18(4), 517; https://doi.org/10.3390/ph18040517 - 1 Apr 2025
Cited by 1 | Viewed by 781
Abstract
Background: The skin microbiota-derived metabolite butyrate plays a pivotal role in maintaining skin health. Unfortunately, unpleasant sensorial properties and unfavorable physicochemical properties strongly limit the butyrate use in dermatology clinical practice. This study investigates the effects of N-(1-carbamoyl-2-phenyl-ethyl) butyramide (FBA), a butyric acid [...] Read more.
Background: The skin microbiota-derived metabolite butyrate plays a pivotal role in maintaining skin health. Unfortunately, unpleasant sensorial properties and unfavorable physicochemical properties strongly limit the butyrate use in dermatology clinical practice. This study investigates the effects of N-(1-carbamoyl-2-phenyl-ethyl) butyramide (FBA), a butyric acid releaser with neutral sensorial properties on skin keratinocyte function. Methods: Immortalized human keratinocyte cell line (HaCaT cells) was treated with FBA at various concentrations (0.001–1 mM) and time points (6–48 h). Cellular proliferation was assessed using MTT assays, while barrier integrity was evaluated by measuring tight junction proteins (occludin and ZO-1). Oxidative stress was analyzed using ROS assays and Western blot for Nrf2 and NF-κB expression. Markers of differentiation and extracellular matrix proteins were measured via quantitative PCR and wound-healing capability was assessed using a scratch assay. Results: FBA significantly enhanced keratinocyte proliferation at an optimal concentration of 0.1 mM. Tight junction protein expression increased, indicating improved barrier function. FBA reduced oxidative stress by upregulating Nrf2 and suppressing NF-κB activity. It also promoted the expression of differentiation markers (e.g., keratin-1, filaggrin) and extracellular matrix proteins (e.g., collagen type I and elastin). Furthermore, FBA accelerated wound closure, demonstrating its efficacy in enhancing the mechanisms of skin repair. Conclusions: Our results demonstrate that FBA enhances human keratinocyte cell differentiation, proliferation, and skin repair while protecting against oxidative stress. Its potential in cosmetics lies in delivering butyric acid benefits without organoleptic limitations, with possible applications in several skin condition characterized by deficient butyrate production and inflammation, such as atopic dermatitis. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

9 pages, 3168 KB  
Article
Novel Filaggrin Variants Are Associated with Ichthyosis Vulgaris in Mexicans
by Luz María González-Huerta, Francisco Gabino Zúñiga-Rodríguez, Valeria Isabel Valerio-Gómez, Andrea Aida Velasco-Medina, María del Refugio Rivera-Vega, Edgar Hernández-Zamora and Jaime Toral-López
Genes 2025, 16(4), 380; https://doi.org/10.3390/genes16040380 - 27 Mar 2025
Viewed by 714
Abstract
Background/Objective: Ichthyosis vulgaris (IV) is a genodermatosis caused by heterozygous, homozygous, or compound heterozygous variants in the filaggrin (FLG) gene on chromosome 1q21, which also predispose individuals to atopic dermatitis. Its incidence is 1 in 80–250 children. The phenotypic characteristics include [...] Read more.
Background/Objective: Ichthyosis vulgaris (IV) is a genodermatosis caused by heterozygous, homozygous, or compound heterozygous variants in the filaggrin (FLG) gene on chromosome 1q21, which also predispose individuals to atopic dermatitis. Its incidence is 1 in 80–250 children. The phenotypic characteristics include palmar hyperlinearity, keratosis pilaris, and a fine scale that is most prominent over the lower abdomen, arms, and legs. Our objective was to study the genetic variants in the FLG gene and their associations in patients with ichthyosis vulgaris. Material and methods: Here, we studied eighteen Mexican sporadic cases and four family members with IV. Steroid sulfatase (STS) enzymatic activity, polymerase chain reaction (PCR), and direct sequencing on the FLG gene were conducted. Results: We found the recurrent heterozygous variant R501* in fifteen sporadic cases, while the other three sporadic cases showed four novel (p.Q2123R, p.H2118R, p.D2120E, p.S3970L) variants and one reported (p.Y2119H) variant; members of family 1 and 2 presented novel homozygous and heterozygous (p.S1482Y, p.P2144S) variants. Conclusions: This study added to the novel pathogenic variants in patients with IV and showed that the stop mutations (p.R501*) in the Mexican population are the most prevalent. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

Back to TopTop