Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (519)

Search Parameters:
Keywords = field effect transistors (FETs)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 5844 KiB  
Article
Scaling, Leakage Current Suppression, and Simulation of Carbon Nanotube Field-Effect Transistors
by Weixu Gong, Zhengyang Cai, Shengcheng Geng, Zhi Gan, Junqiao Li, Tian Qiang, Yanfeng Jiang and Mengye Cai
Nanomaterials 2025, 15(15), 1168; https://doi.org/10.3390/nano15151168 - 28 Jul 2025
Viewed by 348
Abstract
Carbon nanotube field-effect transistors (CNTFETs) are becoming a strong competitor for the next generation of high-performance, energy-efficient integrated circuits due to their near-ballistic carrier transport characteristics and excellent suppression of short-channel effects. However, CNT FETs with large diameters and small band gaps exhibit [...] Read more.
Carbon nanotube field-effect transistors (CNTFETs) are becoming a strong competitor for the next generation of high-performance, energy-efficient integrated circuits due to their near-ballistic carrier transport characteristics and excellent suppression of short-channel effects. However, CNT FETs with large diameters and small band gaps exhibit obvious bipolarity, and gate-induced drain leakage (GIDL) contributes significantly to the off-state leakage current. Although the asymmetric gate strategy and feedback gate (FBG) structures proposed so far have shown the potential to suppress CNT FET leakage currents, the devices still lack scalability. Based on the analysis of the conduction mechanism of existing self-aligned gate structures, this study innovatively proposed a design strategy to extend the length of the source–drain epitaxial region (Lext) under a vertically stacked architecture. While maintaining a high drive current, this structure effectively suppresses the quantum tunneling effect on the drain side, thereby reducing the off-state leakage current (Ioff = 10−10 A), and has good scaling characteristics and leakage current suppression characteristics between gate lengths of 200 nm and 25 nm. For the sidewall gate architecture, this work also uses single-walled carbon nanotubes (SWCNTs) as the channel material and uses metal source and drain electrodes with good work function matching to achieve low-resistance ohmic contact. This solution has significant advantages in structural adjustability and contact quality and can significantly reduce the off-state current (Ioff = 10−14 A). At the same time, it can solve the problem of off-state current suppression failure when the gate length of the vertical stacking structure is 10 nm (the total channel length is 30 nm) and has good scalability. Full article
(This article belongs to the Special Issue Advanced Nanoscale Materials and (Flexible) Devices)
Show Figures

Figure 1

13 pages, 2423 KiB  
Article
A Stepped-Spacer FinFET Design for Enhanced Device Performance in FPGA Applications
by Meysam Zareiee, Mahsa Mehrad and Abdulkarim Tawfik
Micromachines 2025, 16(8), 867; https://doi.org/10.3390/mi16080867 - 27 Jul 2025
Viewed by 210
Abstract
As transistor dimensions continue to scale below 10 nm, traditional MOSFET architectures face increasing limitations from short-channel effects, gate leakage, and variability. FinFETs, especially junctionless FinFETs on silicon-on-insulator (SOI) substrates, offer improved electrostatic control and simplified fabrication, making them attractive for deeply scaled [...] Read more.
As transistor dimensions continue to scale below 10 nm, traditional MOSFET architectures face increasing limitations from short-channel effects, gate leakage, and variability. FinFETs, especially junctionless FinFETs on silicon-on-insulator (SOI) substrates, offer improved electrostatic control and simplified fabrication, making them attractive for deeply scaled nodes. In this work, we propose a novel Stepped-Spacer Structured FinFET (S3-FinFET) that incorporates a three-layer HfO2/Si3N4/HfO2 spacer configuration designed to enhance electrostatics and suppress parasitic effects. Using 2D TCAD simulations, the S3-FinFET is evaluated in terms of key performance metrics, including transfer/output characteristics, ON/OFF current ratio, subthreshold swing (SS), drain-induced barrier lowering (DIBL), gate capacitance, and cut-off frequency. The results show significant improvements in leakage control and high-frequency behavior. These enhancements make the S3-FinFET particularly well-suited for Field-Programmable Gate Arrays (FPGAs), where power efficiency, speed, and signal integrity are critical to performance in reconfigurable logic environments. Full article
Show Figures

Figure 1

26 pages, 3149 KiB  
Review
Research Progress and Future Perspectives on Photonic and Optoelectronic Devices Based on p-Type Boron-Doped Diamond/n-Type Titanium Dioxide Heterojunctions: A Mini Review
by Shunhao Ge, Dandan Sang, Changxing Li, Yarong Shi, Qinglin Wang and Dao Xiao
Nanomaterials 2025, 15(13), 1003; https://doi.org/10.3390/nano15131003 - 29 Jun 2025
Cited by 1 | Viewed by 521
Abstract
Titanium dioxide (TiO2) is a wide-bandgap semiconductor material with broad application potential, known for its excellent photocatalytic performance, high chemical stability, low cost, and non-toxicity. These properties make it highly attractive for applications in photovoltaic energy, environmental remediation, and optoelectronic devices. [...] Read more.
Titanium dioxide (TiO2) is a wide-bandgap semiconductor material with broad application potential, known for its excellent photocatalytic performance, high chemical stability, low cost, and non-toxicity. These properties make it highly attractive for applications in photovoltaic energy, environmental remediation, and optoelectronic devices. For instance, TiO2 is widely used as a photocatalyst for hydrogen production via water splitting and for degrading organic pollutants, thanks to its efficient photo-generated electron–hole separation. Additionally, TiO2 exhibits remarkable performance in dye-sensitized solar cells and photodetectors, providing critical support for advancements in green energy and photoelectric conversion technologies. Boron-doped diamond (BDD) is renowned for its exceptional electrical conductivity, high hardness, wide electrochemical window, and outstanding chemical inertness. These unique characteristics enable its extensive use in fields such as electrochemical analysis, electrocatalysis, sensors, and biomedicine. For example, BDD electrodes exhibit high sensitivity and stability in detecting trace chemicals and pollutants, while also demonstrating excellent performance in electrocatalytic water splitting and industrial wastewater treatment. Its chemical stability and biocompatibility make it an ideal material for biosensors and implantable devices. Research indicates that the combination of TiO2 nanostructures and BDD into heterostructures can exhibit unexpected optical and electrical performance and transport behavior, opening up new possibilities for photoluminescence and rectifier diode devices. However, applications based on this heterostructure still face challenges, particularly in terms of photodetector, photoelectric emitter, optical modulator, and optical fiber devices under high-temperature conditions. This article explores the potential and prospects of their combined heterostructures in the field of optoelectronic devices such as photodetector, light emitting diode (LED), memory, field effect transistor (FET) and sensing. TiO2/BDD heterojunction can enhance photoresponsivity and extend the spectral detection range which enables stability in high-temperature and harsh environments due to BDD’s thermal conductivity. This article proposes future research directions and prospects to facilitate the development of TiO2 nanostructured materials and BDD-based heterostructures, providing a foundation for enhancing photoresponsivity and extending the spectral detection range enables stability in high-temperature and high-frequency optoelectronic devices field. Further research and exploration of optoelectronic devices based on TiO2-BDD heterostructures hold significant importance, offering new breakthroughs and innovations for the future development of optoelectronic technology. Full article
(This article belongs to the Special Issue Nanoscale Photonics and Optoelectronics)
Show Figures

Graphical abstract

24 pages, 1093 KiB  
Review
Electrochemical Aptamer-Based Biosensors for Sepsis Diagnosis: Recent Advances, Challenges, and Future Perspectives (2020–2025)
by Ling Ling Tan and Nur Syamimi Mohamad
Biosensors 2025, 15(7), 402; https://doi.org/10.3390/bios15070402 - 20 Jun 2025
Viewed by 811
Abstract
Sepsis remains a global health emergency, demanding timely and accurate diagnostics to reduce morbidity and mortality. This review critically assesses the recent progress (2020–2025) in the development of electrochemical aptamer-based biosensors for sepsis detection. These biosensors combine aptamers’ high specificity and modifiability with [...] Read more.
Sepsis remains a global health emergency, demanding timely and accurate diagnostics to reduce morbidity and mortality. This review critically assesses the recent progress (2020–2025) in the development of electrochemical aptamer-based biosensors for sepsis detection. These biosensors combine aptamers’ high specificity and modifiability with the sensitivity and miniaturization potential of electrochemical platforms. The analysis highlights notable advances in detecting key sepsis biomarkers, such as C-reactive protein (CRP), procalcitonin (PCT), interleukins (e.g., interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α)), lipopolysaccharides (LPSs), and microRNAs using diverse sensor configurations, including a field-effect transistor (FET), impedance spectroscopy, voltammetry, and hybrid nanomaterial-based systems. A comparative evaluation reveals promising analytical performance in terms of the limit of detection (LOD), rapid response time, and point-of-care (POC) potential. However, critical limitations remain, including variability in validation protocols, limited testing in real clinical matrices, and challenges in achieving multiplexed detection. This review underscores translational barriers and recommends future directions focused on clinical validation, integration with portable diagnostics, and interdisciplinary collaboration. By consolidating current developments and gaps, this work provides a foundation for guiding next-generation biosensor innovations aimed at effective sepsis diagnosis and monitoring. Full article
(This article belongs to the Section Biosensor and Bioelectronic Devices)
Show Figures

Figure 1

37 pages, 4685 KiB  
Review
Gate Engineering in Two-Dimensional (2D) Channel FET Chemical Sensors: A Comprehensive Review of Architectures, Mechanisms, and Materials
by Ganapathi Bharathi and Seongin Hong
Chemosensors 2025, 13(6), 217; https://doi.org/10.3390/chemosensors13060217 - 13 Jun 2025
Viewed by 937
Abstract
Field-effect transistor (FET) chemical sensors are essential for enabling sophisticated lifestyles and ensuring safe working environments. They can detect a wide range of analytes, including gaseous species (NO2, NH3, VOCs), ionic compounds, and biological molecules. Among the structural components [...] Read more.
Field-effect transistor (FET) chemical sensors are essential for enabling sophisticated lifestyles and ensuring safe working environments. They can detect a wide range of analytes, including gaseous species (NO2, NH3, VOCs), ionic compounds, and biological molecules. Among the structural components of FETs, the gate configuration plays a vital role in controlling the semiconductor channel’s electrostatic environment, thereby strongly influencing sensing performance. Two-dimensional (2D) materials offer additional advantages in these sensors due to their rich surface chemistry and high sensitivity to external interactions. This review offers a comprehensive classification of 2D channel FET chemical sensors based on their gate configurations. Their working principles, fabrication strategies, and sensing performance are discussed in detail. A critical analysis of the advantages and challenges associated with each gate configuration is performed. This review aims to guide future research on the selection of appropriate device configurations for the development of excellent FET chemical sensors. Full article
Show Figures

Figure 1

17 pages, 2881 KiB  
Article
Biological Sensing Using Vertical MoS2-Graphene Heterostructure-Based Field-Effect Transistor Biosensors
by Ying Chen, Nataly Vicente, Tung Pham and Ashok Mulchandani
Biosensors 2025, 15(6), 373; https://doi.org/10.3390/bios15060373 - 10 Jun 2025
Viewed by 795
Abstract
Our study develops two configurations of MoS2 and graphene heterostructures—MoS2 on graphene (MG) and graphene on MoS2 (GM)—to investigate biomolecule sensing in field-effect transistor (FET) biosensors. Leveraging MoS2 and graphene’s distinctive properties, we employ specialized functionalization techniques for each [...] Read more.
Our study develops two configurations of MoS2 and graphene heterostructures—MoS2 on graphene (MG) and graphene on MoS2 (GM)—to investigate biomolecule sensing in field-effect transistor (FET) biosensors. Leveraging MoS2 and graphene’s distinctive properties, we employ specialized functionalization techniques for each configuration: graphene with MoS2 on top uses a silane-based method with triethoxysilylbutyraldehyde (TESBA), and MoS2 with graphene on top utilizes 1-pyrenebutyric acid N-hydroxysuccinimide ester (PBASE). Our research explores the application of MoS2–Graphene heterostructures in biosensors, emphasizing the roles of synthesis, fabrication, and material functionalization in optimizing sensor performance. Through our experimental investigations, we have observed that doping MoS2 and graphene leads to noticeable changes in the Raman spectrum and shifts in transfer curves. Techniques such as XPS, Raman, and AFM have successfully confirmed the biofunctionalization. Transfer curves were instrumental in characterizing the biosensing performance, revealing that GM configurations exhibit higher sensitivity and a lower limit of detection (LOD) compared to MG configurations. We demonstrate that GM heterostructures offer superior sensitivity and specificity in biosensing, highlighting their significant potential to advance biosensor technologies. This research contributes to the field by detailing the creation process of vertical MoS2–graphene heterostructures and evaluating their effectiveness in accurate biomolecule detection, advancing biosensing technology. Full article
Show Figures

Figure 1

15 pages, 1759 KiB  
Article
Quantum Simulation Study of Ultrascaled Label-Free DNA Sensors Based on Sub-10 nm Dielectric-Modulated TMD FETs: Sensitivity Enhancement Through Downscaling
by Khalil Tamersit, Abdellah Kouzou, José Rodriguez and Mohamed Abdelrahem
Micromachines 2025, 16(6), 690; https://doi.org/10.3390/mi16060690 - 8 Jun 2025
Viewed by 1215
Abstract
In this article, the role of downscaling in boosting the sensitivity of a novel label-free DNA sensor based on sub-10 nm dielectric-modulated transition metal dichalcogenide field-effect transistors (DM-TMD FET) is presented through a quantum simulation approach. The computational method is based on self-consistently [...] Read more.
In this article, the role of downscaling in boosting the sensitivity of a novel label-free DNA sensor based on sub-10 nm dielectric-modulated transition metal dichalcogenide field-effect transistors (DM-TMD FET) is presented through a quantum simulation approach. The computational method is based on self-consistently solving the quantum transport equation coupled with electrostatics under ballistic transport conditions. The concept of dielectric modulation was employed as a label-free biosensing mechanism for detecting neutral DNA molecules. The computational investigation is exhaustive, encompassing the band profile, charge density, current spectrum, local density of states, drain current, threshold voltage behavior, sensitivity, and subthreshold swing. Four TMD materials were considered as the channel material, namely, MoS2, MoSe2, MoTe2, and WS2. The investigation of the scaling capability of the proposed label-free gate-all-around DM-TMDFET-based biosensor showed that gate downscaling is a valuable approach not only for producing small biosensors but also for obtaining high biosensing performance. Furthermore, we found that reducing the device size from 12 nm to 9 nm yields only a moderate improvement in sensitivity, whereas a more aggressive downscaling to 6 nm leads to a significant enhancement in sensitivity, primarily due to pronounced short-channel effects. The obtained results have significant technological implications, showing that miniaturization enhances the sensitivity of the proposed nanobiosensor. Full article
Show Figures

Figure 1

16 pages, 4344 KiB  
Article
Ion-Induced Charge and Single-Event Burnout in Silicon Power UMOSFETs
by Saulo G. Alberton, Vitor A. P. Aguiar, Nemitala Added, Alexis C. Vilas-Bôas, Marcilei A. Guazzelli, Jeffery Wyss, Luca Silvestrin, Serena Mattiazzo, Matheus S. Pereira, Saulo Finco, Alessandro Paccagnella and Nilberto H. Medina
Electronics 2025, 14(11), 2288; https://doi.org/10.3390/electronics14112288 - 4 Jun 2025
Viewed by 462
Abstract
The U-shaped Metal-Oxide-Semiconductor Field-Effect Transistor (UMOS or trench FET) is one of the most widely used semiconductor power devices worldwide, increasingly replacing the traditional vertical double-diffused MOSFET (DMOSFET) in various applications due to its superior electrical performance. However, a detailed experimental comparison of [...] Read more.
The U-shaped Metal-Oxide-Semiconductor Field-Effect Transistor (UMOS or trench FET) is one of the most widely used semiconductor power devices worldwide, increasingly replacing the traditional vertical double-diffused MOSFET (DMOSFET) in various applications due to its superior electrical performance. However, a detailed experimental comparison of ion-induced Single-Event Burnout (SEB) in similarly rated silicon (Si) UMOS and DMOS devices remains lacking. This study presents a comprehensive experimental comparison of ion-induced charge collection mechanisms and SEB susceptibility in similarly rated Si UMOS and DMOS devices. Charge collection mechanisms due to alpha particles from 241Am radiation source are analyzed, and SEB cross sections induced by heavy ions from particle accelerators are directly compared. The implications of the unique gate structure of Si UMOSFETs on their reliability in harsh radiation environments are discussed based on technology computer-aided design (TCAD) simulations. Full article
Show Figures

Figure 1

20 pages, 7435 KiB  
Article
Portable Impedance Analyzer for FET-Based Biosensors with Embedded Analysis of Randles Circuits’ Spectra
by Norman Pfeiffer, Martin Bach, Alice Steiner, Anna-Elisabeth Gerhardt, Joan Bausells, Abdelhamid Errachid and Albert Heuberger
Sensors 2025, 25(11), 3497; https://doi.org/10.3390/s25113497 - 31 May 2025
Viewed by 810
Abstract
The electrochemical impedance spectroscopy (EIS) is a measurement method for characterizing bio-recognition events of a sensor, such as field-effect transistor-based biosensors (BioFETs). Due to the lack of portable impedance spectroscopes, EIS applies mainly in laboratories preventing application-oriented use in the field. This work [...] Read more.
The electrochemical impedance spectroscopy (EIS) is a measurement method for characterizing bio-recognition events of a sensor, such as field-effect transistor-based biosensors (BioFETs). Due to the lack of portable impedance spectroscopes, EIS applies mainly in laboratories preventing application-oriented use in the field. This work presents a portable impedance analyzer (PIA) providing a 4-channel EIS of BioFETs. It performs the analysis of the recorded spectra by determining the charge transfer resistance Rct with a power-saving algorithm. Therefore, a circle is fitted into the Nyquist representation of the Randles circuit, from whose zero crossings Rct can be determined. The introduced algorithm was evaluated on 100 simulated spectra of Randles circuits. To analyze the overall system, an adjustable reference circuit was developed that simulates configurable Randles circuits. Additional measurements with pH-sensitive ion-sensitive field-effect transistors (ISFETs) demonstrate the application of the measurement system with electrochemical sensors. Using simulated spectra, the circular fitting is able to detect Rct with a median accuracy of 1.2% at an average nominal power of 40 mW and 3054 µs computing time. The PIA with the embedded implementation of the circuit fitting achieves a median error for Rct of 4.2% using the introduced Randles circuit simulator (RCS). Measurements with ISFETs show deviations of 6.5 ± 2.8% compared to the complex non-linear least squares (CNLS), but is significantly faster and more efficient. The presented system allows a portable, power-saving performance of EIS. Future optimizations for a specific applications can improve the presented system and enable novel low-power and automated measurements of biosensors outside the laboratory. Full article
(This article belongs to the Section Biosensors)
Show Figures

Graphical abstract

14 pages, 1984 KiB  
Article
Rigid DNA Frameworks Anchored Transistor Enabled Ultrasensitive Detection of Aβ-42 in Serum
by Yungen Wu, Ruitao Lu, Pei-Gen Ren and Zhongjian Xie
Sensors 2025, 25(11), 3260; https://doi.org/10.3390/s25113260 - 22 May 2025
Viewed by 553
Abstract
It is significant to search for ultrasensitive and accurate testing technology for point-of-care monitoring of common diseases at home; for example, monitoring the Aβ-42 level at any time is crucial for patients suffering from Alzheimer’s disease. However, accurately monitoring the Aβ-42 level in [...] Read more.
It is significant to search for ultrasensitive and accurate testing technology for point-of-care monitoring of common diseases at home; for example, monitoring the Aβ-42 level at any time is crucial for patients suffering from Alzheimer’s disease. However, accurately monitoring the Aβ-42 level in serum is often thwarted by the challenges in sensitivity and specificity due to the multiplicated contaminations and intricated biofluid environments. Here, we develop a graphene field-effect transistor (G-FET) sensor modified with a type of rigid DNA framework aptamer—tetrahedral DNA nanostructure (TDN) for Aβ-42 detection in serum. The Aβ-42 specific aptamer combined with the rigid tetrahedral nanostructure achieves higher binding affinity and better specificity and anti-fouling ability. The detectable concentration reaches 5 × 10−18 mol L−1 in serum, lower than most other assay approaches. Moreover, the sensor rapidly detects the Aβ-42 level in 6 supernatant samples from mice blood within 5 min and achieves high accuracy. This sensitive and specific method enabled by the DNA tetrahedron G-FET sensor has great potential in the monitoring of Alzheimer’s disease and other diseases. Full article
(This article belongs to the Special Issue Biosensors for Point-of-Care Diagnostics)
Show Figures

Figure 1

14 pages, 1729 KiB  
Article
Aptamer-Based Planar Electric Double-Layer Field-Effect Transistor: A Novel Approach for Sensitive Troponin I Sensing
by Sheng-Chun Hung and Yi-Hua Lee
Biosensors 2025, 15(5), 285; https://doi.org/10.3390/bios15050285 - 30 Apr 2025
Viewed by 835
Abstract
This study introduces a cutting-edge, aptamer-based, planar electric, double-layer field-effect transistor (FET) system that offers both high sensitivity and specificity for the detection of troponin I (TnI). The proposed sensing platform leverages the signal amplification capabilities of FETs alongside the unique attributes of [...] Read more.
This study introduces a cutting-edge, aptamer-based, planar electric, double-layer field-effect transistor (FET) system that offers both high sensitivity and specificity for the detection of troponin I (TnI). The proposed sensing platform leverages the signal amplification capabilities of FETs alongside the unique attributes of a planar electric double-layer design to address the limitations inherent in traditional ion-sensitive detectors, which are impacted by Debye length effects. By integrating TnI-specific aptamers, the system markedly enhances molecular recognition and transduction efficiency, achieving an impressive detection limit of 0.0001467 decade. Furthermore, the sensor demonstrates a strong exponential linear response across a clinically relevant concentration range of 1 ng/mL to 100 ng/mL. This innovative approach underscores the potential of electric double-layer FET systems to advance biomarker detection technologies for medical diagnostics and point-of-care applications. Full article
Show Figures

Graphical abstract

17 pages, 824 KiB  
Review
DNA Sensors for the Detection of Mercury Ions
by Feng Li, Jinxin Lin, Eric Lichtfouse, Haifeng Qi, Lang Peng, Yangyang Yu and Li Gao
Biosensors 2025, 15(5), 275; https://doi.org/10.3390/bios15050275 - 29 Apr 2025
Viewed by 1045
Abstract
Ecosystem pollution by mercury ions (Hg2+) is a major health concern, yet classical analytical methods for mercury analysis are limited. This paper reviews the advances in Hg2+ detection using DNA as recognition elements in the sensors. DNA as a recognition [...] Read more.
Ecosystem pollution by mercury ions (Hg2+) is a major health concern, yet classical analytical methods for mercury analysis are limited. This paper reviews the advances in Hg2+ detection using DNA as recognition elements in the sensors. DNA as a recognition molecule is inexpensive, simple, and appropriate for real-time detection of Hg2+. This paper discusses the DNA-based sensors that were used for the detection of Hg2+. These can be carried out by electrochemistry, field effect transistors (FET), Raman spectroscopy, colorimetry, and fluorescence resonance energy transfer (FRET). The detection principles and the advantages of DNA in these sensors are also revealed. Finally, the paper provides an overview of prospects and potential challenges in the field. Full article
(This article belongs to the Special Issue Aptamer-Based Nanosensing Strategy and Applications)
Show Figures

Figure 1

15 pages, 2903 KiB  
Article
Field-Effect Transistor Based on Nanocrystalline Graphite for DNA Immobilization
by Bianca Adiaconita, Eugen Chiriac, Tiberiu Burinaru, Catalin Marculescu, Cristina Pachiu, Oana Brincoveanu, Octavian Simionescu and Marioara Avram
Biomolecules 2025, 15(5), 619; https://doi.org/10.3390/biom15050619 - 25 Apr 2025
Viewed by 866
Abstract
In recent years, field-effect transistors (FETs) based on graphene have attracted significant interest due to their unique electrical properties and their potential for biosensing and molecular detection applications. This study uses FETs with a nanocrystalline graphite (NCG) channel to detect DNA nucleobases. The [...] Read more.
In recent years, field-effect transistors (FETs) based on graphene have attracted significant interest due to their unique electrical properties and their potential for biosensing and molecular detection applications. This study uses FETs with a nanocrystalline graphite (NCG) channel to detect DNA nucleobases. The exceptional electronic properties of NCG, and its high surface area, enable strong π–π stacking interactions with DNA nucleobases, promoting efficient adsorption and stabilization of the biomolecules. The direct attachment of nucleobases to the NCG channel leads to substantial changes in the device’s electrical characteristics, which can be measured in real time to assess DNA binding and sequence recognition. This method enables highly sensitive, label-free DNA detection, opening up new possibilities for rapid genetic analysis and diagnostics. Understanding the interactions between DNA nucleobases and graphene-based materials is crucial for advancing genetic research and biotechnology, paving the way for more accurate and efficient diagnostic tools. Full article
Show Figures

Figure 1

14 pages, 17614 KiB  
Article
Unraveling Charge Transfer Mechanisms in Graphene–Quantum Dot Hybrids for High-Sensitivity Biosensing
by Shinto Mundackal Francis, Hugo Sanabria and Ramakrishna Podila
Biosensors 2025, 15(5), 269; https://doi.org/10.3390/bios15050269 - 24 Apr 2025
Viewed by 1102
Abstract
Colloidal quantum dots (QDs) and graphene hybrids have emerged as promising platforms for optoelectronic and biosensing applications due to their unique photophysical and electronic properties. This study investigates the fundamental mechanism underlying the photoluminescence (PL) quenching and recovery in graphene–QD hybrid systems using [...] Read more.
Colloidal quantum dots (QDs) and graphene hybrids have emerged as promising platforms for optoelectronic and biosensing applications due to their unique photophysical and electronic properties. This study investigates the fundamental mechanism underlying the photoluminescence (PL) quenching and recovery in graphene–QD hybrid systems using single-layer graphene field-effect transistors (SLG-FETs) and time-resolved photoluminescence (TRPL) spectroscopy. We demonstrate that PL quenching and its recovery are primarily driven by charge transfer, as evidenced by an unchanged fluorescence lifetime upon quenching. Density functional theory calculations reveal a significant charge redistribution at the graphene–QD interface, corroborating experimental observations. We also provide a simple analytical quantum mechanical model to differentiate charge transfer-induced PL quenching from resonance energy transfer. Furthermore, we leverage the charge transfer mechanism for ultrasensitive biosensing to detect biomarkers such as immunoglobulin G (IgG) at femtomolar concentrations. The sensor’s electrical response, characterized by systematic shifts in the Dirac point of SLG-FETs, confirms the role of analyte-induced charge modulation in PL recovery. Our findings provide a fundamental framework for designing next-generation graphene-based biosensors with exceptional sensitivity and specificity. Full article
(This article belongs to the Section Nano- and Micro-Technologies in Biosensors)
Show Figures

Graphical abstract

54 pages, 9948 KiB  
Review
The Versatility of Biological Field-Effect Transistor-Based Biosensors (BioFETs) in Point-of-Care Diagnostics: Applications and Future Directions for Peritoneal Dialysis Monitoring
by Quan Wang, Zi-An Zhao, Ke-Yu Yao, Yuk-Lun Cheng, Dexter Siu-Hong Wong, Duo Wai-Chi Wong and James Chung-Wai Cheung
Biosensors 2025, 15(3), 193; https://doi.org/10.3390/bios15030193 - 18 Mar 2025
Cited by 1 | Viewed by 1946
Abstract
Peritoneal dialysis (PD) is a vital treatment for end-stage renal disease patients, but its efficacy is often compromised by complications such as infections and peritoneal fibrosis. Biological field-effect transistors (BioFETs) present a promising solution for rapid, sensitive, and non-invasive detection of indicators and [...] Read more.
Peritoneal dialysis (PD) is a vital treatment for end-stage renal disease patients, but its efficacy is often compromised by complications such as infections and peritoneal fibrosis. Biological field-effect transistors (BioFETs) present a promising solution for rapid, sensitive, and non-invasive detection of indicators and biomarkers associated with these complications, potentially enabling early intervention. However, BioFETs are yet to be adopted for PD monitoring. This review presents a forward-looking analysis of the capacity and potential integration of BioFETs into PD management systems, highlighting their capacity to monitor both routine indicators of dialysis efficiency and metabolic status, as well as specific biomarkers for complications such as inflammation and fibrosis. We examine the challenges in adapting BioFETs for PD applications, focusing on key areas for improvement, including sensitivity, specificity, stability, reusability, and clinical integration. Furthermore, we discuss various approaches to address these challenges, which are crucial for developing point-of-care (PoC) and multiplexed wearable devices. These advancements could facilitate continuous, precise, and user-friendly monitoring, potentially revolutionizing PD complication management and enhancing patient care. Full article
(This article belongs to the Special Issue Microelectronics and MEMS-Based Biosensors for Healthcare Application)
Show Figures

Figure 1

Back to TopTop