Gate Engineering in Two-Dimensional (2D) Channel FET Chemical Sensors: A Comprehensive Review of Architectures, Mechanisms, and Materials
Abstract
:1. Introduction
2. Working Principle and Figure of Merit
2.1. Sensitivity (S)
2.2. Limit of Detection (LOD)
2.3. Response
2.4. Threshold Voltage Shift
2.5. Dirac Point Shift
2.6. Response Time
2.7. Recovery Time
3. Bottom-Gate FET Chemical Sensor
3.1. History and Evaluation
3.2. Working Principle
3.2.1. Charge Transfer
3.2.2. Electrostatic Gating Effect
3.2.3. Scattering Effect
3.2.4. Chemical Reactions
3.2.5. Quantum Capacitance Effect
3.2.6. Schottky Barrier Modulation
3.3. Fabrication
3.3.1. Substrate and Gate Dielectric
3.3.2. Channel Material Deposition/Transfer
3.3.3. Electrode Patterning and Deposition
3.3.4. Functionalization/Decoration
3.4. Advantages
3.4.1. High Sensitivity
3.4.2. Tunable Sensitivity
3.4.3. Low-Power Operation
3.4.4. Potential for Miniaturization and Integration
3.4.5. Versatility in Sensing Mechanism
3.5. Disadvantages
3.5.1. Stability Issues
3.5.2. Selectivity
3.5.3. Hysteresis and Drift
3.5.4. Contact Resistance
3.5.5. Recovery Time
3.6. Applications
4. Solution-Gate FET Chemical Sensors
4.1. History and Evaluation
4.2. Working Principle
4.2.1. Electric Double-Layer (EDL) Formation
4.2.2. Electrostatic Gating Effect
4.2.3. Analyte-Induced Surface Potential Changes
4.2.4. Debye Screening
4.3. Fabrication
4.3.1. Surface Functionalization
4.3.2. Cavity/Sample Holder Construction
4.4. Advantages
4.4.1. High Sensitivity
4.4.2. Low-Voltage Operation
4.4.3. Label-Free Detection
4.5. Disadvantages
4.5.1. Stability Issues (Drift)
4.5.2. Selectivity
4.5.3. Electrolyte Dependence
4.5.4. Debye Screening Limitation
4.5.5. Potential for Electrochemical Reactions
4.6. Applications
5. Extended-Gate FET Chemical Sensors
5.1. History and Evaluation
5.2. Working Principle
5.2.1. Ion/Analyte Molecule Binding
5.2.2. Electrochemical/Chemical Reactions
5.3. Fabrication
Surface Functionalization
5.4. Advantages
5.4.1. Design Flexibility
5.4.2. Protection of the Transducer and Reusability
5.5. Disadvantages
5.5.1. Drop in Sensitivity
5.5.2. Larger Device Footprint
5.6. Applications
6. Dual-Gate FET Chemical Sensors
6.1. History and Evaluation
6.2. Working Principle
6.2.1. Amplification Through Capacitive Coupling
6.2.2. Dielectric and Work Function Modulation
6.2.3. Charge Trapping
6.3. Fabrication
6.4. Advantages
6.4.1. Tunable Threshold Voltage
6.4.2. Versatile Functionality
6.4.3. Improved Electrical Characteristics
6.4.4. Improved Sensing Performances
6.5. Applications
7. Other Gate Configurations
7.1. Top-Gate FETs
7.2. Floating-Gate FETs
8. Cross-Sensitivity
9. Stability and Lifetime
10. Power Requirements
10.1. Back-Gated (BG) FETs
10.2. Solution-Gated (SG) FETs
10.3. Extended-Gate (EG) FETs
11. Summary and Outlook
11.1. Comparative Analysis of Gate Configurations
11.2. Thematic Analysis of FET Chemical Sensor Applications
11.2.1. Environmental Monitoring
11.2.2. Healthcare and Biomedical Applications
11.2.3. Industrial Safety and Process Monitoring
11.3. Emerging Hybrid Gate Configurations
11.4. Future Outlook
- Material Engineering: Development of defect-engineered 2D materials with tailored sensing properties, exploration of vertical and lateral heterostructures to create built-in p-n junctions that enhance gate efficiency.
- Gate Dielectric Innovation: Investigation of high-κ dielectrics for back-gate configurations to reduce the operating voltage while maintaining sensitivity; development of ion-selective solid-state electrolytes for solution-gate devices to improve stability.
- System-Level Integration: Advancement of multi-sensor arrays with different gate configurations on a single chip to enable comprehensive analyte profiling; integration of on-chip reference sensors for drift compensation and environmental variability correction.
- Standardization Efforts: Development of standardized testing protocols to enable a meaningful comparison between different gate configurations; establishment of benchmark performance metrics specific to each application domain.
Author Contributions
Funding
Conflicts of Interest
References
- Chen, X.; Liu, C.; Mao, S. Environmental Analysis with 2D Transition-Metal Dichalcogenide-Based Field-Effect Transistors. Nano-Micro Lett. 2020, 12, 95. [Google Scholar] [CrossRef] [PubMed]
- Dai, C.; Liu, Y.; Wei, D. Two-Dimensional Field-Effect Transistor Sensors: The Road toward Commercialization. Chem. Rev. 2022, 122, 10319–10392. [Google Scholar] [CrossRef] [PubMed]
- Nozaki, R.; Ikuta, T.; Ueno, K.; Tsukakoshi, K.; Ikebukuro, K.; Maehashi, K. Ethanol Detection at the Parts per Billion Level with Single-Stranded-DNA-Modified Graphene Field-Effect Transistors. Phys. Status Solidi B 2020, 257, 1900376. [Google Scholar] [CrossRef]
- Sakamoto, Y.; Ikuta, T.; Maehashi, K. Electrical Detection of Molecular Transformations Associated with Chemical Reactions Using Graphene Devices. ACS Appl. Mater. Interfaces 2021, 13, 45001–45007. [Google Scholar] [CrossRef]
- Khatib, M.; Haick, H. Sensors for Volatile Organic Compounds. ACS Nano 2022, 16, 7080–7115. [Google Scholar] [CrossRef]
- Anichini, C.; Czepa, W.; Pakulski, D.; Aliprandi, A.; Ciesielski, A.; Samorì, P. Chemical Sensing with 2D Materials. Chem. Soc. Rev. 2018, 47, 4860–4908. [Google Scholar] [CrossRef] [PubMed]
- Fan, Q.; Wang, L.; Xu, D.; Duo, Y.; Gao, J.; Zhang, L.; Wang, X.; Chen, X.; Li, J.; Zhang, H. Solution-Gated Transistors of Two-Dimensional Materials for Chemical and Biological Sensors: Status and Challenges. Nanoscale 2020, 12, 11364–11394. [Google Scholar] [CrossRef]
- Chen, S.; Sun, Y.; Fan, X.; Xu, Y.; Chen, S.; Zhang, X.; Man, B.; Yang, C.; Du, J. Review on Two-Dimensional Material-Based Field-Effect Transistor Biosensors: Accomplishments, Mechanisms, and Perspectives. J. Nanobiotechnol. 2023, 21, 144. [Google Scholar] [CrossRef]
- Mao, S.; Chang, J.; Pu, H.; Lu, G.; He, Q.; Zhang, H.; Chen, J. Two-Dimensional Nanomaterial-Based Field-Effect Transistors for Chemical and Biological Sensing. Chem. Soc. Rev. 2017, 46, 6872–6904. [Google Scholar] [CrossRef]
- Wang, B.; Li, H.; Tan, H.; Gu, Y.; Chen, L.; Ji, L.; Sun, Z.; Sun, Q.; Ding, S.; Zhang, D.W.; et al. Gate-Modulated High-Response Field-Effect Transistor-Type Gas Sensor Based on the MoS2 /Metal–Organic Framework Heterostructure. ACS Appl. Mater. Interfaces 2022, 14, 42356–42364. [Google Scholar] [CrossRef]
- Song, J.; Guo, T.; Huang, C.; Liu, M.; Cui, H.; Huang, W.; Wang, Y.; Li, T. Part per Trillion Level DMMP Gas Sensor Based on Calixarene Modified Organic Thin Film Transistor. Chem. Eng. J. 2022, 446, 137097. [Google Scholar] [CrossRef]
- Bian, L.; Wang, Z.; White, D.L.; Star, A. Machine Learning-Assisted Calibration of Hg2+ Sensors Based on Carbon Nanotube Field-Effect Transistors. Biosens. Bioelectron. 2021, 180, 113085. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Zhou, P.; Simon, T.; Cui, T. Ultra-Sensitive Nitrate-Ion Detection via Transconductance-Enhanced Graphene Ion-Sensitive Field-Effect Transistors. Microsyst. Nanoeng. 2024, 10, 137. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Liu, L.; Yang, Y.; Huang, Q.; Li, D.; Zeng, D. A Review on Two-Dimensional Materials for Chemiresistive- and FET-Type Gas Sensors. Phys. Chem. Chem. Phys. 2021, 23, 15420–15439. [Google Scholar] [CrossRef]
- Liu, C.; Ye, Z.; Wei, X.; Mao, S. Recent Advances in Field-effect Transistor Sensing Strategies for Fast and Highly Efficient Analysis of Heavy Metal Ions. Electrochem. Sci. Adv. 2022, 2, e2100137. [Google Scholar] [CrossRef]
- Zhang, P.; Xiao, Y.; Zhang, J.; Liu, B.; Ma, X.; Wang, Y. Highly Sensitive Gas Sensing Platforms Based on Field Effect Transistor-A Review. Anal. Chim. Acta 2021, 1172, 338575. [Google Scholar] [CrossRef] [PubMed]
- Zulkefli, A.; Mukherjee, B.; Sahara, R.; Hayakawa, R.; Iwasaki, T.; Wakayama, Y.; Nakaharai, S. Enhanced Selectivity in Volatile Organic Compound Gas Sensors Based on ReS2 -FETs under Light-Assisted and Gate-Bias Tunable Operation. ACS Appl. Mater. Interfaces 2021, 13, 43030–43038. [Google Scholar] [CrossRef]
- Chen, J.; Pu, H.; Hersam, M.C.; Westerhoff, P. Molecular Engineering of 2D Nanomaterial Field-Effect Transistor Sensors: Fundamentals and Translation across the Innovation Spectrum. Adv. Mater. 2022, 34, 2106975. [Google Scholar] [CrossRef]
- Hu, W.-P.; Yang, Y.-Q.; Lee, C.-H.; Vu, C.-A.; Chen, W.-Y. Comparing Solution-Gate and Bottom-Gate Nanowire Field-Effect Transistors on pH Sensing with Different Salt Concentrations and Surface Modifications. Talanta 2024, 271, 125731. [Google Scholar] [CrossRef]
- Yu Wang, Y.; Burke, P.J. A Large-Area and Contamination-Free Graphene Transistor for Liquid-Gated Sensing Applications. Appl. Phys. Lett. 2013, 103, 052103. [Google Scholar] [CrossRef]
- Kim, J.; Liu, Q.; Cui, T. Solution-Gated Nitrate Sensitive Field Effect Transistor with Hybrid Film: CVD Graphene/Polymer Selective Membrane. Org. Electron. 2020, 78, 105551. [Google Scholar] [CrossRef]
- Li, H.; Zhu, Y.; Islam, M.S.; Rahman, M.A.; Walsh, K.B.; Koley, G. Graphene Field Effect Transistors for Highly Sensitive and Selective Detection of K+ Ions. Sens. Actuators B Chem. 2017, 253, 759–765. [Google Scholar] [CrossRef]
- Yang, L.; Jin, Y.; Wang, X.; Yu, B.; Chen, R.; Zhang, C.; Zhao, Y.; Yu, Y.; Liu, Y.; Wei, D. Antifouling Field-Effect Transistor Sensing Interface Based on Covalent Organic Frameworks. Adv. Electron. Mater. 2020, 6, 1901169. [Google Scholar] [CrossRef]
- Lee, I.-K.; Jeun, M.; Jang, H.-J.; Cho, W.-J.; Lee, K.H. A Self-Amplified Transistor Immunosensor under Dual Gate Operation: Highly Sensitive Detection of Hepatitis B Surface Antigen. Nanoscale 2015, 7, 16789–16797. [Google Scholar] [CrossRef]
- Shi, S.; Hu, R.; Wu, E.; Li, Q.; Chen, X.; Guo, W.; Sun, C.; Hu, X.; Zhang, D.; Liu, J. Highly-Sensitive Gas Sensor Based on Two-Dimensional Material Field Effect Transistor. Nanotechnology 2018, 29, 435502. [Google Scholar] [CrossRef]
- Yuan, Q.; Wu, S.; Ye, C.; Liu, X.; Gao, J.; Cui, N.; Guo, P.; Lai, G.; Wei, Q.; Yang, M.; et al. Sensitivity Enhancement of Potassium Ion (K+) Detection Based on Graphene Field-Effect Transistors with Surface Plasma Pretreatment. Sens. Actuators B Chem. 2019, 285, 333–340. [Google Scholar] [CrossRef]
- Liao, W.; Wei, W.; Tong, Y.; Chim, W.K.; Zhu, C. Low-Frequency Noise in Layered ReS2 Field Effect Transistors on HfO2 and Its Application for pH Sensing. ACS Appl. Mater. Interfaces 2018, 10, 7248–7255. [Google Scholar] [CrossRef]
- Hong, S.; Wu, M.; Hong, Y.; Jeong, Y.; Jung, G.; Shin, W.; Park, J.; Kim, D.; Jang, D.; Lee, J.-H. FET-Type Gas Sensors: A Review. Sens. Actuators B Chem. 2021, 330, 129240. [Google Scholar] [CrossRef]
- Sulleiro, M.V.; Dominguez-Alfaro, A.; Alegret, N.; Silvestri, A.; Gómez, I.J. 2D Materials towards Sensing Technology: From Fundamentals to Applications. Sens. Bio-Sens. Res. 2022, 38, 100540. [Google Scholar] [CrossRef]
- Im, H.; AlMutairi, A.; Kim, S.; Sritharan, M.; Kim, S.; Yoon, Y. On MoS2 Thin-Film Transistor Design Consideration for a NO2 Gas Sensor. ACS Sens. 2019, 4, 2930–2936. [Google Scholar] [CrossRef]
- Miao, J.; Cai, L.; Zhang, S.; Nah, J.; Yeom, J.; Wang, C. Air-Stable Humidity Sensor Using Few-Layer Black Phosphorus. ACS Appl. Mater. Interfaces 2017, 9, 10019–10026. [Google Scholar] [CrossRef]
- Erande, M.B.; Pawar, M.S.; Late, D.J. Humidity Sensing and Photodetection Behavior of Electrochemically Exfoliated Atomically Thin-Layered Black Phosphorus Nanosheets. ACS Appl. Mater. Interfaces 2016, 8, 11548–11556. [Google Scholar] [CrossRef]
- Wei, W.; Zeng, Z.; Liao, W.; Chim, W.K.; Zhu, C. Extended Gate Ion-Sensitive Field-Effect Transistors Using Al2O3 /Hexagonal Boron Nitride Nanolayers for pH Sensing. ACS Appl. Nano Mater. 2020, 3, 403–408. [Google Scholar] [CrossRef]
- Fan, J.-L.; Hu, X.-F.; Fu, C.; Qin, W.-W.; Min, X.-J.; Zhao, J.-W.; Luo, L.-B.; Zhang, W. Few-Layer PdSe2 Nanofilm/Si Heterojunction for Sensing NO2 at Room Temperature. ACS Appl. Nano Mater. 2021, 4, 7358–7370. [Google Scholar] [CrossRef]
- Xu, H.; Zhang, Z.; Xu, H.; Wang, Z.; Wang, S.; Peng, L.-M. Top-Gated Graphene Field-Effect Transistors with High Normalized Transconductance and Designable Dirac Point Voltage. ACS Nano 2011, 5, 5031–5037. [Google Scholar] [CrossRef]
- Ahn, J.-H.; Kim, J.-Y.; Seol, M.-L.; Baek, D.J.; Guo, Z.; Kim, C.-H.; Choi, S.-J.; Choi, Y.-K. A pH Sensor with a Double-Gate Silicon Nanowire Field-Effect Transistor. Appl. Phys. Lett. 2013, 102, 083701. [Google Scholar] [CrossRef]
- Huang, Y.; Zhou, Y.; Liu, Y.; Chen, J.; Wei, X.; Cao, J. SnO2 /Carbon Nanotube Floating-Gate Field-Effect Transistor Gas Sensor for Ppb-Level CO Detection. ACS Appl. Nano Mater. 2024, 7, 16119–16126. [Google Scholar] [CrossRef]
- Yin, W.; Sun, J.; Zhang, Y.; Zhang, Y.; Li, S.; Zhu, M.; Hong, H.; Ba, Y.; Deng, T. A Novel Three-Dimensional Ag Nanoparticles/Reduced Graphene Oxide Microtubular Field Effect Transistor Sensor for NO2 Detections. Nanotechnology 2021, 32, 025304. [Google Scholar] [CrossRef]
- Mackin, C.; Fasoli, A.; Xue, M.; Lin, Y.; Adebiyi, A.; Bozano, L.; Palacios, T. Chemical Sensor Systems Based on 2D and Thin Film Materials. 2D Mater. 2020, 7, 022002. [Google Scholar] [CrossRef]
- Janićijević, Ž.; Nguyen-Le, T.-A.; Baraban, L. Extended-Gate Field-Effect Transistor Chemo- and Biosensors: State of the Art and Perspectives. Next Nanotechnol. 2023, 3–4, 100025. [Google Scholar] [CrossRef]
- Afsar, M.F.; Rafiq, M.A.; Jamil, A.; Fareed, S.; Siddique, F.; Tok, A.I.Y.; Hasan, M.M.U. Development of High-Performance Bismuth Sulfide Nanobelts Humidity Sensor and Effect of Humid Environment on Its Transport Properties. ACS Omega 2019, 4, 2030–2039. [Google Scholar] [CrossRef]
- Ali, S.; Kazmi, S.M.T.; Sher, F.; Nigah, A.; Bilal, M.; Rafiq, M.A. Fast, Sensitive, and Selective Hydrogen Sensing of Silver-Doped Bismuth Sulfide Nanobelts. J. Electron. Mater. 2024, 53, 2753–2762. [Google Scholar] [CrossRef]
- Falak, A.; Tian, Y.; Yan, L.; Zhang, X.; Xu, L.; Song, Z.; Dong, F.; Chen, P.; Zhao, M.; Wang, H.; et al. Simultaneous Achievement of Superior Response and Full Recovery of Titanium Dioxide/Graphene Hybrid FET Sensors for NH3 through p- to n-Mode Switch. Phys. Chem. Chem. Phys. 2020, 22, 16701–16711. [Google Scholar] [CrossRef]
- Hayashi, K.; Kataoka, M.; Jippo, H.; Ohfuchi, M.; Sato, S. Vacancy-Assisted Selective Detection of Low-Ppb Formaldehyde in Two-Dimensional Layered SnS2. ACS Appl. Mater. Interfaces 2020, 12, 12207–12214. [Google Scholar] [CrossRef] [PubMed]
- Persaud, K.; Dodd, G. Analysis of Discrimination Mechanisms in the Mammalian Olfactory System Using a Model Nose. Nature 1982, 299, 352–355. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, Y.; Xiao, H.; Xiao, H.; Xiao, H.; Xiao, H.; Goddard, W.A.; Goddard, W.A. Schottky-Barrier-Free Contacts with Two-Dimensional Semiconductors by Surface-Engineered MXenes. J. Am. Chem. Soc. 2016, 138, 15853–15856. [Google Scholar] [CrossRef]
- Yan, W.; Lv, C.; Zhang, D.; Chen, Y.; Zhang, L.; Ó Coileáin, C.; Wang, Z.; Jiang, Z.; Hung, K.-M.; Chang, C.-R.; et al. Enhanced NO2 Sensitivity in Schottky-Contacted n-Type SnS2 Gas Sensors. ACS Appl. Mater. Interfaces 2020, 12, 26746–26754. [Google Scholar] [CrossRef] [PubMed]
- Tripathy, S.; Sett, A.; Majumder, S.; Bhattacharyya, T.K. Study of Gate Induced Sensitivity Amplification in Carbon Nanotube Thin Film Transistor Based Ammonia Sensor. Sens. Actuators B Chem. 2023, 382, 133511. [Google Scholar] [CrossRef]
- Tabata, H.; Matsuyama, H.; Goto, T.; Kubo, O.; Katayama, M. Visible-Light-Activated Response Originating from Carrier-Mobility Modulation of NO2 Gas Sensors Based on MoS2 Monolayers. ACS Nano 2021, 15, 2542–2553. [Google Scholar] [CrossRef]
- Ju, W.; Lee, S. Al Back-Gated Graphene Field-Effect Transistors for Capacitive Sensing Applications Based on Quantum Capacitance Effect. AIP Adv. 2022, 12, 095210. [Google Scholar] [CrossRef]
- Gakhar, T.; Hazra, A. P-TiO2/GO Heterojunction Based VOC Sensors: A New Approach to Amplify Sensitivity in FET Structure at Optimized Gate Voltage. Measurement 2021, 182, 109721. [Google Scholar] [CrossRef]
- Cadore, A.R.; Mania, E.; Alencar, A.B.; Rezende, N.P.; De Oliveira, S.; Watanabe, K.; Taniguchi, T.; Chacham, H.; Campos, L.C.; Lacerda, R.G. Enhancing the Response of NH3 Graphene-Sensors by Using Devices with Different Graphene-Substrate Distances. Sens. Actuators B Chem. 2018, 266, 438–446. [Google Scholar] [CrossRef]
- Gajarushi, A.S.; Surya, S.G.; Walawalkar, M.G.; Ravikanth, M.; Rao, V.R.; Subramaniam, C. Ultra-Sensitive Gas Phase Detection of 2,4,6-Trinitrotoluene by Non-Covalently Functionalized Graphene Field Effect Transistors. Analyst 2020, 145, 917–928. [Google Scholar] [CrossRef] [PubMed]
- Kybert, N.J.; Han, G.H.; Lerner, M.B.; Dattoli, E.N.; Esfandiar, A.; Charlie Johnson, A.T. Scalable Arrays of Chemical Vapor Sensors Based on DNA-Decorated Graphene. Nano Res. 2014, 7, 95–103. [Google Scholar] [CrossRef]
- Mansouri Majd, S.; Ghasemi, F.; Salimi, A.; Sham, T.-K. Transport Properties of a Molybdenum Disulfide and Carbon Dot Nanohybrid Transistor and Its Applications as a Hg2+ Aptasensor. ACS Appl. Electron. Mater. 2020, 2, 635–645. [Google Scholar] [CrossRef]
- Han, J.-W.; Rim, T.; Baek, C.-K.; Meyyappan, M. Chemical Gated Field Effect Transistor by Hybrid Integration of One-Dimensional Silicon Nanowire and Two-Dimensional Tin Oxide Thin Film for Low Power Gas Sensor. ACS Appl. Mater. Interfaces 2015, 7, 21263–21269. [Google Scholar] [CrossRef]
- Kumar, S.; Pramudya, Y.; Müller, K.; Chandresh, A.; Dehm, S.; Heidrich, S.; Fediai, A.; Parmar, D.; Perera, D.; Rommel, M.; et al. Sensing Molecules with Metal–Organic Framework Functionalized Graphene Transistors. Adv. Mater. 2021, 33, 2103316. [Google Scholar] [CrossRef]
- Falak, A.; Tian, Y.; Yan, L.; Xu, L.; Song, Z.; Hu, H.; Dong, F.; Adamu, B.I.; Zhao, M.; Chen, P.; et al. Ultrathin MoOx/Graphene Hybrid Field Effect Transistor Sensors Prepared Simply by a Shadow Mask Approach for Selective ppb-Level NH3 Sensing with Simultaneous Superior Response and Fast Recovery. Adv. Mater. Interfaces 2020, 7, 1902002. [Google Scholar] [CrossRef]
- Kim, Y.; Kang, S.-K.; Oh, N.-C.; Lee, H.-D.; Lee, S.-M.; Park, J.; Kim, H. Improved Sensitivity in Schottky Contacted Two-Dimensional MoS2 Gas Sensor. ACS Appl. Mater. Interfaces 2019, 11, 38902–38909. [Google Scholar] [CrossRef]
- Fakih, I.; Durnan, O.; Mahvash, F.; Napal, I.; Centeno, A.; Zurutuza, A.; Yargeau, V.; Szkopek, T. Selective Ion Sensing with High Resolution Large Area Graphene Field Effect Transistor Arrays. Nat. Commun. 2020, 11, 3226. [Google Scholar] [CrossRef]
- Zong, B.; Xu, Q.; Mao, S. Single-Atom Pt-Functionalized Ti3C2Tx Field-Effect Transistor for Volatile Organic Compound Gas Detection. ACS Sens. 2022, 7, 1874–1882. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Zong, B.; Li, Q.; Fang, X.; Mao, S.; Ostrikov, K. (Ken) H2S Sensing under Various Humidity Conditions with Ag Nanoparticle Functionalized Ti3C2Tx MXene Field-Effect Transistors. J. Hazard. Mater. 2022, 424, 127492. [Google Scholar] [CrossRef] [PubMed]
- Azizi, A.; Dogan, M.; Long, H.; Cain, J.D.; Lee, K.; Eskandari, R.; Varieschi, A.; Glazer, E.C.; Cohen, M.L.; Zettl, A. High-Performance Atomically-Thin Room-Temperature NO2 Sensor. Nano Lett. 2020, 20, 6120–6127. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Huang, H.-P.; Fei, H.; Feng, J.; Fuh, H.-R.; Cho, J.; Choi, M.; Chen, Y.; Zhang, L.; Chen, D.; et al. Strategy for Fabricating Wafer-Scale Platinum Disulfide. ACS Appl. Mater. Interfaces 2019, 11, 8202–8209. [Google Scholar] [CrossRef]
- Hao, S.; Liu, C.; Chen, X.; Zong, B.; Wei, X.; Li, Q.; Qin, H.; Mao, S. Ti3C2Tx MXene Sensor for Rapid Hg2+ Analysis in High Salinity Environment. J. Hazard. Mater. 2021, 418, 126301. [Google Scholar] [CrossRef]
- Liu, C.; Wei, X.; Hao, S.; Zong, B.; Chen, X.; Li, Z.; Mao, S. Label-Free, Fast Response, and Simply Operated Silver Ion Detection with a Ti3C2TxMXene Field-Effect Transistor. Anal. Chem. 2021, 93, 8010–8018. [Google Scholar] [CrossRef]
- Zhou, G.; Jin, B.; Wang, Y.; Dong, Q.; Maity, A.; Chang, J.; Ren, R.; Pu, H.; Sui, X.; Mao, S.; et al. Ultrasensitive Sensors Based on Aluminum Oxide-Protected Reduced Graphene Oxide for Phosphate Ion Detection in Real Water. Mol. Syst. Des. Eng. 2020, 5, 936–942. [Google Scholar] [CrossRef]
- An, J.H.; Jang, J. A Highly Sensitive FET-Type Aptasensor Using Flower-like MoS2 Nanospheres for Real-Time Detection of Arsenic(III). Nanoscale 2017, 9, 7483–7492. [Google Scholar] [CrossRef]
- Inaba, A.; Yoo, K.; Takei, Y.; Matsumoto, K.; Shimoyama, I. Ammonia Gas Sensing Using a Graphene Field–Effect Transistor Gated by Ionic Liquid. Sens. Actuators B Chem. 2014, 195, 15–21. [Google Scholar] [CrossRef]
- Bergveld, P. Development, Operation, and Application of the Ion-Sensitive Field-Effect Transistor as a Tool for Electrophysiology. IEEE Trans. Biomed. Eng. 1972, BME-19, 342–351. [Google Scholar] [CrossRef]
- Tu, J.; Gan, Y.; Liang, T.; Hu, Q.; Wang, Q.; Ren, T.; Sun, Q.; Wan, H.; Wang, P. Graphene FET Array Biosensor Based on ssDNA Aptamer for Ultrasensitive Hg2+ Detection in Environmental Pollutants. Front. Chem. 2018, 6, 333. [Google Scholar] [CrossRef] [PubMed]
- Ang, P.K.; Chen, W.; Wee, A.T.S.; Loh, K.P. Solution-Gated Epitaxial Graphene as pH Sensor. J. Am. Chem. Soc. 2008, 130, 14392–14393. [Google Scholar] [CrossRef]
- Gao, J.; Wang, Y.; Han, Y.; Gao, Y.; Wang, C.; Han, L.; Zhang, Y. Graphene-Based Field-Effect Transistors Integrated with Microfluidic Chip for Real-Time pH Monitoring of Seawater. J. Mater. Sci. Mater. Electron. 2020, 31, 15372–15380. [Google Scholar] [CrossRef]
- Takagiri, Y.; Ikuta, T.; Maehashi, K. Selective Detection of Cu2+ Ions by Immobilizing Thiacalix[4]Arene on Graphene Field-Effect Transistors. ACS Omega 2020, 5, 877–881. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Sedki, M.; Shen, Y.; Mulchandani, A.; Gao, G. Chemiresistor Sensor Based on Ion-Imprinted Polymer (IIP)-Functionalized rGO for Cd(II) Ions in Water. Sens. Actuators B Chem. 2021, 346, 130474. [Google Scholar] [CrossRef]
- Wang, Y.; Bi, Y.; Wang, R.; Wang, L.; Qu, H.; Zheng, L. DNA-Gated Graphene Field-Effect Transistors for Specific Detection of Arsenic(III) in Rice. J. Agric. Food Chem. 2021, 69, 1398–1404. [Google Scholar] [CrossRef]
- Wang, S.-L.; Hsieh, C.-Y.; Wu, C.-R.; Chen, J.-C.; Wang, Y.-L. Highly Sensitive FET Sensors for Cadmium Detection in One Drop of Human Serum with a Hand-Held Device and Investigation of the Sensing Mechanism. Biomicrofluidics 2021, 15, 024110. [Google Scholar] [CrossRef]
- Lee, C.W.; Suh, J.M.; Choi, S.; Jun, S.E.; Lee, T.H.; Yang, J.W.; Lee, S.A.; Lee, B.R.; Yoo, D.; Kim, S.Y.; et al. Surface-Tailored Graphene Channels. npj 2D Mater. Appl. 2021, 5, 39. [Google Scholar] [CrossRef]
- Ren, Z.; Wang, J.; Xue, C.; Deng, M.; Li, Z.; Zhang, H.; Cai, C.; Xu, B.; Wang, X.; Li, J. Carbon Dot-Functionalized Solution-Gated Graphene Transistors for Highly Sensitive Detection of Cobalt(II) Ions. Chemosensors 2023, 11, 192. [Google Scholar] [CrossRef]
- Fan, Q.; Li, J.; Zhu, Y.; Yang, Z.; Shen, T.; Guo, Y.; Wang, L.; Mei, T.; Wang, J.; Wang, X. Functional Carbon Quantum Dots for Highly Sensitive Graphene Transistors for Cu2+ Ion Detection. ACS Appl. Mater. Interfaces 2020, 12, 4797–4803. [Google Scholar] [CrossRef]
- Fan, Q.; Li, J.; Wang, J.; Yang, Z.; Shen, T.; Guo, Y.; Wang, L.; Irshad, M.S.; Mei, T.; Wang, X. Ultrasensitive Fe3+ Ion Detection Based on Carbon Quantum Dot-Functionalized Solution-Gated Graphene Transistors. J. Mater. Chem. C 2020, 8, 4685–4689. [Google Scholar] [CrossRef]
- Alves, A.P.P.; Meireles, L.M.; Ferrari, G.A.; Cunha, T.H.R.; Paraense, M.O.; Campos, L.C.; Lacerda, R.G. Highly Sensitive and Reusable Ion-Sensor Based on Functionalized Graphene. Appl. Phys. Lett. 2020, 117, 033105. [Google Scholar] [CrossRef]
- Miyakawa, N.; Shinagawa, A.; Kajiwara, Y.; Ushiba, S.; Ono, T.; Kanai, Y.; Tani, S.; Kimura, M.; Matsumoto, K. Drift Suppression of Solution-Gated Graphene Field-Effect Transistors by Cation Doping for Sensing Platforms. Sensors 2021, 21, 7455. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Shiraishi, N.; Imaizumi, R.; Zhang, L.; Kimura, M. Process Development of a Liquid-Gated Graphene Field-Effect Transistor Gas Sensor for Applications in Smart Agriculture. Sensors 2024, 24, 6376. [Google Scholar] [CrossRef]
- Sanjay, S.; Sakib, F.I.; Hossain, M.; Bhat, N. Super-Nernstian WSe2 /MoS2 Heterostructure ISFET Combining Negative Capacitance and Charge Screening Effects. IEEE Sens. J. 2023, 23, 12526–12535. [Google Scholar] [CrossRef]
- Le, S.T.; Cho, S.; Zaslavsky, A.; Richter, C.A.; Balijepalli, A.K. High-Performance Dual-Gate Graphene pH Sensors. Appl. Phys. Lett. 2022, 120, 263701. [Google Scholar] [CrossRef]
- Yao, L.; Gao, S.; Liu, S.; Bi, Y.; Wang, R.; Qu, H.; Wu, Y.; Mao, Y.; Zheng, L. Single-Atom Enzyme-Functionalized Solution-Gated Graphene Transistor for Real-Time Detection of Mercury Ion. ACS Appl. Mater. Interfaces 2020, 12, 6268–6275. [Google Scholar] [CrossRef]
- Kim, E.-B.; Imran, M.; Lee, E.-H.; Akhtar, M.S.; Ameen, S. Multiple Ions Detection by Field-Effect Transistor Sensors Based on ZnO@GO and ZnO@rGO Nanomaterials: Application to Trace Detection of Cr (III) and Cu (II). Chemosphere 2022, 286, 131695. [Google Scholar] [CrossRef]
- Wang, H.; Hou, E.; Xu, N.; Zhang, Y.; Wu, J.; Yuan, W.; Kong, Z.; Nie, P.; Chang, L.; Zhang, X.; et al. Photoelectrochemical Solution Gated Graphene Field-Effect Transistor Functionalized by Enzymatic Cascade Reaction for Organophosphate Detection. Small 2024, 20, 2402655. [Google Scholar] [CrossRef]
- Van Der Spiegel, J.; Lauks, I.; Chan, P.; Babic, D. The Extended Gate Chemically Sensitive Field Effect Transistor as Multi-Species Microprobe. Sens. Actuators 1983, 4, 291–298. [Google Scholar] [CrossRef]
- Andoy, N.M.; Filipiak, M.S.; Vetter, D.; Gutiérrez-Sanz, Ó.; Tarasov, A. Graphene-Based Electronic Immunosensor with Femtomolar Detection Limit in Whole Serum. Adv. Mater. Technol. 2018, 3, 1800186. [Google Scholar] [CrossRef]
- Wang, B.; Zhao, C.; Wang, Z.; Yang, K.-A.; Cheng, X.; Liu, W.; Yu, W.; Lin, S.; Zhao, Y.; Cheung, K.M.; et al. Wearable Aptamer-Field-Effect Transistor Sensing System for Noninvasive Cortisol Monitoring. Sci. Adv. 2022, 8, eabk0967. [Google Scholar] [CrossRef]
- Alvarez-Serna, B.E.; Ramírez-Chavarría, R.G.; Castillo-Villanueva, E.; Carrillo-Reyes, J.; Ramírez-Zamora, R.M.; Buitrón, G.; Alvarez-Icaza, L. Label-Free and Portable Field-Effect Sensor for Monitoring RT-LAMP Products to Detect SARS-CoV-2 in Wastewater. Talanta 2023, 253, 124060. [Google Scholar] [CrossRef]
- Zhou, F.; Pan, W.; Chang, Y.; Su, X.; Duan, X.; Xue, Q. A Supported Lipid Bilayer-Based Lab-on-a-Chip Biosensor for the Rapid Electrical Screening of Coronavirus Drugs. ACS Sens. 2022, 7, 2084–2092. [Google Scholar] [CrossRef]
- Wei, W.; Liao, W.; Zeng, Z.; Zhu, C. Extended Gate Reference-FET (REFET) Using 2D h-BN Sensing Layer for pH Sensing Applications. IEEE Electron Device Lett. 2020, 41, 159–162. [Google Scholar] [CrossRef]
- Kim, H.; Park, S.; Jeong, I.G.; Song, S.H.; Jeong, Y.; Kim, C.-S.; Lee, K.H. Noninvasive Precision Screening of Prostate Cancer by Urinary Multimarker Sensor and Artificial Intelligence Analysis. ACS Nano 2021, 15, 4054–4065. [Google Scholar] [CrossRef]
- Ohshiro, K.; Sasaki, Y.; Zhou, Q.; Lyu, X.; Yamanashi, Y.; Nakahara, K.; Nagaoka, H.; Minami, T. Oxytocin Detection at Ppt Level in Human Saliva by an Extended-Gate-Type Organic Field-Effect Transistor. Analyst 2022, 147, 1055–1059. [Google Scholar] [CrossRef]
- Spijkman, M.; Myny, K.; Smits, E.C.P.; Heremans, P.; Blom, P.W.M.; De Leeuw, D.M. Dual-Gate Thin-Film Transistors, Integrated Circuits and Sensors. Adv. Mater. 2011, 23, 3231–3242. [Google Scholar] [CrossRef]
- Pang, Y.; Zhou, Y.; Tong, L.; Xu, J. 2D Dual Gate Field-Effect Transistor Enabled Versatile Functions. Small 2024, 20, 2304173. [Google Scholar] [CrossRef]
- Knopfmacher, O.; Tarasov, A.; Fu, W.; Wipf, M.; Niesen, B.; Calame, M.; Schönenberger, C. Nernst Limit in Dual-Gated Si-Nanowire FET Sensors. Nano Lett. 2010, 10, 2268–2274. [Google Scholar] [CrossRef]
- Spijkman, M.-J.; Brondijk, J.J.; Geuns, T.C.T.; Smits, E.C.P.; Cramer, T.; Zerbetto, F.; Stoliar, P.; Biscarini, F.; Blom, P.W.M.; de Leeuw, D.M. Dual-Gate Organic Field-Effect Transistors as Potentiometric Sensors in Aqueous Solution. Adv. Funct. Mater. 2010, 20, 898–905. [Google Scholar] [CrossRef]
- Park, Y.M.; Salleo, A. Dual-Gate Organic Thin Film Transistors as Chemical Sensors. Appl. Phys. Lett. 2009, 95, 133307. [Google Scholar] [CrossRef]
- Ahn, J.-H.; Choi, B.; Choi, S.-J. Understanding the Signal Amplification in Dual-Gate FET-Based Biosensors. J. Appl. Phys. 2020, 128, 184502. [Google Scholar] [CrossRef]
- Tamersit, K.; Djeffal, F. Double-Gate Graphene Nanoribbon Field-Effect Transistor for DNA and Gas Sensing Applications: Simulation Study and Sensitivity Analysis. IEEE Sens. J. 2016, 16, 4180–4191. [Google Scholar] [CrossRef]
- Athas, J.; Ereifej, J.; Torres Quiñones, J.; Abrams, A.; Yun, M. A Scalable Top-Gate Graphene Field Effect Transistor with a Polydimethylsiloxane Dielectric. Nano Trends 2024, 6, 100039. [Google Scholar] [CrossRef]
- Irfan, M.; Mustafa, H.; Sattar, A.; Ahsan, U.; Alvi, F.; Usman, A.; Siddique, I.; Pang, W.; Qin, S. Top-Gate Engineering of Field-Effect Transistors Based on Single Layers of MoS2 and Graphene. J. Phys. Chem. Solids 2024, 184, 111710. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, Y. Wafer-Scale Floating-Gate Field Effect Transistor Sensor Built on Carbon Nanotubes Film for Ppb-Level NO2 Detection. Chem. Eng. J. 2023, 473, 145480. [Google Scholar] [CrossRef]
- Kaisti, M.; Boeva, Z.; Koskinen, J.; Nieminen, S.; Bobacka, J.; Levon, K. Hand-Held Transistor Based Electrical and Multiplexed Chemical Sensing System. ACS Sens. 2016, 1, 1423–1431. [Google Scholar] [CrossRef]
- Liao, L.-W.; Chen, P.-H.; Tsai, S.-Y.; Tripathi, A.; Paulose, A.K.; Chang, S.-J.; Wang, Y.-L. Rapid β-Human Chorionic Gonadotropin Detection in Urine with Electric-Double-Layer Gated Field-Effect Transistor Biosensors and a Handheld Device. Biomicrofluidics 2021, 15, 024106. [Google Scholar] [CrossRef]
Channel Material | Analyte | LOD | Sensitivity/ Response | Response/Recovery Times | Limitations/Challenges | Ref. |
---|---|---|---|---|---|---|
MoS2/FDM-23 MOF | NH3 | 0.1 ppm | 3303% for 100 ppm NH3 | 80 s/144 s | Sensitivity performance is believed to be more affected by the number of electrons at the interface, surface modification, etc., than by the basic electrical characteristics of the MoS2 FET | [10] |
ReS2-FETs | Acetone and ethanol | N/A | 4.3% ppm−1 for acetone under 650 nm; −0.85% ppm−1 for ethanol under dark condition | N/A | Further research is still needed to fully understand and enhance the ReS2-FET gas sensor; selectivity concerns without illumination | [17] |
Few-layer Black Phosphorus (BP) | Humidity | N/A | Sensitivity ~521% at 97% relative humidity (RH) | 101 s/26 s | Degrades completely when stored in ambient conditions without encapsulation due to chemical reactions with moisture and oxygen; recovery is not complete in all cycles for the humidity sensor | [33] |
PdSe2/Si heterojunction | NO2 | 100 ppb | 7.2% for 100 ppb NO2 ~18% for 1 ppm, ~27% for 3 ppm, and ~42% for 5 ppm NO2 | ~701 s/~1053 s (1 ppm), ~632 s/~1380 s (3 ppm), and ~620 s/~2640 s (5 ppm) | Higher concentrations of NO2 require longer recovery times | [34] |
3D Ag NP/rGO FET | NO2 | 20 ppm | 6.42% for 20 ppm | 116 s for 20 ppm to 191 s for 120 ppm NO2; 366 s for 20 ppm to 1962 s for 120 ppm NO2 | Higher sensor response corresponds to longer response and recovery times, especially at high concentrations; sensitivity is limited by a width-to-length ratio much smaller than other reported sensors and contact resistance | [38] |
TiO2/Graphene | NH3 | 373 ppb | Sensitivity 0.1300% ppm−1 | Response time 3 min; recovery time 7.2–17.3 min | While humidity enhances the response, it can also influence recovery time, particularly for sensors with lower TiO2 coverage | [43] |
SnS2 | NO2 | 1 ppb | 13,000% for 9 ppm NO2 and 97% for 1 ppb NO2 | N/A | Best performance with Mn electrode, but low sensitivity at low concentrations for p-type electrodes; interference from other gases | [47] |
MoS2 under light activation | NO2 | 0.15 ppb | Response ~32.66% for 1 ppm | Response/recovery time (to reach 90%) was ~30 s/~410 s upon exposure to 50 ppb NO2 under light | Slow response and recovery kinetics at room temperature for pristine material; requires specific light illumination for enhanced performance | [49] |
ZnTTPOH-functionalized graphene | TNT | 0.76 ng | 1.2 × 1012 V mol−1 | Response time 40 s; recovery time 5 min by heating at 140 °C with nitrogen flush | Saturation at high concentrations above 150 ppb; requires heating to generate detectable vapors of TNT, due to low vapor pressure at room temperature | [53] |
DNA-CD/MoS2 | Hg2+ ions | 0.65 aM | 2.3799 decade−1 | Response time 10 min | Optimizing the response time for analyte detection is important; requires functionalization with DNA probes | [55] |
SURMOF-functionalized Graphene | Ethanol | 0.2 mg/L (100 ppm) | 30% change in conductance for ethanol concentrations of 3 mg/L | Response time within seconds; recovery time 10–20 s by increasing the source–drain voltage | Without thermal activation, ethanol desorption is slow, taking hours to reset the sensor | [57] |
MoOx/Graphene hybrid FET (MoOx/GFET) | NH3 | 310 ppb | Response of −18.10% for 12 ppm NH3; sensitivity of 0.10% ppm−1 is reported | Recovery time 356 s | Increased humidity levels (20% to 60%) enhanced the response but elongated the recovery time; adsorption of p-dopants like oxygen and water vapors over time affected the Schottky barrier height and sensing performance | [58] |
MoS2 | NO2 | 10 ppm | N/A | N/A | Layer-dependent response, which decreases to 60% when thickness increases from 1 layer to 2 layers; even a small Schottky barrier height (SBH) was found to have a significant effect on the contact resistance | [59] |
PtS2 thin film under 405 nm light | NH2 and NO2 | NO2—0.4 ppb; NH2—∼0.5 ppm | 5%@~1 ppm NO2 | Response time 10–100 s | Reversal of the resistance response is observed at higher NO2 concentrations (~150/60 ppb dark/light); violet light (405 nm) decreases the required concentration for this transition | [64] |
Channel Material | Analyte | LODs | Sensitivity/Response | Response/Recovery Times | Challenges | Ref |
---|---|---|---|---|---|---|
Graphene/nitrate selective polymer selective membrane | Nitrate ions in water | 0.1 mg/L | Dirac point shift of up to 0.25 V | Response time 10 s | Interference from other ions present in water samples | [21] |
Graphene/valinomycin-based ion selective membrane | K+ ions | N/A | 64 mV/decade between 10 µM and 20 mM | Response time 7.1 s | Selectivity issues at concentration less than 10 µM; baseline interference | [22] |
Graphene/covalent organic framework (COFTAPB-BMTTPA) | Hg2+ | 1 × 10−10 M | 10−10 M to 10−4 M | Response time 50 ms | Non-specific adsorption of interferents; the thickness of the COFTAPB-BMTTPA layer impacts sensitivity | [23] |
Graphene | K+ ions | 0.058 pM | Sensitivity coefficient was 0.0255 | N/A | Prolonged plasma treatment results in structural defects and poor conductance characteristics, limiting the device’s performance | [28] |
Graphene | K+, Na+, NH4+, NO3−, SO42−, HPO42−, Cl− | 1 × 10−5 M | K+: 45.7 mV per decade; Na+: 49.2 mV per decade; NH4+: 58.6 mV per decade; NO3−: −56.7 mV per decade; Cl−: −43.0 mV per decade; SO42−: −22.6 mV per decade; HPO42−: −34.9 mV per decade | N/A | Temperature and pH dependence; in multi-ion solutions, the system of equations occasionally fails to provide real solutions for anion concentrations | [60] |
Graphene | NH3 | 130 ppb | Voltage shift −0.057 per 10-fold increase in NH3 concentration from 9 to 2400 ppm | Response time was 33 s; recovery time varies from 180 to 1500 s | Non-linear response; diffusion dependence of gas in ionic liquid; manual ionic liquid placement | [69] |
Graphene with ssDNA aptamer | Hg2+ | 40 pM | Response time less than 1 s | Environmental interference; baseline variation | [71] | |
Graphene with microfluidic channel | pH in seawater | N/A | Sensitivity 23.98 mV/pH in 1 × PBS solution; 8.07 mV/pH in seawater solution | Response time 1 min | Sensitivity reduction in seawater due to different ion types and concentrations compared to PBS | [73] |
Thiacalix[4]arene (TCA) immobilized graphene | Cu2+ | 1 µM | 200 mV for 300 µM | Response time 15 min | Fabrication complexity—TCA immobilization; sentivity saturation at analyte concentrations over 300 µM | [74] |
Reduced graphene oxide (rGO) functionalized with ion-imprinted polymer (IIP) | Cd2+ | 0.83 ppb | 0.14 ppb−1 in the range of 2–200 ppb | Response time 5 min | Fabrication complexity—RAFT polymerization process for IIP functionalization; pH dependence | [75] |
Graphene; DNA-functionalized gate electrode | As(III) | 5 nM | 0.24 mV/nM | N/A | Fabrication complexity—DNA probe synthesis, thiol modification, electrode functionalization, and blocking with BSA | [76] |
Nafion-coated graphene | pH | 115.2 mV/pH 8.05: 450% | 30 s/100 s | Interference by K+ ion; pH range | [78] | |
Carbon-dot-functionalized graphene | Co2+ | 1 × 10−19 M | N/A | Response time 165 s | The detection mechanism heavily relies on the carboxyl groups on the surface of carbon dots | [79] |
Carbon-dot-functionalized graphene | Cu2+ | 1 × 10−14 M | N/A | N/A | Interference by other metal ions; the mechanism relies on the inner filter effect and amine groups on CQDs | [80] |
L-phenylalanine-functionalized graphene | Na+, Co2+, Al3+, Cu2+ | 0.000017 nmol/L (femtomolar range) for Cu2+; Nanomolar range for Na+, Co2+, Al3+ | N/A | Real-time response | The device supports only three cleaning cycles before sensitivity begins to degrade | [82] |
Graphene | pH | 2 × 10−4 | 30 V per unit change in pH | Recovery time 10 s | Device and sensing characterization performed in ultra-high vacuum | [86] |
Graphene; Fe-N-C SAE-functionalized gate electrode | Hg2+ | 1 nM | −30 mV/decade in the range from 30 nM to 3 μM | Response time less than 2 s | Detection not possible in highly polluted environments with concentrations over 3 μM | [87] |
Zinc oxide (ZnO) nanoglobules (NGs) with graphene oxide (GO) and reduced graphene oxide (rGO) | Cr (III) ions (ZnO-NGs@GO); Cu (II) ions (ZnO-NGs@rGO) | Cr (III): ~7.05 μM; Cu (II): ~14.9 μM | Cr (III): ~49.28 mA μM−1 cm−2; Cu (II): ~185.32 mA μM−1 cm−2 | N/A | The adsorption process may become poor and achieve saturation over time due to the limited quantity of negative adsorptive sites on the electrode surface | [88] |
Graphene | organophosphorus (OPs) pesticide | 0.05 pM | N/A | Response time 35 min | The oxidation potential of thiocholine (TCh) is high (≈0.8 V vs. Ag/AgCl), and it requires a high gate potential operation | [89] |
Feature | Back-Gate (BG-FET) | Solution-Gate (SG-FET) | Extended-Gate (EG-FET) | Dual-Gate (DG-FET) |
---|---|---|---|---|
Materials | Graphene, MoS2, BP, MXene | Graphene, MoS2, rGO, COFs | EG structure with 2D/oxide films | Graphene, MoS2, In2Se3 |
Functionalization | Metal nanoparticles (Ag, Pt), MOFs, ssDNA, metal oxides (SnO2, MoOx) | Ionophores, aptamers, IIPs, CQDs, COFs, enzymes | Sensing films on separate electrode: SnO2, Al2O3, hBN | Surface trapping layers, charge modulation layers, chemical gate tuning |
Fabrication complexity * | Low–Moderate | Moderate–High | Moderate | High |
LOD | Gases and ions to ppt/aM | Ions to aM, gases ~ppb | Ions, pH, proteins to ppt | Gases/biomolecules to ppb/ppt |
Response Time | 1–100 s (some up to min) | Fast (ms to s) | Typically fast | Varies; suitable for real-time |
Sample environment | Gases, liquids | Liquids, ionic liquids, pH | Liquids (biological, serum) | Liquids, gases |
Analytes | Gases (NO2, NH3), VOCs, ions | Ions (K+, Hg2+), DNA, pH | pH, biomarkers, viral proteins | DNA, pH, gases |
Advantages | Simple, CMOS-compatible, versatile | High sensitivity, real-time, low voltage | Sensor isolation, reusable transducer | Signal gain, dual control, better in high-salt |
Primary limitations | Drift, selectivity, contact noise | Drift, Debye effect, needs reference electrode | Larger footprint, moderate sensitivity | Fabrication difficulty |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bharathi, G.; Hong, S. Gate Engineering in Two-Dimensional (2D) Channel FET Chemical Sensors: A Comprehensive Review of Architectures, Mechanisms, and Materials. Chemosensors 2025, 13, 217. https://doi.org/10.3390/chemosensors13060217
Bharathi G, Hong S. Gate Engineering in Two-Dimensional (2D) Channel FET Chemical Sensors: A Comprehensive Review of Architectures, Mechanisms, and Materials. Chemosensors. 2025; 13(6):217. https://doi.org/10.3390/chemosensors13060217
Chicago/Turabian StyleBharathi, Ganapathi, and Seongin Hong. 2025. "Gate Engineering in Two-Dimensional (2D) Channel FET Chemical Sensors: A Comprehensive Review of Architectures, Mechanisms, and Materials" Chemosensors 13, no. 6: 217. https://doi.org/10.3390/chemosensors13060217
APA StyleBharathi, G., & Hong, S. (2025). Gate Engineering in Two-Dimensional (2D) Channel FET Chemical Sensors: A Comprehensive Review of Architectures, Mechanisms, and Materials. Chemosensors, 13(6), 217. https://doi.org/10.3390/chemosensors13060217