DNA Sensors for the Detection of Mercury Ions
Abstract
:1. Introduction
2. Electrochemistry
3. Field Effect Transistors
4. Raman Spectroscopy
DNA Probe | Nanomaterial or Other Auxiliary Material | Detection Linear Range | LOD | References |
---|---|---|---|---|
ssDNA | AuNPs/rGO/SiO2/Si heterojunction | 0.1–6000 nM | 0.1 nM | [107] |
ssDNA | single gold micro-shell | 0–10 μM | 50 nM | [113] |
dsDNA | Au@Ag NPs | 0–200 nM | 0.4 pM | [114] |
ssDNA | AgNPs | 0–25 nM | 5 nM | [115] |
ssDNA | Ag-film | 0.1 pM–10 μM | 1.35 fM | [117] |
dsDNA | AuNPs | 0.1 pM–10 nM | 0.08 pM | [118] |
5. Colorimetry
6. Fluorescence Resonance Energy Transfer Detection
7. Conclusions
Funding
Conflicts of Interest
References
- Timm, C.; Luther, S.; Jurzik, L.; Hamza, A.; Kistemann, T. Applying QMRA and DALY to assess health risks from river bathing. Int. J. Hyg. Environ. Health 2016, 219, 681–692. [Google Scholar] [CrossRef] [PubMed]
- Tsuchiya, K. The discovery of the causal agent of Minamata disease. Am. J. Ind. Med. 1992, 21, 275–280. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Wang, Y.; Gong, L.; Gan, S.; Gu, M.; Wang, S. Association between cadmium exposure and urolithiasis risk: A systematic review and meta-analysis. Medicine 2018, 97, e9460. [Google Scholar] [CrossRef]
- Lin, X.; Gu, Y.; Zhou, Q.; Mao, G.; Zou, B.; Zhao, J. Combined toxicity of heavy metal mixtures in liver cells. J. Appl. Toxicol. 2016, 36, 1163–1172. [Google Scholar] [CrossRef]
- Jaishankar, M.; Tseten, T.; Anbalagan, N.; Mathew, B.; Beeregowda, N. Toxicity, mechanism and health effects of some heavy metals. Interdiscip. Toxicol. 2014, 7, 60–72. [Google Scholar] [CrossRef]
- Kim, S.; Kim, J.; Seo, R. An overview of carcinogenic heavy metal: Molecular toxicity mechanism and prevention. J. Cancer Prev. 2015, 20, 232–240. [Google Scholar] [CrossRef]
- Blaise, E. Global Mercury Assessment, 2002. Available online: www.unep.org/globalmercurypartnership/resources/report/global-mercury-assessment-2002 (accessed on 18 February 2025).
- Wang, G.; Zhao, Q.; Kang, X.; Guan, X. Probing mercury(II)-DNA interactions by nanopore stochastic sensing. J. Phys. Chem. B 2013, 117, 4763–4769. [Google Scholar] [CrossRef]
- Huang, D.; Niu, C.; Zeng, G.; Wang, X.; Lv, X. A highly sensitive protocol for the determination of Hg(2+) in environmental water using time-gated mode. Talanta 2015, 132, 606–612. [Google Scholar] [CrossRef]
- Huang, J.; Gao, X.; Jia, J.; Kim, J.K.; Li, Z. Graphene oxide-based amplified fluorescent biosensor for Hg(2+) detection through hybridization chain reactions. Anal. Chem. 2014, 86, 3209–3215. [Google Scholar] [CrossRef]
- Harris, H.; Pickering, J.; George, N. The chemical form of mercury in fish. Science 2003, 301, 1203. [Google Scholar] [CrossRef]
- Vo, T.; Bank, S.; Shine, P.; Edwards, V. Temporal increase in organic mercury in an endangered pelagic seabird assessed by century-old museum specimens. Proc. Natl. Acad. Sci. USA 2011, 108, 7466–7471. [Google Scholar] [CrossRef] [PubMed]
- Clarkson, W.; Magos, L. The toxicology of mercury and its chemical compounds. Crit. Rev. Toxicol. 2006, 36, 609–662. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Lin, H.; Tseng, L. Oligonucleotide-functionalized silver nanoparticle extraction and laser-induced fluorescence for ultrasensitive detection of mercury(II) ion. Biosens. Bioelectron. 2012, 34, 185–190. [Google Scholar] [CrossRef]
- Huang, C.; Chang, T. Selective gold-nanoparticle-based “turn-on” fluorescent sensors for detection of mercury(II) in aqueous solution. Anal. Chem. 2006, 78, 8332–8338. [Google Scholar] [CrossRef]
- Alina, M.; Azrina, A.; Mohd Yunus, S.; Mohd Zakiuddin, S.; Mohd, H.; Muhammad Rizal, R. Heavy metals (mercury, arsenic, cadmium, plumbum) in selected marine fish and shellfish along the straits of malacca. Int. Food Res. J. 2012, 19, 135–140. [Google Scholar]
- Rice, K.M.; Walker, E.M., Jr.; Wu, M.; Gillette, C.; Blough, E. Environmental mercury and its toxic effects. J. Prev. Med. Public Health 2014, 47, 74–83. [Google Scholar] [CrossRef]
- Park, D.; Zheng, W. Human exposure and health effects of inorganic and elemental mercury. J. Prev. Med. Public Health 2012, 45, 344–352. [Google Scholar] [CrossRef]
- Lewerenz, J. Methylmercury (environmental health criteria no. 101). 144 seiten, 5 abb. 11 tab. world health organization, geneva 1990. preis: 16,—sw.fr.; 12,80 us $. Mol. Nutr. Food Res. 2010, 35, 326–327. [Google Scholar] [CrossRef]
- Björkman, L.; Lundekvam, F.; Laegreid, T.; Bertelsen, I.; Morild, I.; Lilleng, P.; Lind, B.; Palm, B.; Vahter, M. Mercury in human brain, blood, muscle and toenails in relation to exposure: An autopsy study. Environ. Health 2007, 6, 30. [Google Scholar] [CrossRef]
- Garza-Lombó, C.; Posadas, Y.; Quintanar, L.; Gonsebatt, E.; Franco, R. Neurotoxicity linked to dysfunctional metal ion homeostasis and xenobiotic metal exposure: Redox signaling and oxidative stress. Antioxid. Redox Signal. 2018, 28, 1669–1703. [Google Scholar] [CrossRef]
- Qi, Y.; Xiu, F.R.; Yu, G.; Huang, L.; Li, B. Simple and rapid chemiluminescence aptasensor for Hg2+ in contaminated samples: A new signal amplification mechanism. Biosens. Bioelectron. 2017, 87, 439–446. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Zhou, X.; Shi, H.; Luo, Y. T-T mismatch-driven biosensor using triple functional DNA-protein conjugates for facile detection of Hg2+. Biosens. Bioelectron. 2016, 78, 418–422. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Xie, J.; Jiang, B.; Yuan, R.; Xiang, Y. Metallo-toehold-activated catalytic hairpin assembly formation of three-way DNAzyme junctions for amplified fluorescent detection of Hg2+. ACS Appl. Mater. Inter. 2017, 9, 5733–5738. [Google Scholar] [CrossRef]
- Lehel, J.; Zwillinger, D.; Bartha, A.; Lányi, K.; Laczay, P. Food safety aspects of primary environmental contaminants in the edible tissues of roe deer (Capreolus capreolus). Environ. Sci. Pollut. 2017, 24, 25372–25382. [Google Scholar] [CrossRef]
- Akhbarizadeh, R.; Moore, F.; Keshavarzi, B. Investigating a probable relationship between microplastics and potentially toxic elements in fish muscles from northeast of Persian Gulf. Environ. Pollut. 2018, 232, 154–163. [Google Scholar] [CrossRef]
- Wang, M.; Feng, W.; Shi, J.; Zhang, F.; Wang, B.; Zhu, M.; Li, B.; Zhao, Y.; Chai, Z. Development of a mild mercaptoethanol extraction method for determination of mercury species in biological samples by HPLC-ICP-MS. Talanta 2007, 71, 2034–2039. [Google Scholar] [CrossRef]
- Bloom, N.; Fitzgerald, W.F. Determination of volatile mercury species at the picogram level by low-temperature gas chromatography with cold-vapour atomic fluorescence detection. Anal. Chim. Acta 1988, 208, 151–161. [Google Scholar] [CrossRef]
- Fong, M.; Siu, S.; Lee, S.; Tam, S. Determination of mercury in whole blood and urine by inductively coupled plasma mass spectrometry. J. Anal. Toxicol. 2007, 31, 281–287. [Google Scholar] [CrossRef]
- Leopold, K.; Foulkes, M.; Worsfold, P. Methods for the determination and speciation of mercury in natural waters—A review. Anal. Chim. Acta 2010, 663, 127–138. [Google Scholar] [CrossRef]
- Karunasagar, D.; Arunachalam, J.; Gangadharan, S. Development of a ‘collect and punch’ cold vapour inductively coupled plasma mass spectrometric method for the direct determination of mercury at nanograms per litre levels. J. Anal. At. Spectrom. 1998, 13, 679–682. [Google Scholar] [CrossRef]
- Miller, L.; Watson, B.; Lester, P.; Lowe, A.; Pierce, M.; Liang, L. Characterization of soils from an industrial complex contaminated with elemental mercury. Environ. Res. 2013, 125, 20–29. [Google Scholar] [CrossRef] [PubMed]
- Ono, A.; Togashi, H. Highly selective oligonucleotide-based sensor for mercury(II) in aqueous solutions. Angew. Chem. Int. Edit 2004, 43, 4300–4302. [Google Scholar] [CrossRef] [PubMed]
- Miyake, Y.; Togashi, H.; Tashiro, M.; Yamaguchi, H.; Oda, S.; Kudo, M.; Tanaka, Y.; Kondo, Y.; Sawa, R.; Fujimoto, T.; et al. MercuryII-mediated formation of thymine-HgII-thymine base pairs in DNA duplexes. J. Am. Chem. Soc. 2006, 128, 2172–2173. [Google Scholar] [CrossRef]
- Srinivasan, K.; Subramanian, K.; Murugan, K.; Benelli, G.; Dinakaran, K. Fluorescence quenching of MoS2 nanosheets/DNA/silicon dot nanoassembly: Effective and rapid detection of Hg2+ ions in aqueous solution. Environ. Sci. Pollut. 2018, 25, 10567–10576. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, L.; An, F.; Xu, H.; Yin, Z.; Tang, S.; Yang, H.; Song, H. Graphitic carbon nitride supported platinum nanocomposites for rapid and sensitive colorimetric detection of mercury ions. Anal. Chim. Acta 2017, 980, 72–78. [Google Scholar] [CrossRef]
- Benda, L.; Straka, M.; Sychrovsky, V.; Bour, P. Detection of mercury-TpT dinucleotide binding by Raman Spectra: Acomputational study. J. Phys. Chem. A 2012, 116, 8313–8320. [Google Scholar] [CrossRef]
- Bhai, S.; Ganguly, B. Role of the backbone of nucleic acids in the stability of Hg2+-mediated canonical base pairs and thymine–thymine mispair: A DFT study. RSC Adv. 2020, 10, 40969–40982. [Google Scholar] [CrossRef]
- Reveguk, Z.; Khoroshilov, E.; Sharkov, A.; Pomogaev, V.; Buglak, A.; Kononov, A. Excited states in single-stranded and i-motif DNA with silver ions. J. Phys. Chem. B 2024, 128, 4377–4384. [Google Scholar] [CrossRef]
- Pakiari, A.; Farrokhnia, M. Nature of lithium interactions with DNA nucleobases: Theoretical study. Phys. Chem. Res. 2014, 2, 229–243. [Google Scholar]
- Auffinger, P.; Ascenzo, L.; Ennifar, E. Sodium and potassium interactions with nucleic acids. Met. Ions Life Sci. 2016, 16, 167–201. [Google Scholar]
- Song, Y.; Xie, X.; Liu, Y.; Zhu, Z.; Sun, L. Nanoscale study of DNA–Cu2+ interactions by liquid-cell electron microscopy. ACS Omega 2023, 8, 26325–26331. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, A.; Timsina, R.; Dewage, S.; Qiu, X.; Kirmizialtin, S. Sequence effects on Mg+2 ion mediated DNA—DNA interactions. Biophys. J. 2019, 116, 360a. [Google Scholar] [CrossRef]
- Wang, K.; Clough, P.; Zhao, P.; Anthony, E. Synthesis of highly effective stabilized CaO sorbents via a sacrificial N-doped carbon nanosheet template. J. Mater. Chem. A 2019, 7, 9173–9182. [Google Scholar] [CrossRef]
- Liang, Y.; Deng, B.; Shen, C.; Qin, X.; Liang, S. Determination of the binding sites and binding constants between Pb(ii) and DNA using capillary electrophoresis combined with electrothermal atomic absorption spectrometry. J. Anal. At. Spectrom. 2015, 30, 903–908. [Google Scholar] [CrossRef]
- Ding, W.; Xu, M.; Zhu, H.; Liang, H. Mechanism of hairpin folding transformation of thymine-cytosine-rich oligonucleotides induced by Hg(II) and Ag(I) Ion. Eur. Phys. J. E 2013, 36, 9917–9924. [Google Scholar] [CrossRef]
- Ding, W.; Deng, W.; Zhu, H.; Liang, H. Metallo—Toeholds controlling DNA strand displacement driven by Hg(II) ions. Chem. Commun. 2013, 49, 9953–9955. [Google Scholar] [CrossRef]
- Lin, Y.; Huang, C.; Chang, H. Gold nanoparticle probes for the detection of mercury, lead and copper ions. Analyst 2011, 136, 863–871. [Google Scholar] [CrossRef]
- Du, J.; Jiang, L.; Shao, Q.; Liu, X.; Marks, R.S.; Ma, J.; Chen, X. Colorimetric detection of mercury ions based on plasmonic nanoparticles. Small 2013, 9, 1467–1481. [Google Scholar] [CrossRef]
- Wan, J.; Ma, X.L.; Xing, L. Highly sensitive fluorescence detection of mercury (II) ions based on DNA machine amplification. Sens. Actuat. B Chem. 2013, 178, 615–620. [Google Scholar] [CrossRef]
- Song, C.; Yang, B.; Yang, Y.; Wang, L. SERS-based mercury ion detections: Principles, strategies and recent advances. Sci. China Chem. 2016, 59, 16–29. [Google Scholar] [CrossRef]
- Khoshbin, Z.; Housaindokht, M.; Verdian, A.; Bozorgmehr, M. Simultaneous detection and determination of mercury (II) and lead (II) ions through the achievement of novel functional nucleic acid-based biosensors. Biosens. Bioelectron. 2018, 116, 130–147. [Google Scholar] [CrossRef] [PubMed]
- Xia, N.; Feng, F.; Liu, C.; Li, R.; Xiang, W.; Shi, H.; Gao, L. The detection of mercury ion using DNA as sensors based on fluorescence resonance energy transfer. Talanta 2019, 192, 500–507. [Google Scholar] [CrossRef] [PubMed]
- Hasan, A.; Nanakali, N.; Salihi, A.; Rasti, B.; Sharifi, M.; Attar, F.; Derakhshankhah, H.; Mustafa, I.; Abdulqadir, S.; Falahati, M. Nanozyme-based sensing platforms for detection of toxic mercury ions: An alternative approach to conventional methods. Talanta 2020, 215, 120939. [Google Scholar] [CrossRef] [PubMed]
- Dai, D.; Yang, J.; Wang, Y.; Yang, Y. Recent progress in functional materials for selective detection and removal of mercury(II) ions. Adv. Funct. Mater. 2021, 31, 1. [Google Scholar] [CrossRef]
- Gul, Z.; Ullah, S.; Khan, S.; Ullah, H.; Khan, M.U.; Ullah, M.; Ali, S.; Altaf, A. Recent progress in nanoparticles based sensors for the detection of mercury (II) ions in environmental and biological samples. Crit. Rev. Anal. Chem. 2024, 54, 44–60. [Google Scholar] [CrossRef]
- Chen, S.; Li, Z.; Li, K.; Yu, X. Small molecular fluorescent probes for the detection of lead, cadmium and mercury ions. Coord. Chem. Rev. 2021, 429, 213691. [Google Scholar] [CrossRef]
- Wang, S. Construction of DNA biosensors for mercury (II) ion detection based on enzyme-driven signal amplification strategy. Biomolecules 2021, 11, 399. [Google Scholar] [CrossRef]
- Kim, H.N.; Ren, W.X.; Kim, J.S.; Yoon, J. Fluorescent and colorimetric sensors for detection of lead, cadmium, and mercury ions. Chem. Soc. Rev. 2012, 41, 3210–3244. [Google Scholar] [CrossRef]
- Udhayakumari, D. Review on fluorescent sensors-based environmentally related toxic mercury ion detection. J. Incl. Phenom. Macrocycl. Chem. 2022, 102, 451–476. [Google Scholar] [CrossRef]
- Li, Q.; Zhou, Y. Recent advances in fluorescent materials for mercury(ii) ion detection. RSC Adv. 2023, 13, 19429–19446. [Google Scholar] [CrossRef]
- Wong, E.; Chow, E.; Gooding, J. The electrochemical detection of cadmium using surface-immobilized DNA. Electrochem. Commun. 2007, 9, 845–849. [Google Scholar] [CrossRef]
- Martín-Yerga, D.; González-García, M.; Costa-García, A. Electrochemical determination of mercury: A review. Talanta 2013, 116, 1091–1104. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Wang, Y.; Li, Y.; Meng, S.; Li, W.; Liu, D.; You, T. Electric field-enabled aptasensing interfacial engineering to simultaneously enhance specific preconcentration and electrochemical detection of mercury and lead ions. SCI Total Environ. 2023, 900, 166407. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Lu, B.; Cheng, L.; Xu, X.; Wang, M.; Xu, W.; Cui, F. A double signal amplification-based homogeneous electrochemical sensor built on catalytic hairpin assembly and bisferrocene markers. Anal. Biochem. 2021, 632, 114140. [Google Scholar] [CrossRef]
- Chang, Y.; Tang, X.; Huang, J.; Chai, Y.; Zhuo, Y.; Li, H.; Yuan, R. Programming a “Crab Claw”-like DNA nanomachine as a super signal amplifier for ultrasensitive electrochemical assay of Hg2+. Anal. Chem. 2021, 93, 12075–12080. [Google Scholar] [CrossRef]
- Cui, L.; Wu, J.; Ju, H. Electrochemical sensing of heavy metal ions with inorganic, organic and bio-materials. Biosens. Bioelectron. 2015, 63, 276–286. [Google Scholar] [CrossRef]
- Bontidean, I.; Berggren, C.; Johansson, G.; Csöregi, E.; Mattiasson, B.; Lloyd, R.; Jakeman, J.; Brown, L. Detection of heavy metal ions at femtomolar levels using protein-based biosensors. Anal. Chem. 1998, 70, 4162–4169. [Google Scholar] [CrossRef]
- Wang, J.; Lu, J.; Hocevar, B.; Farias, A.; Ogorevc, B. Bismuth-coated carbon electrodes for anodic stripping voltammetry. Anal. Chem. 2000, 72, 3218–3222. [Google Scholar] [CrossRef]
- Li, M.; Gou, L.; Al-Ogaidi, I.; Wu, N. Nanostructured sensors for detection of heavy metals: A review. ACS Sustain. Chem. Eng. 2013, 1, 713–723. [Google Scholar] [CrossRef]
- Wanekaya, K. Applications of nanoscale carbon-based materials in heavy metal sensing and detection. Analyst 2011, 136, 4383–4391. [Google Scholar] [CrossRef]
- Shao, Y.; Wang, J.; Wu, H.; Liu, J.; Aksay, I.A.; Lin, Y. Graphene based electrochemical sensors and biosensors: A review. Electroanal. Int. J. Devoted Fundam. Pract. Asp. Electroanal. 2010, 22, 1027–1036. [Google Scholar] [CrossRef]
- Li, J.; Guo, S.; Zhai, Y.; Wang, E. High-sensitivity determination of lead and cadmium based on the nafion-graphene composite film. Anal. Chim. Acta 2009, 649, 196–201. [Google Scholar] [CrossRef] [PubMed]
- Ratner, N.; Mandler, D. Electrochemical detection of low concentrations of mercury in water using gold nanoparticles. Anal. Chem. 2015, 87, 5148–5155. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhao, H.; Wu, Z.; Xue, Y.; Zhang, X.; He, Y.; Li, X.; Yuan, Z. A novel graphene-DNA biosensor for selective detection of mercury ions. Biosens. Bioelectron. 2013, 48, 180–187. [Google Scholar] [CrossRef]
- Fang, S.; Dong, X.; Zhang, Y.; Kang, M.; Liu, S.; Yan, F.; He, L.; Feng, X.; Wang, P.; Zhang, Z. One-step synthesis of porous cuprous oxide microspheres on reduced graphene oxide for selective detection of mercury ions. New J. Chem. 2014, 38, 5935–5942. [Google Scholar] [CrossRef]
- Estrela, P.; Paul, D.; Song, Q.; Stadler, K.; Wang, L.; Huq, E.; Davis, J.; Ko Ferrigno, P.; Migliorato, P. Label-free sub-picomolar protein detection with field-effect transistors. Anal. Chem. 2010, 82, 3531–3536. [Google Scholar] [CrossRef]
- Formisano, N.; Bhalla, N.; Heeran, M.; Reyes Martinez, J.; Sarkar, A.; Laabei, M.; Jolly, P.; Bowen, R.; Taylor, T.; Flitsch, S.; et al. Inexpensive and fast pathogenic bacteria screening using field-effect transistors. Biosens. Bioelectron. 2016, 85, 103–109. [Google Scholar] [CrossRef]
- Aliakbarinodehi, N.; Jolly, P.; Bhalla, N.; Miodek, A.; De Micheli, G.; Estrela, P.; Carrara, S. Aptamer-based field-effect biosensor for tenofovir detection. Sci. Rep. 2017, 7, 44409. [Google Scholar] [CrossRef]
- Hung, C.; Cheng, J.; Yang, F.; Lo, P. Investigation of extended-gate field-effect transistor pH sensors based on different-temperature-annealed bi-layer MWCNTs-In2O3 films. Nanoscale Res. Lett. 2014, 9, 502. [Google Scholar] [CrossRef]
- Marchenko, V.; Soldatkin, O.; Kasap, O.; Kurc, A.; Soldatkin, P.; Dzyadevych, V. Creatinine deiminase adsorption onto silicalite-modified pH-FET for creation of new creatinine-sensitive biosensor. Nanoscale Res. Lett. 2016, 11, 173. [Google Scholar] [CrossRef]
- Park, J.; Kwon, S.; Lee, H.; Song, S.; Park, H.; Jang, J. Ultrasensitive flexible graphene based field-effect transistor (FET)-type bioelectronic nose. Nano Lett. 2012, 12, 5082–5090. [Google Scholar] [CrossRef] [PubMed]
- Knopfmacher, O.; Hammock, L.; Appleton, L.; Schwartz, G.; Mei, J.; Lei, T.; Pei, J.; Bao, Z. Highly stable organic polymer field-effect transistor sensor for selective detection in the marine environment. Nat. Commun. 2014, 5, 2954. [Google Scholar] [CrossRef] [PubMed]
- Dan, Y.; Lu, Y.; Kybert, J.; Luo, Z.; Johnson, T. Intrinsic response of graphene vapor sensors. Nano Lett. 2009, 9, 1472–1475. [Google Scholar] [CrossRef]
- He, Q.; Sudibya, G.; Yin, Z.; Wu, S.; Li, H.; Boey, F.; Huang, W.; Chen, P.; Zhang, H. Centimeter-long and large-scale micropatterns of reduced graphene oxide films: Fabrication and sensing applications. ACS Nano 2010, 4, 3201–3208. [Google Scholar] [CrossRef]
- Huang, Y.; Dong, X.; Shi, Y.; Li, M.; Li, J.; Chen, P. Nanoelectronic biosensors based on CVD grown graphene. Nanoscale 2010, 2, 1485–1488. [Google Scholar] [CrossRef]
- Myung, S.; Solanki, A.; Kim, C.; Park, J.; Kim, S.; Lee, B. Graphene-encapsulated nanoparticle-based biosensor for the selective detection of cancer biomarkers. Adv. Mater. 2011, 23, 2221–2225. [Google Scholar] [CrossRef]
- Kim, J.; Lee, S.; Jeon, S.; Kim, M.; Kim, S.; Kim, K.; Bien, F.; Hong, Y.; Park, U. Highly transparent and stretchable field-effect transistor sensors using graphene-nanowire hybrid nanostructures. Adv. Mater. 2015, 27, 3292–3297. [Google Scholar] [CrossRef]
- Han, D.; Chand, R.; Kim, S. Microscale loop-mediated isothermal amplification of viral DNA with real-time monitoring on solution-gated graphene FET microchip. Biosens. Bioelectron. 2017, 93, 220–225. [Google Scholar] [CrossRef]
- Li, Y.; Wang, C.; Zhu, Y.; Zhou, X.; Xiang, Y.; He, M.; Zeng, S. Fully integrated graphene electronic biosensor for label-free detection of lead (II) ion based on G-quadruplex structure-switching. Biosens. Bioelectron. 2017, 89 Pt 2, 758–763. [Google Scholar] [CrossRef]
- Kotlowski, C.; Larisika, M.; Guerin, M.; Kleber, C.; Krober, T.; Mastrogiacomo, R.; Nowak, C.; Pelosi, P.; Schutz, S.; Schwaighofer, A.; et al. Fine discrimination of volatile compounds by graphene-immobilized odorant-binding proteins. Sens. Actuat. B Chem. 2018, 256, 564–572. [Google Scholar] [CrossRef]
- Mansouri Majd, S.; Salimi, A. Ultrasensitive flexible FET-type aptasensor for CA 125 cancer marker detection based on carboxylated multiwalled carbon nanotubes immobilized onto reduced graphene oxide film. Anal. Chim. Acta 2018, 1000, 273–282. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Jiang, S.; Zhang, C.; Yue, W.; Zou, Y.; Wang, G.; Liu, H.; Zhang, X.; Li, M.; Zhu, Z.; et al. Ultrasensitive label-free detection of dna hybridization by sapphire-based graphene field-effect transistor biosensor. Appl. Surf. Sci. 2018, 427, 1114–1119. [Google Scholar] [CrossRef]
- Tu, J.; Gan, Y.; Liang, T.; Hu, Q.; Wang, Q.; Ren, T.; Sun, Q.; Wan, H.; Wang, P. Graphene FET array biosensor based on ssDNA aptamer for ultrasensitive Hg2+ detection in environmental pollutants. Front. Chem. 2018, 6, 333. [Google Scholar] [CrossRef]
- Wang, H.; Liu, Y.; Liu, G. Electrochemical biosensor using DNA embedded phosphorothioate modified RNA for mercury ion determination. ACS Sens. 2018, 3, 624–631. [Google Scholar] [CrossRef]
- Dickinson, G.; Dillon, T. Raman spectra of solutions of some ionized substances. Proc. Natl. Acad. Sci. USA 1929, 15, 334–337. [Google Scholar] [CrossRef]
- Salant, O.; Sandow, A. Raman scattering from HCL liquid. Science 1929, 69, 357. [Google Scholar] [CrossRef]
- Chen, Q.; Fu, Y.; Zhang, W.; Ye, S.; Zhang, H.; Xie, F.; Gong, L.; Wei, Z.; Jin, H.; Chen, J. Highly sensitive detection of glucose: A quantitative approach employing nanorods assembled plasmonic substrate. Talanta 2017, 165, 516–521. [Google Scholar] [CrossRef]
- Uchiyama, T.; Miura, T.; Takeuchi, H.; Dairaku, T.; Komuro, T.; Kawamura, T.; Kondo, Y.; Benda, L.; Sychrovsky, V.; Bour, P.; et al. Raman spectroscopic detection of the T-Hg II-T base pair and the ionic characteristics of mercury. Nucleic Acids Res. 2012, 40, 5766–5774. [Google Scholar] [CrossRef]
- Kneipp, J.; Kneipp, H.; Kneipp, K. SERS—A single-molecule and nanoscale tool for bioanalytics. Chem. Soc. Rev. 2008, 37, 1052–1060. [Google Scholar] [CrossRef]
- Feng, S.; Zheng, Z.; Xu, Y.; Lin, J.; Chen, G.; Weng, C.; Lin, D.; Qiu, S.; Cheng, M.; Huang, Z.; et al. A noninvasive cancer detection strategy based on gold nanoparticle surface-enhanced raman spectroscopy of urinary modified nucleosides isolated by affinity chromatography. Biosens. Bioelectron. 2017, 91, 616–622. [Google Scholar] [CrossRef]
- Kang, Y.; Zhang, H.; Zhang, L.; Wu, T.; Sun, L.; Jiang, D.; Du, Y. In situ preparation of Ag nanoparticles by laser photoreduction as sers substrate for determination of Hg2+. J. Raman Spectrosc. 2017, 48, 399–404. [Google Scholar] [CrossRef]
- Sun, Z.; Du, J.; Jing, C. Recent progress in detection of mercury using surface enhanced Raman spectroscopy—A review. J. Environ. Sci. 2016, 39, 134–143. [Google Scholar] [CrossRef] [PubMed]
- Esmaielzadeh Kandjani, A.; Sabri, M.; Mohammad-Taheri, M.; Bansal, V.; Bhargava, K. Detect, remove and reuse: A new paradigm in sensing and removal of Hg (II) from wastewater via SERS-active ZnO/Ag nanoarrays. Environ. Sci. Technol. 2015, 49, 1578–1584. [Google Scholar] [CrossRef]
- Lu, Y.; Zhong, J.; Yao, G.; Huang, Q. A label-free sers approach to quantitative and selective detection of mercury (II) based on dna aptamer-modified SiO2@Au core/shell nanoparticles. Sens. Actuat. A Phys. 2018, 258, 365–372. [Google Scholar] [CrossRef]
- Li, F.; Wang, J.; Lai, Y.; Wu, C.; Sun, S.; He, Y.; Ma, H. Ultrasensitive and selective detection of copper (II) and mercury (II) ions by dye-coded silver nanoparticle-based SERS probes. Biosens. Bioelectron. 2013, 39, 82–87. [Google Scholar] [CrossRef]
- Ding, X.; Kong, L.; Wang, J.; Fang, F.; Li, D.; Liu, J. Highly sensitive SERS detection of Hg2+ ions in aqueous media using gold nanoparticles/graphene heterojunctions. ACS Appl. Mater. Interfaces 2013, 5, 7072–7078. [Google Scholar] [CrossRef]
- Ma, W.; Sun, M.; Xu, L.; Wang, L.; Kuang, H.; Xu, C. A SERS active gold nanostar dimer for mercury ion detection. Chem. Commun. 2013, 49, 4989–4991. [Google Scholar] [CrossRef]
- Liu, M.; Wang, Z.; Zong, S.; Chen, H.; Zhu, D.; Wu, L.; Hu, G.; Cui, Y. SERS detection and removal of mercury(II)/silver(I) using oligonucleotide-functionalized core/shell magnetic silica sphere@Au nanoparticles. ACS Appl. Mater. Inter. 2014, 6, 7371–7379. [Google Scholar] [CrossRef]
- Xu, L.; Yin, H.; Ma, W.; Kuang, H.; Wang, L.; Xu, C. Ultrasensitive SERS detection of mercury based on the assembled gold nanochains. Biosens. Bioelectron. 2015, 67, 472–476. [Google Scholar] [CrossRef]
- Sun, B.; Jiang, X.; Wang, H.; Song, B.; Zhu, Y.; Wang, H.; Su, Y.; He, Y. Surface-enhancement Raman scattering sensing strategy for discriminating trace mercuric ion (II) from real water samples in sensitive, specific, recyclable, and reproducible manners. Anal. Chem. 2015, 87, 1250–1256. [Google Scholar] [CrossRef]
- Yi, Z.; Li, Y.; Liu, J.; Jin, Y.; Chu, X.; Yu, Q. Design of label-free, homogeneous biosensing platform based on plasmonic coupling and surface-enhanced Raman scattering using unmodified gold nanoparticles. Biosens. Bioelectron. 2013, 43, 308–314. [Google Scholar] [CrossRef] [PubMed]
- Han, D.; Lim, Y.; Kim, J.; Piao, L.; Chung, T.D. Mercury(ii) detection by SERS based on a single gold microshell. Chem. Commun. 2010, 46, 5587–5589. [Google Scholar] [CrossRef]
- Wu, Y.; Jiang, T.; Wu, Z.; Yu, R. Novel ratiometric surface-enhanced raman spectroscopy aptasensor for sensitive and reproducible sensing of Hg2+. Biosens. Bioelectron. 2018, 99, 646–652. [Google Scholar] [CrossRef]
- Qing, G.; Ling, W.; Chen, X. Aptameric sers sensor for Hg2+ analysis using silver nanoparticles. Chin. Chem. Lett. 2009, 20, 1475–1477. [Google Scholar]
- Stiles, L.; Dieringer, A.; Shah, C.; Van Duyne, R.P. Surface-enhanced Raman spectroscopy. Annu. Rev. Anal. Chem. 2008, 1, 601–626. [Google Scholar] [CrossRef]
- Liu, X.; Liu, M.; Lu, Y.; Wu, C.; Xu, Y.; Lin, D.; Lu, D.; Zhou, T.; Feng, S. Facile Ag-film based surface enhanced Raman spectroscopy using DNA molecular switch for ultra-sensitive mercury ions detection. Nanomaterials 2018, 8, 596. [Google Scholar] [CrossRef]
- Shaban, M. In-situ SERS detection of Hg2+/Cd2+ and congo red adsorption using spiral CNTs/Brass nails. Nanomaterials 2022, 12, 3778. [Google Scholar] [CrossRef]
- Tian, C.; Zhao, L.; Zhu, J.; Zhang, S. Ultrasensitive detection of trace Hg2+ by SERS aptasensor based on dual recycling amplification in water environment. J. Hazard. Mater. 2021, 416, 126251. [Google Scholar] [CrossRef]
- Zhang, R.; Lv, S.; Gong, Y.; Li, Y.; Ding, C. Sensitive determination of Hg(II) based on a hybridization chain recycling amplification reaction and surface-enhanced Raman scattering on gold nanoparticles. Microchim. Acta 2018, 185, 363. [Google Scholar] [CrossRef]
- Yang, J.; Wang, X.; Sun, Y.; Chen, B.; Hu, F.; Guo, C.; Yang, T. Recent Advances in Colorimetric Sensors Based on Gold Nanoparticles for Pathogen Detection. Biosensors 2022, 13, 29. [Google Scholar] [CrossRef]
- Tessaro, L.; Aquino, A.; Panzenhagen, P.; Joshi, N.; Conte-Junior, C.A. A systematic review of the advancement on colorimetric nanobiosensors for SARS-CoV-2 detection. J. Pharm. Biomed. Anal. 2023, 222, 115087. [Google Scholar] [CrossRef]
- Fakayode, O.; Walgama, C.; Fernand Narcisse, E.; Grant, C. Electrochemical and colorimetric nanosensors for detection of heavy metal ions: A review. Sensors 2023, 23, 9080. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Zhang, Z.; Qi, J.; You, J.; Ma, J.; Chen, L. Colorimetric detection of heavy metal ions with various chromogenic materials: Strategies and applications. J. Hazard. Mater. 2023, 441, 129889. [Google Scholar] [CrossRef] [PubMed]
- Kusuma, F.; Harmonis, A.; Pratiwi, R.; Hasanah, N. Gold nanoparticle-based colorimetric sensors: Properties and application in detection of heavy metals and biological molecules. Sensors 2023, 23, 8172. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Zhao, J.; Li, H. Chromogenic mechanisms of colorimetric sensors based on gold nanoparticles. Biosensors 2023, 13, 801. [Google Scholar] [CrossRef]
- Cho, H.; Jung, H.; Heo, H.; Lee, Y.; Jeong, Y.; Lee, H. Gold nanoparticles as exquisite colorimetric transducers for water pollutant detection. ACS Appl. Mater. Inter. 2023, 15, 19785–19806. [Google Scholar] [CrossRef]
- Liu, J.; Lu, Y. Accelerated color change of gold nanoparticles assembled by DNAzymes for simple and fast colorimetric Pb2+ detection. J. Am. Chem. Soc. 2004, 126, 12298–12305. [Google Scholar] [CrossRef]
- Knecht, R.; Sethi, M. Bio-inspired colorimetric detection of Hg2+ and Pb2+ heavy metal ions using Au nanoparticles. Anal. Bioanal. Chem. 2009, 394, 33–46. [Google Scholar] [CrossRef]
- Frens, G. Controlled Nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat. Phys. 1973, 241, 20–22. [Google Scholar] [CrossRef]
- Wang, L.; Jin, Y.; Wu, M.; Dong, M.; Li, J. Label-free colorimetric sensor for mercury(II) and DNA on the basis of mercury(II) switched-on the oxidase-mimicking activity of silver nanoclusters. Anal. Chim. Acta 2015, 871, 1–8. [Google Scholar] [CrossRef]
- Tan, L.; Chen, Z.; Zhang, C.; Wei, X.; Lou, T.; Zhao, Y. Colorimetric detection of Hg2+ based on the growth of aptamer-coated AuNPs: The effect of prolonging aptamer strands. Small 2017, 13, 1603370. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Cai, Y.; Zhu, Y.; Zheng, L.; Ding, J.; Quan, Y.; Wang, L.; Qi, B. Highly sensitive colorimetric sensor for Hg(2+) detection based on cationic polymer/DNA interaction. Biosens. Bioelectron. 2015, 69, 174–178. [Google Scholar] [CrossRef] [PubMed]
- Saputri, A.; Zubaidah, U.; Kenanga, P.; Jatmika, C.; Pratiwi, R.; Dhumale, A. Development of a colorimetric paper sensor for Hg2+ detection in water using cyanuric acid-conjugated gold nanoparticles. Molecules 2023, 28, 6527. [Google Scholar] [CrossRef]
- Shao, X.; Yang, D.; Wang, M.; Yue, Q. A colorimetric detection of Hg2+ based on gold nanoparticles synthesized oxidized N-methylpyrrolidone as a reducing agent. Sci. Rep. 2023, 13, 22208. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Tang, G.; Tan, H. Colorimetric determination of mercury(II) via the inhibition by ssDNA of the oxidase-like activity of a mixed valence state cerium-based metal-organic framework. Microchim. Acta 2018, 185, 475. [Google Scholar] [CrossRef]
- Wang, X.; Hou, T.; Dong, S.; Liu, X.; Li, F. Fluorescence biosensing strategy based on mercury ion-mediated DNA conformational switch and nicking enzyme-assisted cycling amplification for highly sensitive detection of carbamate pesticide. Biosens. Bioelectron. 2016, 77, 644–649. [Google Scholar] [CrossRef]
- Wang, S.; Lin, B.; Chen, L.; Li, N.; Xu, J.; Wang, J.; Yang, Y.; Qi, Y.; She, Y.; Shen, X.; et al. Branch-migration based fluorescent probe for highly sensitive detection of mercury. Anal. Chem. 2018, 90, 11764–11769. [Google Scholar] [CrossRef]
- Tian, Y.; Xin, C.; Liu, S.; Liu, Y.; Liu, S. Affinity binding-induced Hg2+ release and quantum dot doping for general, label-free, and homogenous fluorescence protein assay. ACS Sens. 2018, 3, 1401–1408. [Google Scholar] [CrossRef]
- Zhan, S.; Xu, H.; Zhang, D.; Xia, B.; Zhan, X.; Wang, L.; Lv, J.; Zhou, P. Fluorescent detection of Hg2+ and Pb2+ using GeneFinder™ and an integrated functional nucleic acid. Biosens. Bioelectron. 2015, 72, 95–99. [Google Scholar] [CrossRef]
- Chu-Mong, K.; Thammakhet, C.; Thavarungkul, P.; Kanatharana, P.; Buranachai, C. A FRET based aptasensor coupled with non-enzymatic signal amplification for mercury (II) ion detection. Talanta 2016, 155, 305–313. [Google Scholar] [CrossRef]
- Ren, X.; Xu, Q.H. Highly sensitive and selective detection of mercury ions by using oligonucleotides, DNA intercalators, and conjugated polymers. Langmuir ACS J. Surf. Colloids 2009, 25, 29–31. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Ding, J.; Liu, J. 2-Aminopurine-modified DNA homopolymers for robust and sensitive detection of mercury and silver. Biosens. Bioelectron. 2017, 87, 171–177. [Google Scholar] [CrossRef]
- Zhu, Z.; Xu, L.; Zhou, X.; Qin, J.; Yang, C. Designing label-free DNA sequences to achieve controllable turn-off/on fluorescence response for Hg2+ detection. Chem. Commun. 2011, 47, 8010–8012. [Google Scholar] [CrossRef] [PubMed]
- Sun, T.; Li, X.; Jin, X.; Wu, Z.; Chen, X.; Qiu, J. Function of graphene oxide as the "nanoquencher" for Hg2+ detection using an exonuclease I-assisted biosensor. Int. J. Mol. Sci. 2022, 23, 6326. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Duan, N.; Shi, Z.; Fang, C.; Wang, Z. Dual fluorescence resonance energy transfer assay between tunable upconversion nanoparticles and controlled gold nanoparticles for the simultaneous detection of Pb2+ and Hg2+. Talanta 2014, 128, 327–336. [Google Scholar] [CrossRef]
- Li, K.; Hu, Y.; Niu, G.; Huang, W.; Zeng, M. A fluorescent DNA based probe for Hg(II) based on thymine-Hg(II)-thymine interaction and enrichment via magnetized graphene oxide. Mikrochim. Acta 2018, 185, 207. [Google Scholar] [CrossRef]
- Huang, J.; Wang, F.; Liu, J. Cleavable molecular beacon for Hg(2+) detection based on phosphorothioate RNA modifications. Anal. Chem. 2015, 87, 6890–6895. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, J.; Hu, B.; Gao, C.; Li, Z.; Sun, Z.; You, J. A FRET-based ratiometric fluorescent probe for Hg2+ detection in aqueous solution and bioimaging in multiple samples. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2023, 286, 121965. [Google Scholar] [CrossRef]
- Huang, J.; van Ballegooie, C.; Liu, J. Hg(2+) detection using a phosphorothioate RNA probe adsorbed on graphene oxide and a comparison with thymine-rich DNA. Analyst 2016, 141, 3788–3793. [Google Scholar] [CrossRef]
- Martín-Yerga, D.; Costa-García, A. Recent advances in the electrochemical detection of mercury. Curr. Opin. Electrochem. 2017, 3, 91–96. [Google Scholar] [CrossRef]
- Zhu, Z.; Su, Y.; Li, J.; Li, D.; Zhang, J.; Song, S.; Zhao, Y.; Li, G.; Fan, C. Highly sensitive electrochemical sensor for mercury(II) ions by using a mercury-specific oligonucleotide probe and gold nanoparticle-based amplification. Anal. Chem. 2009, 81, 7660–7666. [Google Scholar] [CrossRef] [PubMed]
- Bian, L.; Wang, Z.; White, D.; Star, A. Machine learning-assisted calibration of Hg2+ sensors based on carbon nanotube field-effect transistors. Biosens. Bioelectron. 2021, 180, 113085. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.; Zhang, C.; Chen, D.; Wang, J.; Ji, Y.; Liang, N.; Gao, H.; Cheng, S.; Liu, H. Ultrasensitive and stable all graphene field-effect transistor-based Hg2+ sensor constructed by using different covalently bonded RGO films assembled by different conjugate linking molecules. SmartMat 2021, 2, 213–225. [Google Scholar] [CrossRef]
- Yan, Z.; Yuen, M.; Hu, L.; Sun, P.; Lee, C. Advances for the colorimetric detection of Hg2+ in aqueous solution. RSC Adv. 2014, 4, 48373–48388. [Google Scholar] [CrossRef]
- Kumar, N.; Bhalla, V.; Kumar, M. Resonance energy transfer-based fluorescent probes for Hg2+, Cu2+ and Fe2+/Fe3+ ions. Analyst 2014, 139, 543–558. [Google Scholar] [CrossRef]
Title | Topic | Year | References |
---|---|---|---|
Gold nanoparticle probes for the detection of mercury, lead, and copper ions | Gold nanoparticle probes | 2011 | [48] |
Colorimetric detection of mercury ions based on plasmonic nanoparticles | Colorimetric detection | 2013 | [49] |
Highly sensitive fluorescence detection of mercury (II) ions based on DNA machine amplification | Fluorescence detection | 2013 | [50] |
SERS-based mercury ion detections: principles, strategies and recent advances | SERS-based mercury ion detections | 2016 | [51] |
Simultaneous detection and determination of mercury (II) and lead (II) ions through the achievement of novel functional nucleic acid-based biosensors | Nucleic acid-based biosensors | 2018 | [52] |
The detection of mercury ions using DNA as sensors based on fluorescence resonance energy transfer | Fluorescence resonance energy transfer | 2019 | [53] |
Nanozyme-based sensing platforms for detection of toxic mercury ions: An alternative approach to conventional methods | Nanozyme-based sensing | 2020 | [54] |
Recent progress in functional materials for selective detection and removal of mercury (II) ions | Functional materials | 2020 | [55] |
Recent progress in nanoparticles-based sensors for the detection of mercury (II) ions in environmental and biological samples | Nanoparticles based sensors | 2020 | [56] |
Small molecular fluorescent probes for the detection of lead, cadmium and mercury ions | Small molecular fluorescent probes | 2021 | [57] |
Construction of DNA biosensors for mercury (II) ion detection based on enzyme-driven signal amplification strategy | Enzyme-driven signal amplification strategy | 2021 | [58] |
Fluorescent and colorimetric sensors for the detection of lead, cadmium, and mercury ions | Fluorescent and colorimetric sensors | 2022 | [59] |
Review on fluorescent sensors-based environmentally related toxic mercury ion detection | Fluorescent sensors | 2022 | [60] |
Recent advances in fluorescent materials for mercury(ii) ion detection | Fluorescent materials | 2023 | [61] |
DNA sensors for the detection of mercury ions | DNA sensors | 2025 | This work |
DNA Probe | Nanomaterial or Other Auxiliary Material | Detection Linear Range | LOD | References |
---|---|---|---|---|
ssDNA | Au | 10 pM (1.1 ppt)–500 nM (56.2 ppb) | 10 pM | [62] |
ssDNA | AuNPs | 1 × 10−12–1 × 10−8 M | 0.69 pM | [64] |
ssDNA | bisferrocene | 1–625 pM | 0.6 pM | [65] |
dsDNA | Pd@Cu@Pt MMN/bisferrocene | 10 fM–100 nM | 3.58 fM | [66] |
ssDNA | GO | 8.0 × 10−9–1.0 × 10−7 M | 5.0 × 10−9 M | [75] |
ssDNA | Cu2OMS–rGO | 0.05–40 nM | 8.62 pM | [76] |
DNA Probe | Nanomaterial or Other Auxiliary Material | Detection Linear Range | LOD | References |
---|---|---|---|---|
dsDNA | AuNPs | 0–2 μM | 100 nM | [129] |
ssDNA | BSA-Ag NCs | 80 nM–50 mM | 25 nM | [131] |
ssDNA | AuNPs | 0–60 nM | 9.6 nM | [132] |
10–150 nM | 4.05 nM | |||
5–40 nM | 3.0 nM | |||
ssDNA | AuNPs | 0.25–500 nM | 0.15 nM | [133] |
T-dsDNA | MVC-MOF | 0.05–6 μM | 10.5 nM | [134] |
DNA Probe | Nanomaterial or Other Auxiliary Material | Detection Linear Range | LOD | References |
---|---|---|---|---|
ssDNA | FAM dye + ethynyl modification | 16.1–1495.5 nM | 16.15 nM | [140] |
Aptamer | FRET donor/acceptor DNA pairs | 7.03 ± 0.18 nM | 7.037 ± 0.18 nM | [141] |
dsDNA | YOYO-1, TOTO-1 + PFP polymer | 6–10 nM | 6 nM | [142] |
2AP-labeled DNA | 10-mer DNA homopolymers | 8.4–600 nM | 8.4 nM | [143] |
G4 DNA | Exo III enzyme + Ir(III) | 1.5–5 nM | 1.5 nM | [144] |
ssDNA | GO + Exonuclease I | 0–250 nM | 3.93 nM | [145] |
Aptamer | AuNPs + UCNPs (dual FRET) | 0.5–500 nM | 150 pM | [146] |
ssDNA | AHN + Fe3O4 NPs + magnetized GO | 1–10 nM | 0.65 nM | [147] |
PS-RNA | Sulfur-modified RNA + FAM | 0–1 μM | 1.7 nM | [148] |
APS-NA | Acridone + 1,8-naphthalimide | 0–30 μM | 1 μM | [149] |
PS-RNA | NGOs + GO | 8.5 nM | 8.5 nM | [150] |
Techniques of Hg2+ Sensing | Advantages | Limitations | References |
---|---|---|---|
Electrochemistry | High sensitivity, rapid response, fast analysis, cost-effective, portable, and compatibility with portable devices | Complexity stability requires electrode modification, possible interference from other metal ions, and complex sample preparation. | [151,152] |
Field Effect Transistors (FET) | Capable of detecting trace amounts of Hg2+ due to changes in the electrical properties of the transistor, high-sensitivity, and portable biochemical detection platform | Susceptible to contamination and non-specific adsorption, which may reduce sensitivity, structures are vulnerable to damage during multistep post-production treatment and weak interactions between the electrodes and semiconductor layers. | [153,154] |
Raman spectroscopy | High molecular specificity, non-destructive analysis, potential for multiplex detection. | Low sensitivity, need for signal enhancement (e.g., SERS), and expensive instrumentation. | |
Colorimetry | Simple, cost-effective visual detection without specialized equipment. | Limited sensitivity and selectivity, potential interference from colored substances. | [155] |
Fluorescence Resonance Energy Transfer (FRET) | Enhances signal rationing and the sensitivity of the method, as well as real-time detection and capability for in vivo monitoring. | Fluorophore instability, photobleaching, and the need for careful probe design. | [53,156] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, F.; Lin, J.; Lichtfouse, E.; Qi, H.; Peng, L.; Yu, Y.; Gao, L. DNA Sensors for the Detection of Mercury Ions. Biosensors 2025, 15, 275. https://doi.org/10.3390/bios15050275
Li F, Lin J, Lichtfouse E, Qi H, Peng L, Yu Y, Gao L. DNA Sensors for the Detection of Mercury Ions. Biosensors. 2025; 15(5):275. https://doi.org/10.3390/bios15050275
Chicago/Turabian StyleLi, Feng, Jinxin Lin, Eric Lichtfouse, Haifeng Qi, Lang Peng, Yangyang Yu, and Li Gao. 2025. "DNA Sensors for the Detection of Mercury Ions" Biosensors 15, no. 5: 275. https://doi.org/10.3390/bios15050275
APA StyleLi, F., Lin, J., Lichtfouse, E., Qi, H., Peng, L., Yu, Y., & Gao, L. (2025). DNA Sensors for the Detection of Mercury Ions. Biosensors, 15(5), 275. https://doi.org/10.3390/bios15050275