Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (140)

Search Parameters:
Keywords = fiber-cantilever

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 16333 KiB  
Review
The Burgeoning Importance of Nanomotion Sensors in Microbiology and Biology
by Marco Girasole and Giovanni Longo
Biosensors 2025, 15(7), 455; https://doi.org/10.3390/bios15070455 - 15 Jul 2025
Viewed by 417
Abstract
Nanomotion sensors have emerged as a pivotal technology in microbiology and biology, leveraging advances in nanotechnology, microelectronics, and optics to provide a highly sensitive, label-free detection of biological activity and interactions. These sensors were first limited to nanomechanical oscillators like atomic force microscopy [...] Read more.
Nanomotion sensors have emerged as a pivotal technology in microbiology and biology, leveraging advances in nanotechnology, microelectronics, and optics to provide a highly sensitive, label-free detection of biological activity and interactions. These sensors were first limited to nanomechanical oscillators like atomic force microscopy cantilevers, but now they are expanding into new, more intriguing setups. The idea is to convert the inherent nanoscale movements of living organisms—a direct manifestation of their metabolic activity—into measurable signals. This review highlights the evolution and diverse applications of nanomotion sensing. Key methodologies include Atomic Force Microscopy-based sensors, optical nanomotion detection, graphene drum sensors, and optical fiber-based sensors, each offering unique advantages in sensitivity, cost, and applicability. The analysis of complex nanomotion data is increasingly supported by advanced modeling and the integration of artificial intelligence and machine learning, enhancing pattern recognition and automation. The versatility and real-time, label-free nature of nanomotion sensing position it as a transformative tool that could revolutionize diagnostics, therapeutics, and fundamental biological research. Full article
Show Figures

Figure 1

20 pages, 7657 KiB  
Article
Utilizing Excess Resin in Prepregs to Achieve Good Performance in Joining Hybrid Materials
by Nawres J. Al-Ramahi, Safaa M. Hassoni, Janis Varna and Roberts Joffe
Polymers 2025, 17(12), 1689; https://doi.org/10.3390/polym17121689 - 18 Jun 2025
Viewed by 433
Abstract
This study investigates the fracture toughness of adhesive joints between carbon fiber-reinforced polymer composites (CFRP) and boron-alloyed high-strength steel under Mode I and II loading, based on linear elastic fracture mechanics (LEFM). Two adhesive types were examined: the excess resin from the prepreg [...] Read more.
This study investigates the fracture toughness of adhesive joints between carbon fiber-reinforced polymer composites (CFRP) and boron-alloyed high-strength steel under Mode I and II loading, based on linear elastic fracture mechanics (LEFM). Two adhesive types were examined: the excess resin from the prepreg composite, forming a thin layer, and a toughened structural epoxy (Sika Power-533), designed for the automotive industry, forming a thick layer. Modified double cantilever beam (DCB) and end-notched flexure (ENF) specimens were used for testing. The results show that using Sika Power-533 increases the critical energy release rate by up to 30 times compared to the prepreg resin, highlighting the impact of adhesive layer thickness. Joints with the thick Sika adhesive performed similarly regardless of whether uncoated or Al–Si-coated steel was used, indicating the composite/Sika interface as the failure point. In contrast, the thin resin adhesive layer exhibited poor bonding with uncoated steel, which detached during sample preparation. This suggests that, for thin layers, the resin/steel interface is the weakest link. These findings underline the importance of adhesive selection and layer thickness for optimizing joint performance in composite–metal hybrid structures. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

29 pages, 7892 KiB  
Article
Analytical Model of Crack Opening in Reinforced Concrete Structures Based on DCE
by Vladimir I. Kolchunov, Natalia V. Fedorova, Sergei Y. Savin and Violetta S. Moskovtseva
Buildings 2025, 15(12), 2096; https://doi.org/10.3390/buildings15122096 - 17 Jun 2025
Viewed by 307
Abstract
This study focused on the advanced analysis of the crack resistance of reinforced concrete structures and provides proposals for improvement of the theory of calculation of reinforced concrete structures for serviceability and ultimate limit state. Despite the fact that the crack opening is [...] Read more.
This study focused on the advanced analysis of the crack resistance of reinforced concrete structures and provides proposals for improvement of the theory of calculation of reinforced concrete structures for serviceability and ultimate limit state. Despite the fact that the crack opening is a key parameter of reinforced concrete structures that frequently determines the reinforcement area, the design models and theory of calculation of this parameter are still not sufficiently perfect. The recent studies performed worldwide with the use of more advanced instrumentation have shown that the accuracy of theoretical prediction of crack opening in structures experiencing a complex stress–strain state, and especially structures made of high-strength concrete, fiber-reinforced concrete, lightweight concrete, and etc., remains unsatisfactory. This study analyzed and summarizes experimental studies of crack resistance of reinforced concrete structures and reveals new physical regularities in the deformation of concrete and steel reinforcement in zones adjacent to the crack. It introduces hypotheses that account for these regularities and proposes a general block model for calculating the width of irregular and single cracks in reinforced concrete structures under different stress states. In this model, crack opening is modeled by the double-cantilever element (DCE), which allows incorporation of the corresponding experimentally revealed effects and at the same time combines deformation parameters of both the theory of reinforced concrete and fracture mechanics. The DCE is two conventionally separated rigid cantilevers that include the crack surfaces, and are embedded on one side in the concrete at the neutral axis. On the other side, they are connected with reinforced steel bars crossing the crack. Using this model, a method for calculating the crack opening width in reinforced concrete structures with different types of cracks is proposed. The paper demonstrates the results of experimental investigations of crack resistance of simply supported and cantilever beams made of ordinary, light, and high-strength concrete. These results confirm the effects considered in the calculation model and the hypotheses accepted in the theory. The study also provides a physical explanation of the phenomena under consideration and shows acceptable agreement between theoretical and experimental values of crack opening calculated according to the proposed theory. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

26 pages, 4583 KiB  
Article
Mathematical Modeling and Finite Element Simulation of the M8514-P2 Composite Piezoelectric Transducer for Energy Harvesting
by Demeke Girma Wakshume and Marek Łukasz Płaczek
Sensors 2025, 25(10), 3071; https://doi.org/10.3390/s25103071 - 13 May 2025
Viewed by 3434
Abstract
This paper focuses on the mathematical and numerical modeling of a non-classical macro fiber composite (MFC) piezoelectric transducer, MFC-P2, integrated with an aluminum cantilever beam for energy harvesting applications. It seeks to harness the transverse vibration energy in the environment to power small [...] Read more.
This paper focuses on the mathematical and numerical modeling of a non-classical macro fiber composite (MFC) piezoelectric transducer, MFC-P2, integrated with an aluminum cantilever beam for energy harvesting applications. It seeks to harness the transverse vibration energy in the environment to power small electronic devices, such as wireless sensors, where conventional power sources are inconvenient. The P2-type macro fiber composites (MFC-P2) are specifically designed for transverse energy harvesting applications. They offer high electric source capacitance and improved electric charge generation due to the strain developed perpendicularly to the voltage produced. The system is modeled analytically using Euler–Bernoulli beam theory and piezoelectric constitutive equations, capturing the electromechanical coupling in the d31 mode. Numerical simulations are conducted using COMSOL Multiphysics 6.29 to reduce the complexity of the mathematical model and analyze the effects of material properties, geometric configurations, and excitation conditions. The theoretical model is based on the transverse vibrations of a cantilevered beam using Euler–Bernoulli theory. The natural frequencies and mode shapes for the first four are determined. Depending on these, the resonance frequency, voltage, and power outputs are evaluated across a 12 kΩ resistive load. The results demonstrate that the energy harvester effectively operates near its fundamental resonant frequency of 10.78 Hz, achieving the highest output voltage of approximately 0.1952 V and a maximum power output of 0.0031 mW. The generated power is sufficient to drive ultra-low-power devices, validating the viability of MFC-based cantilever structures for autonomous energy harvesting systems. The application of piezoelectric phenomena and obtaining electrical energy from mechanical vibrations can be powerful solutions in such systems. The application of piezoelectric phenomena to convert mechanical vibrations into electrical energy presents a promising solution for self-powered mechatronic systems, enabling energy autonomy in embedded sensors, as well as being used for structural health monitoring applications. Full article
(This article belongs to the Special Issue Smart Sensors Based on Optoelectronic and Piezoelectric Materials)
Show Figures

Figure 1

33 pages, 12750 KiB  
Article
Experimental Study on Fiber Optic Strain Characterization of Overlying Rock Layer Movement Forms and States Using DFOS
by Tao Hu, Fengjun Wei, Jintao Wang, Yan Wang, Chunhua Song, Kuiliang Han and Kaiqiang Han
Photonics 2025, 12(4), 321; https://doi.org/10.3390/photonics12040321 - 30 Mar 2025
Viewed by 482
Abstract
Mastering the movement laws of hard overlying rock layers is the foundation of the development of coal mining technology and plays an important role in improving coal mine safety production. Therefore, an indoor similar simulation experiment was conducted based on an actual coal [...] Read more.
Mastering the movement laws of hard overlying rock layers is the foundation of the development of coal mining technology and plays an important role in improving coal mine safety production. Therefore, an indoor similar simulation experiment was conducted based on an actual coal mining face to test the strain variations of the pre-embedded optical fibers in the model using distributed fiber optic sensing. Finally, the fiber optic strain distribution curve was used to characterize the movement form and state of the overlying rock layer and fractured rock blocks. The experimental results showed the following. (1) The strain distribution of horizontally laid optical fibers is characterized by an upward trapezoidal convex platform, reflecting the evolution law of various horizontal movement forms of overlying rock layers: voussoir beam → cantilever beam → reverse cantilever beam → voussoir beam. The strain curve of vertically laid optical fibers is characterized by two levels of right-handed trapezoidal protrusions above and below, representing the motion state of the upper voussoir beam–lower cantilever beam structure of the overburden. (2) In addition, as excavation progresses, the range and height of the failure deformation of the overlying rock layers develop in a stepped shape. (3) In the end, the final vertical development heights of the cantilever beam structure and the voussoir beam structure in the overburden were 90.27 m and 24.99 m, respectively. The experimental results are highly consistent with the UDEC numerical simulation and mandatory calculation formulas, thus verifying the feasibility of the experiment. These research results provide theoretical and experimental support for safe coal mining in practical working faces. Full article
Show Figures

Figure 1

21 pages, 8910 KiB  
Article
Development of FBG Inclination Sensor: A Study on Attitude Monitoring of Hydraulic Supports in Coal Mines
by Minfu Liang, Kewei Li, Xinqiu Fang, Daqian Zheng, Xinze Lu, Gang Wu and Haiyang Lu
Appl. Sci. 2025, 15(7), 3429; https://doi.org/10.3390/app15073429 - 21 Mar 2025
Viewed by 371
Abstract
The hydraulic support is one of the most crucial pieces of equipment at the working face. To achieve the intelligentization of the attitude-monitoring system, we have designed and developed a Fiber Bragg Grating (FBG) inclinometer for the hydraulic support. This innovation offers a [...] Read more.
The hydraulic support is one of the most crucial pieces of equipment at the working face. To achieve the intelligentization of the attitude-monitoring system, we have designed and developed a Fiber Bragg Grating (FBG) inclinometer for the hydraulic support. This innovation offers a brand-new monitoring tool and approach for measuring the attitude angle of the hydraulic support. The FBG inclinometer for the hydraulic support integrates passive grating sensing technology with an inclination force element. It not only fulfills the inclination measurement function but also employs passive sensing technology, rendering it safer and more reliable compared to electromagnetic inclinometers. First, we delved into the sensing principle of the grating based on its structure, and investigated its sensing characteristics under uniform axial stress and temperature variations. We analyzed the strain–temperature cross-sensitivity issue and applied a temperature compensation technique. Second, we carried out a novel structural design and proposed two design alternatives: the cantilever beam type was selected after a comprehensive comparison. Subsequently, we deduced the corresponding theoretical formulas and ultimately adopted the temperature compensation method using an unstressed reference grating. Finally, on-site verification was conducted on the hydraulic support in the general mining face of Delong Mine, and the FBG inclinometer successfully passed the test. Finally, an actual test was carried out at the Delong Coal Mine site, and the subsequent use yielded quite satisfactory results. An analysis of the data collected on-site by the FBG inclinometer for the hydraulic support revealed that the newly developed FBG inclinometer for the hydraulic support can be effectively applied in the field of intelligent monitoring in underground coal mines. The monitoring data can serve as a reliable data foundation for assessing the operating attitude of the hydraulic support. This indicates that the FBG inclinometer is highly suitable for wide-scale industrial applications. Full article
Show Figures

Figure 1

11 pages, 58211 KiB  
Article
Three-Component Accelerometer Based on Distributed Optical Fiber Sensing
by Zongxiao Zhang, Qingwen Liu, Rongrong Niu and Zuyuan He
Sensors 2025, 25(4), 997; https://doi.org/10.3390/s25040997 - 7 Feb 2025
Cited by 1 | Viewed by 991
Abstract
The three-component accelerometer array has garnered significant attention in seismic wave detection. In this paper, we designed a three-dimensional optical fiber accelerometer based on a circular cross-section cantilever beam and distributed optical fiber strain interrogator. An externally modulated optical frequency domian reflectometry (OFDR) [...] Read more.
The three-component accelerometer array has garnered significant attention in seismic wave detection. In this paper, we designed a three-dimensional optical fiber accelerometer based on a circular cross-section cantilever beam and distributed optical fiber strain interrogator. An externally modulated optical frequency domian reflectometry (OFDR) system with centimeter-level spatial resolution is developed to demodulate the dynamic strain on fiber. An algorithm to reconstruct the three-component acceleration from the strain of the optical fiber was derived, and the factors affecting the errors in reconstruction were also investigated. The developed accelerometer exhibits comparable performance to an electrical accelerometer in the experiment. The correlation coefficient between the reconstructed signal waveforms from the two accelerometers exceeded 0.9, and the angular error was less than 8°. The proposed accelerometer is highly compatible with distributed optical fiber sensing technology, presenting significant potential for long-distance array deployment of three-component seismic wave monitoring. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

19 pages, 10260 KiB  
Article
Fracture Toughness of Winding Carbon Plastics Based on Epoxy Matrices and Reinforced by Polysulfone Film
by Eldar B. Dzhangurazov, Tuyara V. Petrova, Aleksey V. Shapagin, Ilya V. Tretyakov, Roman A. Korokhin, Aleksey V. Kireynov, Olga V. Alexeeva, Vitaliy I. Solodilov, Gleb Yu. Yurkov and Alexander Al. Berlin
Polymers 2025, 17(2), 220; https://doi.org/10.3390/polym17020220 - 16 Jan 2025
Cited by 1 | Viewed by 1406
Abstract
In this work, the fracture mechanism of winding carbon-fiber-reinforced plastics (CFRPs) based on epoxy matrices reinforced by polysulfone film was investigated. Two types of polymer matrices were used: epoxy oligomer (EO) cured by iso-methyltetrahydrophthalic anhydride (iso-MTHPA), and EO-modified polysulfone (PSU) with active diluent [...] Read more.
In this work, the fracture mechanism of winding carbon-fiber-reinforced plastics (CFRPs) based on epoxy matrices reinforced by polysulfone film was investigated. Two types of polymer matrices were used: epoxy oligomer (EO) cured by iso-methyltetrahydrophthalic anhydride (iso-MTHPA), and EO-modified polysulfone (PSU) with active diluent furfuryl glycidyl ether (FGE) cured by iso-MTHPA. At the winding stage, the reinforcing film was placed in the middle layer of the CFRP. The fracture toughness GIR of the obtained CFRP was determined by the double-cantilever beam delamination method. Additionally, the effect of cyclic loading on the fracture toughness of CFRP reinforced with polysulfone film was investigated. It was shown that heterogeneous structures arising from the dissolution of the polysulfone film in the epoxy binder during the curing process increase the fracture toughness of CFRP from 0.5 kJ/m2 to 1.2 kJ/m2. Application of cyclic loads had little effect on the fracture toughness value. As a result of this study, it was revealed that the macrocrack propagates near the reinforcement layer along the diffusion zone, which has a phase organization of the type PSU matrix–EO dispersion. Full article
(This article belongs to the Special Issue Failure of Polymer Composites)
Show Figures

Figure 1

18 pages, 8651 KiB  
Article
Interlaminar Fracture Toughness Analysis for Reliability Improvement of Wind Turbine Blade Spar Elements Based on Pultruded Carbon Fiber-Reinforced Polymer Plate Manufacturing Method
by Hakgeun Kim, Yunjung Jang, Sejin Lee, Chanwoong Choi and Kiweon Kang
Materials 2025, 18(2), 357; https://doi.org/10.3390/ma18020357 - 14 Jan 2025
Viewed by 1002
Abstract
The key structural components of a wind turbine blade, such as the skin, spar cap, and shear web, are fabricated from fiber-reinforced composite materials. The spar, predominantly manufactured via resin infusion—a process of resin injection and curing in carbon fibers—is prone to initial [...] Read more.
The key structural components of a wind turbine blade, such as the skin, spar cap, and shear web, are fabricated from fiber-reinforced composite materials. The spar, predominantly manufactured via resin infusion—a process of resin injection and curing in carbon fibers—is prone to initial defects, such as pores, wrinkles, and delamination. This study suggests employing the pultrusion technique for spar production to consistently obtain a uniform cross-section and augment the reliability of both the manufacturing process and the design. In this context, this study introduces carbon fiber-reinforced polymer (CFRP/CFRP) and glass fiber-reinforced polymer (GFRP/CFRP) test specimens, which mimic the bonding structure of the spar cap, utilizing pultruded CFRP in accordance with ASTM standards to analyze the delamination traits of the spar. Delamination tests—covering Mode I (double cantilever beam), Mode II (end-notched flexure), and mixed mode (mixed-mode bending)—were performed to gauge displacement, load, and crack growth length. Through this crack growth mechanism, the interlaminar fracture toughness derived was examined, and the stiffness and strength changes compared to CFRP based on the existing prepreg manufacturing method were analyzed. In addition, the interlaminar fracture toughness for GFRP, which is a material in contact with the spar structure, was analyzed, and through this, it was confirmed that the crack behavior has less deviation compared to a single CFRP material depending on the stiffness difference between the materials when joining dissimilar materials. This means that the higher the elasticity of the high-stiffness material, the higher the initial crack resistance, but the crack growth behavior shows non-uniform characteristics thereafter. This comparison provides information for predicting interlaminar delamination damage within the interior and bonding area of the spar and skin and provides insight for securing the reliability of the design life. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Figure 1

13 pages, 4490 KiB  
Article
Non-Destructive Testing for Evaluation of Young’s Modulus by Using Free Vibration Response of Composite Materials
by Mirela-Roxana Apsan, Ana-Maria Mitu, Catalin-Andrei Neagoe, Nicolae Pop and Tudor Sireteanu
Appl. Sci. 2025, 15(1), 189; https://doi.org/10.3390/app15010189 - 28 Dec 2024
Cited by 1 | Viewed by 1341
Abstract
This article presents a non-destructive method, based on the response to free vibrations, which can be used with efficiency and reliability to determine the Young’s modulus of polymer composite materials reinforced with natural or synthetic fibers. The non-destructive tests are carried out by [...] Read more.
This article presents a non-destructive method, based on the response to free vibrations, which can be used with efficiency and reliability to determine the Young’s modulus of polymer composite materials reinforced with natural or synthetic fibers. The non-destructive tests are carried out by measuring the frequencies of bending free vibrations of cantilever beams with additional masses. By using inverse methods, the experimental values of elasticity modulus E are assessed and validated by numerical simulation, using the finite element method (FEM). For FEM modeling, the materials are considered linear, homogeneous, isotropic, and viscoelastic. Full article
Show Figures

Figure 1

14 pages, 7266 KiB  
Article
Femtosecond Laser Introduced Cantilever Beam on Optical Fiber for Vibration Sensing
by Jin Qiu, Zijie Wang, Zhihong Ke, Tianlong Tao, Shuhui Liu, Quanrong Deng, Wei Huang and Weijun Tong
Sensors 2024, 24(23), 7479; https://doi.org/10.3390/s24237479 - 23 Nov 2024
Viewed by 1127
Abstract
An all-fiber vibration sensor based on the Fabry-Perot interferometer (FPI) is proposed and experimentally evaluated in this study. The sensor is fabricated by introducing a Fabry-Perot cavity to the single-mode fiber using femtosecond laser ablation. The cavity and the tail act together as [...] Read more.
An all-fiber vibration sensor based on the Fabry-Perot interferometer (FPI) is proposed and experimentally evaluated in this study. The sensor is fabricated by introducing a Fabry-Perot cavity to the single-mode fiber using femtosecond laser ablation. The cavity and the tail act together as a cantilever beam, which can be used as a vibration receiver. When mechanical vibrations are applied, the cavity length of the Fabry-Perot interferometer changes accordingly, altering the interference fringes. Due to the low moment of inertia of the fiber optic cantilever beam, the sensor can achieve broadband frequency responses and high vibration sensitivity without an external vibration receiver structure. The frequency range of sensor detection is 70 Hz–110 kHz, and the sensitivity of the sensor is 60 mV/V. The sensor’s signal-to-noise ratio (SNR) can reach 56 dB. The influence of the sensor parameters (cavity depth and fiber tail length) on the sensing performance are also investigated in this study. The sensor has the advantages of compact structure, high sensitivity, and wideband frequency response, which could be a promising candidate for vibration sensing. Full article
(This article belongs to the Special Issue Recent Advances in Micro- and Nanofiber-Optic Sensors)
Show Figures

Figure 1

17 pages, 3763 KiB  
Article
Experimental Study on the Acceleration Amplification Ratio of Cable Terminations for Electric Power Facilities
by Bub-Gyu Jeon, Sung-Jin Chang, Sung-Wan Kim, Dong-Uk Park and Nakhyun Chun
Energies 2024, 17(22), 5641; https://doi.org/10.3390/en17225641 - 11 Nov 2024
Cited by 1 | Viewed by 951
Abstract
Among national infrastructure facilities, electric power facilities are very important sites that must maintain their functions properly even during a natural disaster or during social crises. Therefore, seismic design is required when necessary for major electric power facilities that have a significant impact [...] Read more.
Among national infrastructure facilities, electric power facilities are very important sites that must maintain their functions properly even during a natural disaster or during social crises. Therefore, seismic design is required when necessary for major electric power facilities that have a significant impact when damaged in the event of an earthquake. In electric power facilities, bushings are generally installed in devices or structures. Therefore, ground acceleration can be amplified through devices, such as transformers, or sub-structures. Among various electric power facilities, cable terminations are representative cantilever-type substation facilities consisting of a bushing, a sub-structure, and support insulators. The bushings of cable terminations are generally made of porcelain or fiber-reinforced plastic (FRP) materials, and they may have different dynamic characteristics. This study attempted to estimate the acceleration amplification ratio in the main positions of cable terminations considering the materials of bushings. For two cable terminations with different specifications and bushing materials, three-axis shake table tests were conducted in accordance with IEEE 693, which includes a seismic performance evaluation method for a power substation facility. The acceleration amplification ratios at the top of the bushing, mass center, and top of the support structure were estimated using the acceleration responses of each cable termination. They were then compared with the acceleration amplification factors presented in design standards. Consequently, the acceleration amplification ratio of cable termination with an FRP bushing was lower than that of the cable termination with a porcelain bushing. Full article
(This article belongs to the Section F1: Electrical Power System)
Show Figures

Figure 1

17 pages, 6355 KiB  
Article
Strain Sensing in Cantilever Beams Using a Tapered PMF with Embedded Optical Modulation Region
by Xiaopeng Han, Xiaobin Bi, Yundong Zhang, Fan Wang, Siyu Lin, Wuliji Hasi, Chen Wang and Xueheng Yan
Photonics 2024, 11(10), 911; https://doi.org/10.3390/photonics11100911 - 27 Sep 2024
Viewed by 1192
Abstract
This paper presents the design of a strain-sensitive, dual ball-shaped tunable zone (DBT) taper structure for light intensity modulation. Unlike conventional tapered optical fibers, the DBT incorporates a central light field modulation zone within the taper. By precisely controlling the fusion parameters between [...] Read more.
This paper presents the design of a strain-sensitive, dual ball-shaped tunable zone (DBT) taper structure for light intensity modulation. Unlike conventional tapered optical fibers, the DBT incorporates a central light field modulation zone within the taper. By precisely controlling the fusion parameters between single-mode fiber (SMF) and polarization-maintaining fiber (PMF), the ellipticity of the modulation zone can be finely adjusted, thereby optimizing spectral characteristics. Theoretical analysis based on polarization mode interference (PMI) coupling confirms that the DBT structure achieves a more uniform spectral response. In cantilever beam strain tests, the DBT exhibits high sensitivity and a highly linear intensity–strain response (R² = 0.99), with orthogonal linear polarization mode interference yielding sensitivities of 0.049 dB/με and 0.023 dB/με over the 0–244.33 με strain range. Leveraging the DBT’s light intensity sensitivity, a temperature-compensated intensity difference and ratio calculation method is proposed, effectively minimizing the influence of light source fluctuations on sensor performance and enabling high-precision strain measurements with errors as low as ±6 με under minor temperature variations. The DBT fiber device, combined with this innovative demodulation technique, is particularly suitable for precision optical sensing applications. The DBT structure, combined with the novel demodulation method, is particularly well-suited for high-precision and stable measurements in industrial monitoring, aerospace, civil engineering, and precision instruments for micro-deformation sensing. Full article
(This article belongs to the Special Issue Advances in Optical Fiber Sensing Technology)
Show Figures

Figure 1

39 pages, 31615 KiB  
Article
Seismic Retrofit Case Study of Shear-Critical RC Moment Frame T-Beams Strengthened with Full-Wrap FRP Anchored Strips in a High-Rise Building in Los Angeles
by Susana Anacleto-Lupianez, Luis Herrera, Scott F. Arnold, Winston Chai, Todd Erickson and Anne Lemnitzer
Appl. Sci. 2024, 14(19), 8654; https://doi.org/10.3390/app14198654 - 25 Sep 2024
Cited by 1 | Viewed by 1865
Abstract
This paper discusses the iteration of a seismic retrofit solution for shear-deficient end regions of 19 reinforced concrete (RC) moment-resisting frame (MRF) T-beams located in a 12-story RC MRF building in downtown Los Angeles, California. Local strengthening with externally bonded (EB) fiber-reinforced polymer [...] Read more.
This paper discusses the iteration of a seismic retrofit solution for shear-deficient end regions of 19 reinforced concrete (RC) moment-resisting frame (MRF) T-beams located in a 12-story RC MRF building in downtown Los Angeles, California. Local strengthening with externally bonded (EB) fiber-reinforced polymer (FRP) fabric was chosen as the preferred retrofit strategy due to its cost-effectiveness and proven performance. The FRP-shear-strengthening scheme for the deficient end-hinging regions of the MRF beams was designed and evaluated through large-scale cyclic testing of three replica specimens. The specimens were constructed at 4/5 scale and cantilever T-beam configurations with lengths of 3.40 m or 3.17 m. The cross-sectional geometry was 0.98 × 0.61 m with a top slab of 1.59 m in width and 0.12 m in thickness. Applied to these specimens were three different retrofit configurations, tested sequentially, namely: (a) unanchored continuous U-wrap; (b) anchored continuous U-wrap with conventional FRP-embedded anchors at the ends; and (c) fully closed external FRP hoops made of discrete FRP U-wrap strips and FRP through-anchors that penetrate the top slab and connect both ends of the FRP strips, combined with intermediate crack-control joints. The strengthening concept with FRP hoops precluded the premature debonding and anchor pullout issues of the two more conventional retrofit solutions and, despite a more challenging and labor-intensive installation, was selected for the in-situ implementation. The proposed hooplike EB-FRP shear-strengthening scheme enabled the deficient MRF beams to overcome a 30% shear overstress at the end-yielding region and to develop high-end rotations (e.g., 0.034 rad [3.4% drift] at peak and 0.038 rad [3.8% drift]) at strength loss for a beam that, otherwise, would have prematurely failed in shear. These values are about 30% larger than the ASCE 41 prescriptive value for the Life Safety (LS) performance objective. Energy dissipation achieved with the fully closed scheme was 108% higher than that of the unanchored FRP U-wrap and 45% higher than that of the FRP U-wrap with traditional embedded anchors. The intermediate saw-cut grooves successfully attracted crack formation between the strips and away from the FRP reinforcement, which contributed to not having any discernable debonding of the strips up to 3% drift. This paper presents the experimental evaluation of the three large-scale laboratory specimens that were used as the design basis for the final retrofit solution. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

14 pages, 5955 KiB  
Article
Prediction of the Interface Behavior of a Steel/CFRP Hybrid Part Manufactured by Stamping
by Jae-Chang Ryu, Chan-Joo Lee, Do-Hoon Shin and Dae-Cheol Ko
Materials 2024, 17(17), 4291; https://doi.org/10.3390/ma17174291 - 30 Aug 2024
Cited by 1 | Viewed by 888
Abstract
Carbon fiber-reinforced plastic (CFRP) is a lightweight material. The automotive industry has focused on producing a steel/CFRP hybrid part to reduce overall weight. After manufacturing, delamination can occur at the interface between the CFRP and steel owing to the hybrid part constituting dissimilar [...] Read more.
Carbon fiber-reinforced plastic (CFRP) is a lightweight material. The automotive industry has focused on producing a steel/CFRP hybrid part to reduce overall weight. After manufacturing, delamination can occur at the interface between the CFRP and steel owing to the hybrid part constituting dissimilar materials. However, most studies have focused only on designing the manufacturing processes for the hybrid part or evaluating the adhesive used at the interface. Therefore, it is necessary to predict the behavior of the interface after demolding the hybrid part. This study aimed to predict the interface behavior of a steel/CFRP hybrid part by considering its forming and cohesive properties. First, double cantilever beam (DCB) and end-notched flexure (ENF) tests were performed to obtain cohesive parameters, such as energy release rate of modes I and II (GI, GII). The experimentally obtained properties were applied to the bonding area of the hybrid part. Subsequently, a forming simulation was performed to obtain the stress of the steel blank in the hybrid part. The stress distribution after forming was utilized as the initial condition for spring-back simulation. Finally, the interface behavior of the hybrid part was predicted by a spring-back simulation. The simulation was conducted using the residual stress of steel outer and the cohesive properties on the interface, without the application of any external forces. The cases of spring-back simulation were divided as delamination occurrence and attached state. The simulation results for prediction of delamination occurrence and bonding showed good agreement in both cases with experimental ones. The proposed method would contribute to expanding the manufacturing of the hybrid part by stamping and reducing the manufacturing cost by prediction of delamination occurrence. Full article
(This article belongs to the Special Issue Advances in Hybrid Structure Manufacturing Technology)
Show Figures

Figure 1

Back to TopTop