Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,045)

Search Parameters:
Keywords = fiber sensors

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2929 KB  
Article
Vector Bending Sensor Based on Power-Monitored Tapered Few-Mode Multi-Core Fiber
by Qixuan Wu, Zhuyixiao Liu, Hao Wu and Ming Tang
Sensors 2026, 26(2), 607; https://doi.org/10.3390/s26020607 - 16 Jan 2026
Abstract
We propose a vector bending sensor based on a tapered few-mode multi-core fiber (FM-MCF). A seven-core six-mode fiber is tapered with an optimized taper ratio, enabling bending sensing through power monitoring. When the tapered FM-MCF bends, coupling occurs between the central core and [...] Read more.
We propose a vector bending sensor based on a tapered few-mode multi-core fiber (FM-MCF). A seven-core six-mode fiber is tapered with an optimized taper ratio, enabling bending sensing through power monitoring. When the tapered FM-MCF bends, coupling occurs between the central core and side cores in the tapered region. By monitoring the power of all cores and employing a power differential method, the bending direction and curvature can be reconstructed. The results show that within a curvature range of 2.5 m−1 to 10 m−1, the sensitivity of the ratio of the side core’s power to the middle core’s power with respect to curvature is not less than 0.14/m−1. A deep fully connected feedforward neural network (DNN) is used to demodulate all power information and predict the bending shape of the optical fiber. The algorithm predicts the bending radius and rotation angle with mean absolute errors less than 0.038 m and 3.087°, respectively. This method is expected to achieve low-cost, high-sensitivity bending measurement applications with vector direction perception, providing an effective solution for scenarios with small curvatures that are challenging to detect using conventional sensing methods. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

10 pages, 2756 KB  
Article
Tapered Fiber Bragg Grating Fabry–Pérot Cavity for Sensitivity-Enhanced Strain Sensing
by Jinchen Zhang, Chao Wang, Rui Dai, Yaqi Tang and Junhui Hu
Sensors 2026, 26(2), 581; https://doi.org/10.3390/s26020581 - 15 Jan 2026
Viewed by 66
Abstract
This paper presents a novel optical fiber axial strain sensor based on a Fabry–Perot interferometer (FPI) cavity incorporating Fiber Bragg Gratings (FBGs) and a tapered fiber, which has been experimentally validated. The sensor structure primarily consists of two identical FBGs with a bi-conical [...] Read more.
This paper presents a novel optical fiber axial strain sensor based on a Fabry–Perot interferometer (FPI) cavity incorporating Fiber Bragg Gratings (FBGs) and a tapered fiber, which has been experimentally validated. The sensor structure primarily consists of two identical FBGs with a bi-conical tapered fiber segment between them, achieving a strain sensitivity of 13.19 pm/με. This represents a 12-fold enhancement compared to conventional FBG-FPI, along with a resolution limit of 3.7 × 10−4 με. The proposed sensor offers notable advantages including low fabrication cost, compact structure, and excellent linearity, demonstrating significant potential for high-precision axial strain measurement applications. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

10 pages, 2349 KB  
Article
Long Period Grating Modified with Quasi-2D Perovskite/PAN Hybrid Nanofibers for Relative Humidity Measurement
by Dingyi Feng, Changjiang Zhang, Syed Irshad Haider, Jing Tian, Jiandong Wu, Fu Liu and Biqiang Jiang
Nanomaterials 2026, 16(2), 99; https://doi.org/10.3390/nano16020099 - 12 Jan 2026
Viewed by 175
Abstract
Metal halide perovskites have emerged as promising photoactive materials for highly efficient photodetectors; however, the inherent instability of perovskite materials in oxygen and moisture limits their practical applications. In this study, the highly moisture-sensitive characteristics of the quasi-2D perovskite nanocrystals were used to [...] Read more.
Metal halide perovskites have emerged as promising photoactive materials for highly efficient photodetectors; however, the inherent instability of perovskite materials in oxygen and moisture limits their practical applications. In this study, the highly moisture-sensitive characteristics of the quasi-2D perovskite nanocrystals were used to fabricate a long-period grating (LPG) humidity sensor based on the perovskite/polyacrylonitrile (PAN) hybrid nanofibers film. The pure-bromide quasi-2D perovskite nanocrystals were in situ synthesized and encapsulated in the PAN matrix on the fiber grating via an electrospinning technique. Humidity-induced variation in the complex permittivity of perovskites can alter the evanescent field of the co-propagating cladding modes, resulting in changes in both resonant amplitude and wavelength in the transmission spectrum of the LPG. These effects yielded an intensity sensitivity of ~0.21 dB/%RH and a wavelength sensitivity of ~18.2 pm/%RH, respectively, in the relative humidity range of 50–80%RH. The proposed LPG sensor demonstrated a good performance, indicating its potential application in the humidity-sensing field. Full article
(This article belongs to the Special Issue Nanomaterials for Optical Fiber Sensing)
Show Figures

Figure 1

18 pages, 5762 KB  
Article
Intrinsically Safe Optical Fiber Hydrogen Sensor Using Pt-SiO2 Coated Long-Period Fiber Grating
by Xuhui Zhang, Liang Guo, Xinran Wei, Fangzhou Mao, Yuzhang Liang, Junsheng Wang and Wei Peng
Nanomaterials 2026, 16(2), 95; https://doi.org/10.3390/nano16020095 - 12 Jan 2026
Viewed by 128
Abstract
Hydrogen, a promising clean energy carrier, needs safe detection due to its flammability. Conventional electrical hydrogen sensors have drawbacks like high operating temperatures, poor selectivity and ignition risks. We propose an optical sensor using long-period fiber gratings (LPGs) coated with Pt-SiO2 nanomaterials. [...] Read more.
Hydrogen, a promising clean energy carrier, needs safe detection due to its flammability. Conventional electrical hydrogen sensors have drawbacks like high operating temperatures, poor selectivity and ignition risks. We propose an optical sensor using long-period fiber gratings (LPGs) coated with Pt-SiO2 nanomaterials. It works via catalytic reaction: H2 reacts with O2 on Pt nanoparticles, releasing heat that shifts LPG’s resonant wavelength. Structural characterization showed porous SiO2 with uniform Pt, ensuring efficiency and stability. Experiments proved it sensitively responds to 0.5–2.5% H2 (max wavelength shift 7.544 nm), with fast response/recovery, good repeatability/reversibility. Logistic fitting (R2 = 0.999) confirmed strong correlation. This sensor, safe, sensitive and stable, has great potential for real-time H2 monitoring in critical environments. Full article
(This article belongs to the Special Issue Advanced Low-Dimensional Materials for Sensing Applications)
Show Figures

Graphical abstract

16 pages, 1205 KB  
Review
Selenoprotein N and SEPN1-Related Myopathies: Mechanisms, Models, and Therapeutic Perspectives
by Martina Lanza, Ester Zito, Giorgia Dinoi, Antonio Vittorio Buono, Annamaria De Luca, Paola Imbrici, Antonella Liantonio and Elena Conte
Biomolecules 2026, 16(1), 125; https://doi.org/10.3390/biom16010125 - 12 Jan 2026
Viewed by 122
Abstract
Selenoprotein N (SelN or SELENON) is a selenium-containing protein of the endoplasmic/sarcoplasmic reticulum (ER/SR), encoded by the SEPN1 gene. In skeletal muscle, SelN is particularly important for regulating SR calcium homeostasis. It acts as a calcium sensor, modulating the activity of the sarcoplasmic [...] Read more.
Selenoprotein N (SelN or SELENON) is a selenium-containing protein of the endoplasmic/sarcoplasmic reticulum (ER/SR), encoded by the SEPN1 gene. In skeletal muscle, SelN is particularly important for regulating SR calcium homeostasis. It acts as a calcium sensor, modulating the activity of the sarcoplasmic reticulum calcium pump (SERCA) through a redox-dependent mechanism. Loss-of-function mutations in the SEPN1 gene give rise to a spectrum of skeletal muscle disorders collectively referred to as SEPN1-related myopathies (SEPN1-RM). Histopathologically, SEPN1-RM is characterized by the presence of minicores, which are localized regions within muscle fibers exhibiting mitochondrial depletion (i.e., cores) and sarcomeric disarray. As no effective therapy is currently available for SEPN1-RM, understanding SelN biology through loss-of-function models remains essential for elucidating disease mechanisms and identifying potential therapeutic targets. This review examines the current knowledge on SelN function and the pathological mechanisms underlying SEPN1 loss-of-function, with a particular focus on the connection between calcium handling, oxidative/ER stress, and muscle dysfunction. It also highlights emerging strategies aimed at restoring SelN activity or mitigating downstream defects, outlining potential therapeutic avenues for SEPN1-RM. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

16 pages, 2843 KB  
Article
Analysis of a Fiber-Coupled RGB Color Sensor for Luminous Flux Measurement of LEDs
by László-Zsolt Turos and Géza Csernáth
Sensors 2026, 26(2), 486; https://doi.org/10.3390/s26020486 - 12 Jan 2026
Viewed by 159
Abstract
Accurate measurement of luminous flux from solid-state light sources typically requires spectroradiometric equipment or integrating spheres. This work investigates a compact alternative based on a fiber-coupled RGB photodiode system and develops the optical, spectral, and geometric foundations required to obtain traceable flux estimates [...] Read more.
Accurate measurement of luminous flux from solid-state light sources typically requires spectroradiometric equipment or integrating spheres. This work investigates a compact alternative based on a fiber-coupled RGB photodiode system and develops the optical, spectral, and geometric foundations required to obtain traceable flux estimates from reduced-channel measurements. The system under study comprises an LED with known spectral power distribution (SPD), optical head, optical fiber, a protective sensor window, and a photodiode matrix type sensor. A complete end-to-end analysis of the optical path is presented, including geometric coupling efficiency, fiber transmission and angular redistribution, Fresnel losses in the sensor window, and the mosaic structure of the sensor. Additional effects such as fiber–sensor alignment, fiber-facet tilt, air gaps, and LED placement tolerances are quantified and incorporated into a formal uncertainty budget. Using the manufacturer-supplied SPD of the reference LED together with the measured R, G, and B channel responsivity functions of the sensor, a calibration-based mapping is established to reconstruct photopic luminous flux from the three-channel outputs. These results demonstrate that, with appropriate modeling and calibration of all optical stages, a fiber-coupled RGB photodiode mosaic can provide practical and scientifically meaningful luminous-flux estimation for white LEDs, offering a portable and cost-effective alternative to conventional photometric instrumentation in mid-accuracy applications. Further optimization of computation speed can enable fully integrated measurement systems in resource-constrained environments. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

24 pages, 3202 KB  
Article
Breaking the Cross-Sensitivity Degeneracy in FBG Sensors: A Physics-Informed Co-Design Framework for Robust Discrimination
by Fatih Yalınbaş and Güneş Yılmaz
Sensors 2026, 26(2), 459; https://doi.org/10.3390/s26020459 - 9 Jan 2026
Viewed by 192
Abstract
The simultaneous measurement of strain and temperature using Fiber Bragg Grating (FBG) sensors presents a significant challenge due to the intrinsic cross-sensitivity of the Bragg wavelength. While recent studies have increasingly employed “black-box” machine learning algorithms to address this ambiguity, such approaches often [...] Read more.
The simultaneous measurement of strain and temperature using Fiber Bragg Grating (FBG) sensors presents a significant challenge due to the intrinsic cross-sensitivity of the Bragg wavelength. While recent studies have increasingly employed “black-box” machine learning algorithms to address this ambiguity, such approaches often overlook the physical limitations of the sensor’s spectral response. This paper challenges the assumption that advanced algorithms alone can compensate for data that is physically ambiguous. We propose a “Sensor-Algorithm Co-Design” methodology, demonstrating that robust discrimination is achievable only when the sensor architecture exhibits a unique, orthogonal physical signature. Using a rigorous Transfer Matrix Method (TMM) and 4 × 4 polarization analysis, we evaluate three distinct architectures. Quantitative analysis reveals that a standard Quadratically Chirped FBG (QC-FBG) functions as an “ill-conditioned baseline” failing to distinguish measurands due to feature space collapse (Kcond>4600). Conversely, we validate two robust co-designs: (1) An Amplitude-Modulated Superstructure FBG (S-FBG) paired with an Artificial Neural Network (ANN), utilizing thermally induced duty-cycle variations to achieve high accuracy (~3.4 °C error) under noise; and (2) A Polarization-Diverse Inverse-Gaussian FBG (IG-FBG) paired with a 4 × 4 K-matrix, exploiting strain-induced birefringence (Kcond64). Furthermore, we address the data scarcity issue in AI-driven sensing by introducing a Physics-Informed Neural Network (PINN) strategy. By embedding TMM physics directly into the loss function, the PINN improves data efficiency by 2.2× compared to standard models, effectively bridging the gap between physical modeling and data-driven inference, addressing the critical data scarcity bottleneck identified in recent optical sensing roadmaps. Full article
(This article belongs to the Special Issue Advanced Optical Sensors Based on Machine Learning: 2nd Edition)
Show Figures

Figure 1

15 pages, 3704 KB  
Article
A Cylindrical High-Temperature-Resistant Fiber-Optic Composite Sensor for Temperature and Pressure Measurement
by Siwei Zhang, Quan Liu, Jiaqi Liu, Jiahao Guo and Ruiya Li
Sensors 2026, 26(2), 417; https://doi.org/10.3390/s26020417 - 8 Jan 2026
Viewed by 188
Abstract
This study proposes a cylindrical high-temperature-resistant fiber-optic composite sensor based on the EFPI-FBG hybrid structure for simultaneous temperature and pressure measurement, addressing the demand for high-performance monitoring in harsh environments. The sensor’s core consists of a cylindrical pressure chamber, a metal substrate, and [...] Read more.
This study proposes a cylindrical high-temperature-resistant fiber-optic composite sensor based on the EFPI-FBG hybrid structure for simultaneous temperature and pressure measurement, addressing the demand for high-performance monitoring in harsh environments. The sensor’s core consists of a cylindrical pressure chamber, a metal substrate, and an EFPI-FBG sensing structure fixed via resistance welding and high-temperature ceramic adhesive. The cylindrical pressure chamber converts pressure into axial deformation to modulate the EFPI cavity length, while the FBG with one end floating is exclusively used for temperature compensation, avoiding pressure interference. The EFPI cavity length exhibits a linear relationship with pressure, achieving a sensitivity of 0.171 μm/MPa and a linear correlation coefficient of 0.9986. Stable operation up to 600 °C and 20 MPa is demonstrated, with a decoupling matrix enabling accurate dual-parameter sensing. Full article
(This article belongs to the Special Issue Sensors for Severe Environments)
Show Figures

Figure 1

27 pages, 4946 KB  
Article
Research on an Online Preload Detecting Method for Power Transformers Based on FBG
by Jinbo Wu, Zhanlong Zhang, Jun Deng and Zhihao Gao
Appl. Sci. 2026, 16(2), 657; https://doi.org/10.3390/app16020657 - 8 Jan 2026
Viewed by 121
Abstract
This paper presents research on an online preload detecting method for power transformer windings that is highly sensitive, survivable and repeatable. Traditional frequency response analysis methods exhibit limitations in sensitivity, accuracy, and interference resistance, making it difficult to detect small loosening. Although the [...] Read more.
This paper presents research on an online preload detecting method for power transformer windings that is highly sensitive, survivable and repeatable. Traditional frequency response analysis methods exhibit limitations in sensitivity, accuracy, and interference resistance, making it difficult to detect small loosening. Although the FBG offer superior performance, quartz optical fibers exhibit limited deformation capacity and are susceptible to damage from short circuit impacts. To identify FBG placement locations with minimal impact exposure, this study compared FBG sensors at different installation positions through 42 short circuit impacts. Results confirmed that the FBG positioned at the top of pressure board experienced the least impact damage. Subsequently, a transformer equipped with this online preload detecting system underwent 12 short circuit impact tests. Simulation results and hoisting cover findings aligned with the FBG online detecting data. This study proposes an experimentally validated online preload detecting method, providing a reliable and reproducible technical pathway for transformer condition assessment. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

17 pages, 2346 KB  
Article
A Fiber Optic Sensor Using a Molecularly Imprinted Chitosan Membrane Coating on a Fiber Surface as a Transducer for Discriminating 4-Nitrophenol from Its Positional Isomers
by Myra Arana and Shiquan Tao
Sensors 2026, 26(2), 398; https://doi.org/10.3390/s26020398 - 8 Jan 2026
Viewed by 153
Abstract
An optical fiber chemical sensor using a molecularly imprinted chitosan membrane coated on the surface of a bent optical fiber probe was developed for selectively analyzing 4-nitrophenol (4-NP) in water samples. When the sensor probe is exposed to a water sample, the chitosan [...] Read more.
An optical fiber chemical sensor using a molecularly imprinted chitosan membrane coated on the surface of a bent optical fiber probe was developed for selectively analyzing 4-nitrophenol (4-NP) in water samples. When the sensor probe is exposed to a water sample, the chitosan MIP membrane extracts/concentrates 4-NP from the water sample into the membrane. The 4-NP extracted into the membrane was detected by passing a light beam through the optical fiber and the interaction of the 4-NP in the membrane with an evanescent wave of light guided through the optical fiber was detected as a sensing signal. This sensor detects the intrinsic optical absorption signal of 4-NP itself as a sensing signal. No chemical reagent was needed in analyzing this compound in a sample. The sensor is reversible, can be used for continuous monitoring of 4-NP in a sample, and has a quick response with a response time of 5 min. The sensor has high sensitivity and selectivity because the MIP membrane selectively concentrates 4-NP by 1.4 × 104 times into the membrane from a sample solution, but blocks out interference species, including its isomers and derivatives, from entering the membrane. The sensor achieved a detection limit of 2.5 ng/mL (0.018 µM), which is lower than most reported analytical techniques for analyzing this compound in water samples. This sensor can discriminate 4-NP from its isomers and derivatives, such as 2-NP, 3-NP, 2-Cl-4-NP, and 2,4-di-NP, with a selectivity factor ranging from 104 to 1922. This is the first reported case of an MIP-based optical fiber chemical sensor with the capability of discriminating an organic compound from its closely related positional isomers, which demonstrates the high selectivity nature of the MIP-based optical fiber chemical sensor technique. The sensor has been used for analyzing 4-NP in a standard addition sample. The obtained recovery rate ranged from 93% to 101%, demonstrating the application potential of this sensor in water quality analysis. Full article
Show Figures

Figure 1

8 pages, 2392 KB  
Proceeding Paper
Guided Wave-Based Damage Detection Using Integrated PZT Sensors in Composite Plates
by Lenka Šedková, Ondřej Vích and Michal Král
Eng. Proc. 2025, 119(1), 49; https://doi.org/10.3390/engproc2025119049 - 7 Jan 2026
Viewed by 90
Abstract
The ultrasonic guided wave method is successfully used for structural health monitoring (SHM) of aircraft structures utilizing PZT (Pb-Zr-Ti based piezoceramic material) sensors for guided wave generation and detection. To increase the mechanical durability of the sensors in operational conditions, this paper demonstrates [...] Read more.
The ultrasonic guided wave method is successfully used for structural health monitoring (SHM) of aircraft structures utilizing PZT (Pb-Zr-Ti based piezoceramic material) sensors for guided wave generation and detection. To increase the mechanical durability of the sensors in operational conditions, this paper demonstrates the feasibility of the integration of PZTs into the Glass fiber/Polymethyl methacrylate (G/PMMA) composite plate and evaluates the possibility of impact damage detection using generated guided waves. Two types of PZT sensors were embedded into different layers during the manufacturing process. Generally, radial mode disc sensors are used for Lamb wave generation, and thickness-shear square-shaped sensors are used for both Lamb and shear wave generation. First, the wave propagation was analyzed considering the sensor type and sensor placement within the layup. The main objective was to propose the optimal sensor network with embedded sensors for successful impact damage detection. Lamb wave frequency tuning of disk sensors and unique vibrational characteristics of integrated shear sensors were exploited to selectively actuate only one guided wave mode. Finally, the Reconstruction Algorithm for the Probabilistic Inspection of Damage (RAPID) was utilized for damage localization and visualization. Full article
Show Figures

Figure 1

14 pages, 5202 KB  
Article
Flexible Electrospun PVDF/PAN/Graphene Nanofiber Piezoelectric Sensors for Passive Human Motion Monitoring
by Hasan Cirik, Yasemin Gündoğdu Kabakci, M. A. Basyooni-M. Kabatas and Hamdi Şükür Kiliç
Sensors 2026, 26(2), 391; https://doi.org/10.3390/s26020391 - 7 Jan 2026
Viewed by 230
Abstract
Flexible piezoelectric sensors based on electrospun poly(vinylidene fluoride) (PVDF)/polyacrylonitrile (PAN)/graphene nanofibers were fabricated and evaluated for passive human body motion detection. Optimized electrospinning yielded smooth, continuous fibers with diameters of 200–250 nm and uniform films with thicknesses of 20–25 µm. Fourier transform infrared [...] Read more.
Flexible piezoelectric sensors based on electrospun poly(vinylidene fluoride) (PVDF)/polyacrylonitrile (PAN)/graphene nanofibers were fabricated and evaluated for passive human body motion detection. Optimized electrospinning yielded smooth, continuous fibers with diameters of 200–250 nm and uniform films with thicknesses of 20–25 µm. Fourier transform infrared (FTIR) spectroscopy confirmed a high fraction of the piezoelectrically active β-phase in PVDF, which was further enhanced by post-deposition thermal treatment. Graphene and lithium phosphate were incorporated to improve electrical conductivity, β-phase nucleation, and piezoelectric response, while PAN provided mechanical reinforcement and flexibility. Custom test platforms were developed to simulate low-amplitude mechanical stimuli, including finger bending and pulsatile pressure. Under applied pressures of 40, 80, and 120 mmHg, the sensors generated stable millivolt-level outputs with average peak voltages of 25–30 mV, 53–60 mV, and 80–90 mV, respectively, with good repeatability and an adequate signal-to-noise ratio. These results demonstrate that PVDF/PAN/graphene nanofiber films are promising candidates for flexible, wearable piezoelectric sensors capable of detecting subtle physiological signals, and highlight the critical roles of electrospinning conditions, functional additives, and post-processing treatments in tuning their electromechanical performance. Full article
(This article belongs to the Special Issue Advanced Flexible Electronics for Sensing Application)
Show Figures

Graphical abstract

18 pages, 4127 KB  
Article
Experimental Study on Dual-Structure Polymer Optical Fiber Sensors for Turbidity Detection
by Jiafeng Zhang, Zhibin Liu, Junshi Li, Jiangu Qian, Bing Zhou and Haihua Zhang
Sensors 2026, 26(2), 351; https://doi.org/10.3390/s26020351 - 6 Jan 2026
Viewed by 184
Abstract
This study presents a comprehensive investigation of turbidity monitoring using two different types of polymer optical fiber (POF) sensors: the reflection–refraction type (RR-POF) and the gap type (Gap-POF). Both sensors were used to visualize and monitor the turbidity changes in suspensions with varying [...] Read more.
This study presents a comprehensive investigation of turbidity monitoring using two different types of polymer optical fiber (POF) sensors: the reflection–refraction type (RR-POF) and the gap type (Gap-POF). Both sensors were used to visualize and monitor the turbidity changes in suspensions with varying concentrations and different particle compositions, namely silica powder and clay particles. The experiments were conducted by introducing silica powder and clay into water at various concentrations, and the resulting turbidity was measured using both types of POF sensors. The results revealed a significant correlation between particle concentration and light intensity for both kinds of POF sensors. As the particle concentration increased, the light intensity decreased due to increased scattering and absorption effects. For both silica powder and clay suspensions, the light intensity stabilized at lower values as the concentration increased, with the Gap-POF sensor exhibiting higher sensitivity to turbidity changes, particularly at high particle concentrations. Additionally, the study found that the particle composition influenced the sensor response. Silica powder particles caused more irregular fluctuations in light intensity at higher concentrations due to their larger particle size and tendency to aggregate, while clay particles, due to their smaller size and better dispersion, resulted in more stable and gradual changes in light intensity. This highlighted the differences in optical responses between different particle types. Furthermore, the multi-wavelength measurements showed consistent results, with white and green lights exhibiting the strongest response to turbidity changes, while red and blue lights were less sensitive. This wavelength-dependent response was attributed to the scattering and absorption properties of the particles in the suspensions. Both RR-POF and Gap-POF sensors proved to be effective for turbidity monitoring, with Gap-POF demonstrating superior performance in high-concentration suspensions. The findings suggest that POF sensors, particularly Gap-POF, are highly suitable for real-time turbidity monitoring in various particle suspension systems. Full article
(This article belongs to the Special Issue Advances and Innovations in Optical Fiber Sensors)
Show Figures

Figure 1

18 pages, 566 KB  
Review
Spider Silk in Fiber-Optic Sensors: Properties, Applications and Challenges
by Shuo Liu and Dongyan Zhang
Textiles 2026, 6(1), 5; https://doi.org/10.3390/textiles6010005 - 5 Jan 2026
Viewed by 229
Abstract
Spider silk, as a natural polymer fiber, possesses high tensile strength, good toughness, as well as unique thermal, optical, and biocompatibility properties. It has attracted much attention in various fields. The field of optical fiber sensors has a promising future. Given the excellent [...] Read more.
Spider silk, as a natural polymer fiber, possesses high tensile strength, good toughness, as well as unique thermal, optical, and biocompatibility properties. It has attracted much attention in various fields. The field of optical fiber sensors has a promising future. Given the excellent performance of spider silk, introducing spider silk into the field of optical fiber sensors can broaden its application scope. This paper comprehensively reviews the outstanding characteristics of spider silk and spider silk sensors based on these characteristics, such as pH sensors, breath humidity sensors, cell temperature sensors, and blood glucose sensors applied in living organisms, as well as magnetic field sensors and refractive index sensors applied in industrial fields. It also analyzes in detail the problems faced during the collection and synthesis of spider silk, aiming to provide a reference for research on the application of spider silk in the field of optical fiber sensors. Full article
(This article belongs to the Collection Feature Reviews for Advanced Textiles)
Show Figures

Figure 1

46 pages, 1959 KB  
Review
Optical Sensor Systems for Antibiotic Detection in Water Solutions
by Olga I. Guliy and Viktor D. Bunin
Water 2026, 18(1), 125; https://doi.org/10.3390/w18010125 - 5 Jan 2026
Viewed by 282
Abstract
Antibiotics are persistent organic pollutants that pose a serious problem for water resources, ultimately having a detrimental effect on human and animal health. The most important aspect of controlling and preventing the spread of antibiotics and their degradation products is continuous screening and [...] Read more.
Antibiotics are persistent organic pollutants that pose a serious problem for water resources, ultimately having a detrimental effect on human and animal health. The most important aspect of controlling and preventing the spread of antibiotics and their degradation products is continuous screening and monitoring of environmental samples. Optical sensing technologies represent a large group of sensors that allow short-term detection of antibiotics in non-laboratory settings. This article reviews the advances in optical sensing systems (colorimetric, fluorescent, surface-enhanced Raman spectra-based, surface plasmon resonance-based, localized surface plasmon resonance-based, photonic crystal-based, fiber optic, molecularly imprinted polymer-based and electro-optical platforms) for the detection of antibacterial drugs in water. Special attention is paid to the evaluation of the analytic characteristics of optical sensors for the analysis of antibiotics. Particular attention is paid to electro-optical sensing and to the unique possibility of its use in antibiotic determination. Potential strategies are considered for amplifying the recorded signals and improving the performance of sensor systems. The main trends in optical sensing for antibiotic analysis and the prospects for the commercial application of optical sensors are described. Full article
Show Figures

Figure 1

Back to TopTop