Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,068)

Search Parameters:
Keywords = fiber chemical structure

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3530 KB  
Review
Direct Analysis of Solid-Phase Carbohydrate Polymers by Infrared Multiphoton Dissociation Reaction Combined with Synchrotron Radiation Infrared Microscopy and Electrospray Ionization Mass Spectrometry
by Takayasu Kawasaki, Heishun Zen, Kyoko Nogami, Ken Hayakawa, Takeshi Sakai and Yasushi Hayakawa
Polymers 2025, 17(17), 2273; https://doi.org/10.3390/polym17172273 - 22 Aug 2025
Viewed by 217
Abstract
To determine the structure of carbohydrate polymers using conventional analytical technology, several complicated steps are required. We instead adopted a direct approach without the need for pretreatments, using an intense infrared (IR) laser for carbohydrate analysis. IR free-electron lasers (FELs) driven by a [...] Read more.
To determine the structure of carbohydrate polymers using conventional analytical technology, several complicated steps are required. We instead adopted a direct approach without the need for pretreatments, using an intense infrared (IR) laser for carbohydrate analysis. IR free-electron lasers (FELs) driven by a linear accelerator possess unique spectroscopic features, including extensive wavelength tunability and high laser energy in the IR region from 1000 cm−1 (10 μm) to 4000 cm−1 (2.5 μm). FELs can induce IR multiphoton dissociation reactions against various molecules by supplying vibrational excitation energy to the corresponding chemical bonds. Chitin from crayfish and cellulose fiber were irradiated by FELs tuned to νC–O (9.1–9.8 μm), νC–H (3.5 μm), and δH–C–O (7.2 μm) in glycosidic bonds, and their low-molecular-weight sugars were separated, which were revealed by combining synchrotron radiation IR spectroscopy and electrospray ionization mass spectrometry. An intense IR laser can be viewed as a “molecular scalpel” for dissecting and directly analyzing the internal components in rigid biopolymers. This method is simple and rapid compared with general analytical techniques. Full article
(This article belongs to the Special Issue Advanced Spectroscopy for Polymers: Design and Characterization)
Show Figures

Graphical abstract

23 pages, 11076 KB  
Article
Synergistic Effects of Lignin Fiber and Sodium Sulfate on Mechanical Properties and Micro-Structure of Cement-Stabilized Soil
by Liang Wang, Binbin Na and Wenhua Chen
Materials 2025, 18(17), 3929; https://doi.org/10.3390/ma18173929 - 22 Aug 2025
Viewed by 145
Abstract
This study aims to develop environmentally friendly soil-stabilization materials by investigating the synergistic enhancement mechanism of industrial by-product lignin fibers (LFs) and sodium sulfate (Na2SO4) on the mechanical and micro-structural properties of cement-stabilized soil. A systematic evaluation was conducted [...] Read more.
This study aims to develop environmentally friendly soil-stabilization materials by investigating the synergistic enhancement mechanism of industrial by-product lignin fibers (LFs) and sodium sulfate (Na2SO4) on the mechanical and micro-structural properties of cement-stabilized soil. A systematic evaluation was conducted through unconfined compressive strength (UCS), splitting tensile strength, and capillary water absorption tests, supplemented by microscopic analyses including XRD and SEM. The results indicate that the optimal synergistic effect occurs at 1.0% LF and 0.10% Na2SO4, which increases UCS and splitting tensile strength by 9.23% and 18.37%, respectively, compared to cement-stabilized soil. Meanwhile, early strength development is accelerated. Microscopically, LF physically bridges soil particles, forming aggregates, reducing porosity, and enhancing cohesion. Chemically, Na2SO4 acts as an activator, accelerating cement hydration and stimulating pozzolanic reactions to form calcium aluminosilicate hydrate and gypsum, which fill pores and densify the matrix. The synergistic mechanism lies in Na2SO4 enhancing the interaction between the LFs and clay minerals through ion exchange, facilitating the formation of a stable spatial network structure that inhibits particle sliding and crack propagation. This technology offers substantial sustainability benefits by utilizing paper-making waste LF and low-cost Na2SO4 to improve soil strength, toughness, and impermeability. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

14 pages, 17759 KB  
Article
Influence of Thermally Treated Asbestos-Containing Materials on Cement Mortars Properties
by Robert Kusiorowski, Anna Gerle, Magdalena Kujawa and Andrzej Śliwa
Appl. Sci. 2025, 15(16), 9225; https://doi.org/10.3390/app15169225 - 21 Aug 2025
Viewed by 130
Abstract
This paper presents the potential use of calcined cement–asbestos waste as an additive in cement mortars. Due to its harmful asbestos content, cement–asbestos waste poses a significant environmental challenge. One method of disposal is high-temperature calcination, which degrades the structure of asbestos fibers [...] Read more.
This paper presents the potential use of calcined cement–asbestos waste as an additive in cement mortars. Due to its harmful asbestos content, cement–asbestos waste poses a significant environmental challenge. One method of disposal is high-temperature calcination, which degrades the structure of asbestos fibers and removes their carcinogenic properties. After appropriate thermal treatment, this material can be used as a mineral additive in cement mixtures. This study analyzed the physical and chemical properties of the calcined waste and its impact on the basic strength parameters of cement mortars. The results indicate that, with appropriate dosing, calcined cement–asbestos waste can serve as a useful additive or filler without significantly impairing—and in some cases even improving—the mechanical properties of the mortars. The developed solution aligns with the principles of the circular economy, enabling the safe and effective management of hazardous waste. Full article
(This article belongs to the Topic Solid Waste Recycling in Civil Engineering Materials)
Show Figures

Figure 1

27 pages, 33038 KB  
Article
Assessment of Durability and Degradation Resistance of Geopolymer Composites in Water Environments
by Kacper Oliwa, Barbara Kozub, Katarzyna Łoś, Piotr Łoś and Kinga Korniejenko
Materials 2025, 18(16), 3892; https://doi.org/10.3390/ma18163892 - 20 Aug 2025
Viewed by 256
Abstract
This article presents experimental studies on the characterization of geopolymer composites intended for applications in aquatic environments, with particular emphasis on underwater infrastructure. The motivation for conducting the research was the growing need to develop durable and ecological building materials that will be [...] Read more.
This article presents experimental studies on the characterization of geopolymer composites intended for applications in aquatic environments, with particular emphasis on underwater infrastructure. The motivation for conducting the research was the growing need to develop durable and ecological building materials that will be resistant to long-term exposure to moisture and aggressive chemical agents, typical for the underwater environment, where traditional cement concretes undergo gradual degradation due to long-term water impact, including hydrotechnical and underwater infrastructure. Geopolymer binders were produced based on metakaolin activated by alkaline solutions containing sodium hydroxide. Several series of mixtures with additives such as blast furnace slag, amphibolite and carbon fibers were developed to evaluate the effect of these components on mechanical strength, water absorption and chemical durability. The conducted studies showed that slag additions improved mechanical properties, for the best composition it across 50 MPa. In contrast, the addition of amphibolite had an unfavorable effect, which probably results from introducing inhomogeneity into the material structure. The presence of carbon fibers promoted matrix cohesion, but their uneven distribution could lead to local strength differences. Water absorption tests have shown that geopolymers reach full water saturation within 24 to 48 h, which indicates rapid establishment of capillary equilibrium and limited further water penetration. The conclusions from the work indicate that geopolymer composites with a moderate amount of blast furnace slag and subjected to appropriate curing conditions. High strength, water and chemical resistance make them suitable for, among others, the construction of marine foundations, protection and structural shields of submerged applications. Full article
Show Figures

Figure 1

17 pages, 2406 KB  
Article
Microscopic and Crystallographic Analysis of Increased Acid Resistance of Melted Dental Enamel Using 445 nm Diode Laser: An Ex-Vivo Study
by Samir Nammour, Marwan El Mobadder, Aldo Brugnera, Praveen Arany, Mireille El Feghali, Paul Nahas and Alain Vanheusden
Dent. J. 2025, 13(8), 376; https://doi.org/10.3390/dj13080376 - 19 Aug 2025
Viewed by 172
Abstract
Background/Objectives: This study aimed to evaluate the efficacy of a 445 nm diode laser in enhancing enamel resistance to acid-induced demineralization and to investigate the associated compositional and structural modifications using scanning electron microscopy (SEM), electron spectroscopy for chemical analysis (ESCA), and [...] Read more.
Background/Objectives: This study aimed to evaluate the efficacy of a 445 nm diode laser in enhancing enamel resistance to acid-induced demineralization and to investigate the associated compositional and structural modifications using scanning electron microscopy (SEM), electron spectroscopy for chemical analysis (ESCA), and X-ray diffraction (XRD) crystallographic analysis. Methods: A total of 126 extracted human teeth were used. A total of 135 (n = 135) enamel discs (4 × 4 mm) from 90 teeth were assigned to either a laser-irradiated group or an untreated control group for SEM, ESCA, and XRD analyses. Additionally, 24 mono-rooted teeth were used to measure pulp temperature changes during laser application. Laser irradiation was performed using a 445 nm diode laser with a pulse width of 200 ms, a repetition rate of 1 Hz, power of 1.25 W, an energy density of 800 J/cm2, a power density of 3980 W/cm2, and a 200 µm activated fiber. Following acid etching, SEM was conducted to assess microstructural and ionic alterations. The ESCA was used to evaluate the Ca/P ratio, and XRD analyses were performed on enamel powders to determine changes in phase composition and crystal lattice parameters. Results: The laser protocol demonstrated thermal safety, with minimal pulp chamber temperature elevation (0.05667 ± 0.04131 °C). SEM showed that laser-treated enamel had a smoother surface morphology and reduced acid-induced erosion compared with controls. Results of the ESCA revealed no significant difference in the Ca/P ratio between groups. XRD confirmed the presence of hydroxyapatite structure in laser-treated enamel and detected an additional diffraction peak corresponding to a pyrophosphate phase, potentially enhancing acid resistance. Results of the spectral analysis showed the absence of α-TCP and β-TCP phases and a reduction in the carbonate content in the laser group. Furthermore, a significant decrease in the a-axis lattice parameter suggested lattice compaction in laser-treated enamel. Conclusions: Irradiation with a 445 nm diode laser effectively enhances enamel resistance to acid demineralization. This improvement may be attributed to chemical modifications, particularly pyrophosphate phase formation, and structural changes including prism-less enamel formation, surface fusion, and decreased permeability. These findings provide novel insights into the mechanisms of laser-induced enhancement of acid resistance in enamel. Full article
(This article belongs to the Special Issue Laser Dentistry: The Current Status and Developments)
Show Figures

Figure 1

22 pages, 1474 KB  
Review
A Review Focused on 3D Hybrid Composites from Glass and Natural Fibers Used for Acoustic and Thermal Insulation
by Shabnam Nazari, Tatiana Alexiou Ivanova, Rajesh Kumar Mishra and Miroslav Muller
J. Compos. Sci. 2025, 9(8), 448; https://doi.org/10.3390/jcs9080448 - 19 Aug 2025
Viewed by 269
Abstract
This review is focused on glass fibers and natural fibers, exploring their applications in vehicles and buildings and emphasizing their significance in promoting sustainability and enhancing performance across various industries. Glass fibers, or fiberglass, are lightweight, have high-strength (3000–4500 MPa) and a Young’s [...] Read more.
This review is focused on glass fibers and natural fibers, exploring their applications in vehicles and buildings and emphasizing their significance in promoting sustainability and enhancing performance across various industries. Glass fibers, or fiberglass, are lightweight, have high-strength (3000–4500 MPa) and a Young’s modulus range of 70–85 GPa, and are widely used in automotive, aerospace, construction, and marine applications due to their excellent mechanical properties, thermal conductivity of ~0.045 W/m·K, and resistance to fire and corrosion. On the other hand, natural fibers, derived from plants and animals, are increasingly recognized for their environmental benefits and potential in sustainable construction, offering advantages such as biodegradability, lower carbon footprints, and reduced energy consumption, with a sound absorption coefficient (SAC) range of 0.7–0.8 at frequencies above 2000 Hz and thermal conductivity range of 0.07–0.09 W/m·K. Notably, the integration of these materials in construction and automotive sectors reflects a growing trend towards sustainable practices, driven by the need to mitigate carbon emissions associated with traditional building materials and enhance fuel efficiency, as seen in hybrid composites achieving 44.9 dB acoustic insulation at 10,000 Hz and a thermal conductivity range of 0.05–0.06 W/m·K in applications such as the BMW i3 door panels. Natural fibers contribute to reducing reliance on fossil fuels, supporting a circular economy through the recycling of agricultural waste, while glass fibers are instrumental in creating lightweight composites for improved vehicle performance and structural integrity. However, both materials face distinct challenges. Glass fibers, while offering superior strength, are vulnerable to chemical degradation and can pose recycling difficulties due to the complex processes involved. On the other hand, natural fibers may experience moisture absorption, affecting their durability and mechanical properties, necessitating innovations to enhance their application in demanding environments. The ongoing research into optimizing the performance of both materials highlights their relevance in future sustainable engineering practices. In summary, this review underscores the growing importance of glass and natural fibers in addressing modern environmental challenges while also improving product performance. As industries increasingly prioritize sustainability, these materials are poised to play crucial roles in shaping the future of construction and transportation, driving innovations that align with ecological goals and consumer expectations. Full article
(This article belongs to the Special Issue Recent Progress in Hybrid Composites)
Show Figures

Figure 1

20 pages, 2443 KB  
Article
Electrospun PEDOT-Based Meshes for Skin Regeneration
by Alexandra I. F. Alves, Nuno M. Alves and Juliana R. Dias
Polymers 2025, 17(16), 2227; https://doi.org/10.3390/polym17162227 - 15 Aug 2025
Viewed by 289
Abstract
The application of conductive polymers in wound dressings presents great potential for accelerated wound healing since their high electrical conductivity and biocompatibility facilitate the delivery of external electrical stimuli to cells and tissues, promoting cell differentiation and proliferation. Electrospinning is a very straightforward [...] Read more.
The application of conductive polymers in wound dressings presents great potential for accelerated wound healing since their high electrical conductivity and biocompatibility facilitate the delivery of external electrical stimuli to cells and tissues, promoting cell differentiation and proliferation. Electrospinning is a very straightforward method for the preparation of polymeric wound dressings capable of mimicking the extracellular matrix of skin, promoting hemostasis, absorbing wound exudate, allowing atmospheric oxygen permeation and maintaining an appropriately moist environment. In this work, in situ chemically polymerized poly(3,4-ethylenedioxythiophene) (PEDOT) was achieved through hyaluronic acid-doping. The synthesized PEDOT was used for the production of conductive and biodegradable chitosan (CS)/gelatin (GEL)/PEDOT electrospun meshes. Additionally, the randomly aligned meshes were crosslinked with a 1,4-butanediol diglycidyl ether and their physicochemical and mechanical properties were investigated. The results show that the incorporation of a conductive polymer led to an increase in conductivity of the solution, density and fiber diameter that influenced porosity, water uptake, and dissolvability and biodegradability of the meshes, while maintaining appropriate water vapor permeation values. Due to their intrinsic similarity to the extracellular matrix and cell-binding sequences, CS/GEL/PEDOT electrospun nanofibrous meshes show potential as conductive nanofibrous structures for electrostimulated wound dressings in skin tissue engineering applications. Full article
(This article belongs to the Special Issue Advances in Electrospun Nanofibers for Skin Regeneration)
Show Figures

Graphical abstract

13 pages, 2940 KB  
Article
Extraction and Characterization of the Functional Properties of Starch from Miso (Mirabilis expansa [Ruíz & Pav.] Standl.): A Non-Conventional Source
by Santiago Cadena-Carrera, Vanessa Peñafiel, Esteban Fuentes, Lorena Núñez, Gabriela Vaca and Deise Tramontin
Processes 2025, 13(8), 2552; https://doi.org/10.3390/pr13082552 - 13 Aug 2025
Viewed by 292
Abstract
Mirabilis expansa root (MER) is an Andean source of starch that could be considered a “lost crop” by the scarcity of its cultivation. Consequently, few studies have reported on its functional properties. To address this gap, we herein analyze and characterize the main [...] Read more.
Mirabilis expansa root (MER) is an Andean source of starch that could be considered a “lost crop” by the scarcity of its cultivation. Consequently, few studies have reported on its functional properties. To address this gap, we herein analyze and characterize the main components of MER and Mirabilis expansa starch (MES), measuring the water-absorption index (WAI), swelling power (SP), and water solubility index (WSI). We characterized the MES morphological and structural properties by using scanning electron microscopy (SEM). We also examined the starch pasting properties using a Rapid Visco Analyzer (RVA) to determine the peak viscosity (PV), final viscosity (FV), pasting temperature (PT), breakdown (BD), and setback (SB). The thermal properties were determined by differential scanning calorimetry (DSC), the crystallinity by X-ray diffraction, and the molecular structure by Fourier transform infrared spectrometry (FTIR). The main components in the MER and MES were carbohydrates and crude fiber. The MES appeared rich in amylopectin. The functional properties, the WAI, SP, and WSI, were dependent on temperature. The MES showed no morphological changes, a moderate gelatinization temperature, and C-type crystallinity. Finally, the FTIR spectrum presented the typical form for an unmodified starch. Based on these results, Mirabilis expansa may be considered a natural, non-conventional source of starch with potential applications in the food, chemical, and pharmaceutical industries. Full article
(This article belongs to the Special Issue Pharmaceutical Potential and Application Research of Natural Products)
Show Figures

Figure 1

21 pages, 2217 KB  
Article
Recyclable Wind Turbine Blades: A Life Cycle Analysis
by Navid Farazmandnia and Adrian Ilinca
Materials 2025, 18(16), 3762; https://doi.org/10.3390/ma18163762 - 11 Aug 2025
Viewed by 492
Abstract
The shift towards renewable energy has highlighted the importance of sustainable practices in wind power development, particularly concerning the end-of-life (EoL) management of wind turbine blades. Conventional blades made from thermoset resins present significant recycling challenges due to their cross-linked structure, which often [...] Read more.
The shift towards renewable energy has highlighted the importance of sustainable practices in wind power development, particularly concerning the end-of-life (EoL) management of wind turbine blades. Conventional blades made from thermoset resins present significant recycling challenges due to their cross-linked structure, which often leads to landfill disposal or energy-intensive recycling processes. This study evaluates the environmental impacts of 45 m wind turbine blades using the Eco Audit approach across four primary life cycle stages: material production, manufacturing, transportation, and operation and maintenance. Six blade models with different fiber and resin configurations are assessed, focusing on a comparison between conventional thermoset resins and Elium, a newly developed liquid thermoplastic resin by Arkema. Elium offers promising recyclability options, including mechanical and chemical processes, which could substantially lower the environmental burden. Compared to composites made with thermoset resins, Elium-based blades demonstrate up to a 22.5% reduction in embodied energy and a 16% decrease in carbon footprint. Additionally, Elium’s compatibility with existing manufacturing processes, room-temperature curing capability, and lower processing energy contribute to its industrial feasibility. Notably, the analysis reveals that the material production phase significantly contributes to the total environmental impact, accounting for up to 98% of the embodied energy and carbon footprint in certain blade models, underscoring the importance of selecting a more sustainable resin, such as Elium, from the outset to reduce the overall environmental load. Full article
Show Figures

Figure 1

16 pages, 2443 KB  
Article
Durability of Concrete Reinforced with GFRP Bars Under Varying Alkalinity and Temperature Conditions
by Ruan Carlos de Araújo Moura, Daniel Véras Ribeiro and Paulo Roberto Lopes Lima
Buildings 2025, 15(16), 2832; https://doi.org/10.3390/buildings15162832 - 9 Aug 2025
Viewed by 407
Abstract
The application of glass fiber reinforced polymer (GFRP) bars offers a promising solution for enhancing the durability of reinforced concrete structures, potentially reducing maintenance costs and associated socioeconomic impacts. However, concerns persist regarding the durability of GFRP bars in the highly alkaline environment [...] Read more.
The application of glass fiber reinforced polymer (GFRP) bars offers a promising solution for enhancing the durability of reinforced concrete structures, potentially reducing maintenance costs and associated socioeconomic impacts. However, concerns persist regarding the durability of GFRP bars in the highly alkaline environment of concrete, which can lead to physical, chemical, and mechanical degradation. This study evaluates the durability of GFRP bars composed of isophthalic polyester, vinyl ester, and epoxy matrices (6.0 mm diameter) under accelerated aging conditions. The bars were exposed to non-carbonated concrete (with and without silica fume) and carbonated concrete at temperatures of 23 °C, 40 °C, and 60 °C for durations of 500, 1000, and 3000 h. Interlaminar shear strength (ISS) was measured before and after aging. SEM and FTIR analyses confirmed degradation in the polymer matrix and fiber–matrix interface. Results indicated that silica fume significantly mitigated alkalinity effects, limiting ISS loss to 11.3%. Similarly, carbonation reduced the concrete’s pH, thereby decreasing ISS degradation to 10.7% after 3000 h. Among the tested materials, GFRP bars with vinyl ester matrix exhibited superior durability, followed by those with epoxy and polyester matrices. These findings emphasize the critical role of matrix selection and concrete mix design in improving GFRP durability. Full article
(This article belongs to the Special Issue Research on the Durability of Reinforced Concrete Structures)
Show Figures

Figure 1

15 pages, 4099 KB  
Article
Pulsed Laser Annealing of Deposited Amorphous Carbon Films
by Arianna D. Rivera, Eitan Hershkovitz, Panagiotis Panoutsopoulos, Manny X. de Jesus Lopez, Bradley Simpson, Honggyu Kim, Rajaram Narayanan, Jesse Johnson and Kevin S. Jones
C 2025, 11(3), 60; https://doi.org/10.3390/c11030060 - 8 Aug 2025
Viewed by 398
Abstract
Pulsed laser annealing (PLA) was performed on a 0.3 μm thick hydrogenated amorphous carbon (a-C:H) film deposited on silicon substrate by plasma-enhanced chemical vapor deposition (PECVD). The 532 nm, 32 ns PLA ranged in fluence from 0.2 to 0.94 J cm−2. [...] Read more.
Pulsed laser annealing (PLA) was performed on a 0.3 μm thick hydrogenated amorphous carbon (a-C:H) film deposited on silicon substrate by plasma-enhanced chemical vapor deposition (PECVD). The 532 nm, 32 ns PLA ranged in fluence from 0.2 to 0.94 J cm−2. There were no visible signs of film delamination over the entire fluence range for a single pulse. As the fluence increased, graphitization of the amorphous film bulk was observed. However, at the near surface of the film, there was a concomitant increase in sp3 content. The sp3 bonding observed is the result of the formation of a thin diamond-like layer on the surface of the carbon film. Along with increasing laser fluence, the film swelled by 75% up to 0.6 J cm−2. In addition, carbon fiber formation was observed at 0.6 J cm−2, increasing in size and depth up through 0.94 J cm−2. The origin of this transformation may be associated with a rapid outgassing of hydrogen from the amorphous carbon during the PLA step. Additionally, there was a dramatic increase in the visible light absorption of these thin films with increasing laser fluence, despite the films being less than a micron thick. These results suggest that PLA of a-C:H film is a useful method for modifying the surface structure for optical or electrochemical applications without film ablation. Full article
(This article belongs to the Special Issue Carbon Functionalization: From Synthesis to Applications)
Show Figures

Figure 1

12 pages, 582 KB  
Article
Changes in Retinal Nerve Fiber and Ganglion Cell Layers After Chemical Injury: A Prospective Study
by Justina Skruodyte, Justina Olechnovic and Pranas Serpytis
J. Clin. Med. 2025, 14(15), 5601; https://doi.org/10.3390/jcm14155601 - 7 Aug 2025
Viewed by 333
Abstract
Background: Chemical eye burns are a serious ophthalmic emergency that can lead to permanent vision loss in severe cases. This study aims to evaluate structural changes in the posterior segment of the eye in individuals who have experienced chemical burns. Methods: The study [...] Read more.
Background: Chemical eye burns are a serious ophthalmic emergency that can lead to permanent vision loss in severe cases. This study aims to evaluate structural changes in the posterior segment of the eye in individuals who have experienced chemical burns. Methods: The study included 64 eyes from 54 patients with chemical burns (chemical burn group) and 87 healthy eyes from 87 subjects (control group), matched by age and sex. Patients had confirmed burns with limbal ischemia, no glaucoma, normal intraocular pressure, and no major ocular or systemic diseases. Burned eyes were examined during the acute phase and again at 3 months, with some followed up at 6 months if significant retinal asymmetry was detected. Retinal nerve fiber layer (RNFL) thickness was assessed in four quadrants, and ganglion cell complex (GCL++) thickness was analyzed using automated segmentation of optical coherence tomography (OCT) maps. Results: This study compared measurements between the burn group, the control group, and timepoints. OCT analysis revealed no significant difference in total RNFL thickness between burn patients and controls (mean difference: −1.14 µm, 95% CI: −3.92 to 1.64). Similarly, GCL++ thickness did not differ significantly between groups (mean difference: −0.97 µm, 95% CI: −3.31 to 1.37). At 6-month follow-up, a non-significant decline in both RNFL and GCL++ thicknesses was observed. Logistic regression identified higher Dua grade as an independent predictor of RNFL thinning (OR: 4.816, 95% CI: 1.103–21.030; p = 0.037). Patients with severe ocular chemical burns (Dua grade ≥ 3) demonstrated reduced RNFL thickness in all quadrants compared to healthy controls. The most pronounced reductions were observed in the nasal and superior quadrants (p = 0.007 and p = 0.069, respectively); however, after applying Bonferroni correction for multiple comparisons, only the difference in the nasal quadrant remained statistically significant (adjusted p = 0.035). Conclusions: Although overall RNFL and GCL++ thicknesses did not differ significantly between burn patients and healthy controls, patients with severe ocular chemical burns (Dua grade ≥ 3) showed a significant reduction in RNFL thickness, in the nasal quadrant. Higher Dua grade was identified as an independent predictor of RNFL thinning. These findings suggest a potential association between burn severity and posterior segment changes, highlighting the need for further longitudinal studies with larger cohorts. Full article
(This article belongs to the Section Ophthalmology)
Show Figures

Figure 1

33 pages, 10775 KB  
Article
Electrospun Nanofibrous Membranes for Guided Bone Regeneration: Fabrication, Characterization, and Biocompatibility Evaluation—Toward Smart 2D Biomaterials
by Julia Radwan-Pragłowska, Aleksandra Kopacz, Aleksandra Sierakowska-Byczek, Łukasz Janus, Piotr Radomski and Aleksander Radwan-Pragłowski
Appl. Sci. 2025, 15(15), 8713; https://doi.org/10.3390/app15158713 - 6 Aug 2025
Viewed by 283
Abstract
Electrospun nanofibrous membranes have gained considerable attention in bone tissue engineering due to their ability to mimic the extracellular matrix and provide a suitable environment for cell attachment and proliferation. This study investigates the fabrication, characterization, and biocompatibility of poly(L-lactic acid) (PLA)-based membranes [...] Read more.
Electrospun nanofibrous membranes have gained considerable attention in bone tissue engineering due to their ability to mimic the extracellular matrix and provide a suitable environment for cell attachment and proliferation. This study investigates the fabrication, characterization, and biocompatibility of poly(L-lactic acid) (PLA)-based membranes enhanced with periclase (MgO) and gold nanoparticles (AuNPs). The membranes were fabricated using an optimized electrospinning process and subsequently characterized using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), Fourier-transform infrared spectroscopy (FT-IR), and contact angle measurements. Additionally, in vitro biodegradation studies in simulated body fluid (SBF) and cytocompatibility tests with osteoblast-like cells were conducted. The results demonstrated that the incorporation of MgO and AuNPs significantly influenced the structural and chemical properties of the membranes, improving their wettability and bioactivity. SEM imaging confirmed uniform fiber morphology with well-distributed nanoparticles. FT-IR spectroscopy indicated successful integration of bioactive components into the PLA matrix. Cytocompatibility assays showed that modified membranes promoted higher osteoblast adhesion and proliferation compared to pristine PLA membranes. Furthermore, biodegradation studies revealed a controlled degradation rate suitable for guided bone regeneration applications. These findings suggest that electrospun PLA membranes enriched with MgO and AuNPs present a promising biomaterial for GBR applications, offering improved bioactivity, mechanical stability, and biocompatibility. Full article
(This article belongs to the Special Issue Bioactive Composite Materials: From Preparation to Application)
Show Figures

Figure 1

32 pages, 1045 KB  
Review
Nanoparticle Uptake and Crossing by Human In Vitro Models of Intestinal Barriers: A Scoping Review
by Chiara Ritarossi, Valentina Prota, Francesca De Battistis, Chiara Laura Battistelli, Isabella De Angelis, Cristina Andreoli and Olimpia Vincentini
Nanomaterials 2025, 15(15), 1195; https://doi.org/10.3390/nano15151195 - 5 Aug 2025
Viewed by 591
Abstract
The Caco-2 in vitro model of the intestinal barrier is a well-established system for the investigation of the intestinal fate of orally ingested chemicals and drugs, and it has been used for over ten years by pharmaceutical industries as a model for absorption [...] Read more.
The Caco-2 in vitro model of the intestinal barrier is a well-established system for the investigation of the intestinal fate of orally ingested chemicals and drugs, and it has been used for over ten years by pharmaceutical industries as a model for absorption in preclinical studies. The Caco-2 model shows a fair correlation with in vivo drug absorption, though some inherent biases remain unresolved. Its main limitation lies in the lack of structural complexity, as it does not replicate the diverse cell types and mucus layer present in the human intestinal epithelium. Consequently, the development of advanced in vitro models of the intestinal barrier, that more structurally resemble the human intestinal epithelium physiology, has increased the potential applications of these models. Recently, Caco-2-based advanced intestinal models have proven effective in predicting nanomaterial uptake and transport across the intestinal barrier. The aim of this review is to provide a state-of-the-art of human in vitro intestinal barrier models for the study of translocation/uptake of nanoparticles relevant for oral exposure, including inorganic nanomaterials, micro/nano plastic, and fiber nanomaterials. The main effects of the above-mentioned nanomaterials on the intestinal barrier are also reported. Full article
(This article belongs to the Special Issue Nanosafety and Nanotoxicology: Current Opportunities and Challenges)
Show Figures

Graphical abstract

23 pages, 1746 KB  
Review
Advanced Modification Strategies of Plant-Sourced Dietary Fibers and Their Applications in Functional Foods
by Yansheng Zhao, Ying Shao, Songtao Fan, Juan Bai, Lin Zhu, Ying Zhu and Xiang Xiao
Foods 2025, 14(15), 2710; https://doi.org/10.3390/foods14152710 - 1 Aug 2025
Viewed by 660
Abstract
Plant-sourced Dietary Fibers (PDFs) have garnered significant attention due to their multifaceted health benefits, particularly in glycemic control, lipid metabolism regulation, and gut microbiota modulation. This review systematically investigates advanced modification strategies, including physical, chemical, bioengineering, and hybrid approaches, to improve the physicochemical [...] Read more.
Plant-sourced Dietary Fibers (PDFs) have garnered significant attention due to their multifaceted health benefits, particularly in glycemic control, lipid metabolism regulation, and gut microbiota modulation. This review systematically investigates advanced modification strategies, including physical, chemical, bioengineering, and hybrid approaches, to improve the physicochemical properties and bioactivity of PDFs from legumes, cereals, and other sources. Key modifications such as steam explosion, enzymatic hydrolysis, and carboxymethylation significantly improve solubility, porosity, and functional group exposure, thereby optimizing the health-promoting effects of legume-sourced dietary fiber. The review further elucidates critical structure–function relationships, highlighting PDF’s prebiotic potential, synergistic interactions with polyphenols and proteins, and responsive designs for targeted nutrient delivery. In functional food applications, cereal-sourced dietary fibers serve as a versatile functional ingredient in engineered foods including 3D-printed gels and low-glycemic energy bars, addressing specific metabolic disorders and personalized dietary requirements. By integrating state-of-the-art modification techniques with innovative applications, this review provides comprehensive insights into PDF’s transformative role in advancing functional foods and personalized nutrition solutions. Full article
Show Figures

Figure 1

Back to TopTop