Assessment of Durability and Degradation Resistance of Geopolymer Composites in Water Environments
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Preparation
- Firstly, the metakaolin was mixed with the activator (sodium water glass) and mixed for 5 min.
- In the next step, the short carbon fibers were added to the mixture. The process was continued for 3 min.
- After that time, the proper amount of silicon dioxide was included in the paste. The mixing process was continued for 3 min (for the composition without silica, this step was omitted).
- Then, the mixture was continued for 2 min with the addition of cellulose (for the composition without cellulose, this step was omitted).
- In the last step, the amphibolite and slag were added to the paste. The mixing process was continued next 3 min. After that time, the process was ended.
2.2. Methods
- Distilled water;
- Sodium chloride solution (992 g H2O + 8 g NaCl);
- Hydrochloric acid solution (997.26 g H2O + 2.74 g HCl 38%);
- Acid mixture (994.47 g H2O + 1.54 g HNO 36.5% + 1.25 g CH3COOH 80% + 2.74 g HCl 38%);
- Sodium hydroxide solution (990 g H2O) + 10 g NaOH).
3. Results
3.1. Density
3.2. Chemical Composition
3.3. Absorption Tests
3.4. Compressive Strength
3.5. FTIR Analysis
3.6. Microstructural Analysis
4. Discussion
- The consistent and sustainable sourcing of raw materials, particularly the aluminosilicate precursors, on an industrial scale.
- Geopolymer formulations can be sensitive to mixing procedures, particularly due to their high alkalinity and relatively low water content. It could be hard to control in industrial conditions.
- Effective curing of geopolymers often requires controlled temperature and humidity conditions that are difficult to maintain on-site, especially in marine environments with fluctuating moisture, salinity, and wind exposure.
- Quality control processes that ensure consistent quality and performance across large volumes of material.
- Standardized procedures for testing geopolymers are still evolving, which can pose regulatory and certification challenges.
5. Conclusions
- Increasing the content of ground granulated blast furnace slag (GGBFS) in geopolymers enhances their compressive strength;
- The highest strength parameters were achieved with a slag content of 50%;
- The addition of amphibolite has a negative impact on compressive strength;
- The presence of slag and amphibolite additives leads to a slight increase in water absorption;
- FTIR analysis revealed characteristic spectra typical of geopolymer materials.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix A.1. Additional Test Results
Element | GST 1 | GST 3 | GST 5 | GST 7 | GEO V5 | GEO V6 | GEO V7 |
---|---|---|---|---|---|---|---|
Mg | 3.96% | 6.34% | 6.09% | 7.05% | 4.47% | 7.03% | 3.18% |
Al | 13.28% | 14.97% | 15.21% | 15.66% | 18.72% | 16.04% | 13.39% |
Si | 41.83% | 34.72% | 33.27% | 32.60% | 37.45% | 28.74% | 42.59% |
P | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% | 0.01% | 0.00% |
S | 0.14% | 0.25% | 0.18% | 0.25% | 0.29% | 0.20% | 0.19% |
Cl | 0.08% | 0.06% | 0.07% | 0.06% | 0.02% | 0.03% | 0.03% |
K | 7.70% | 11.20% | 10.46% | 9.18% | 11.97% | 8.52% | 10.73% |
Ca | 19.65% | 23.74% | 23.41% | 22.56% | 20.41% | 23.17% | 22.52% |
Sc | 0.06% | 0.08% | 0.08% | 0.07% | 0.05% | 0.07% | 0.05% |
Ti | 1.23% | 1.42% | 1.46% | 1.40% | 2.34% | 1.52% | 1.26% |
V | 0.15% | 0.10% | 0.13% | 0.15% | 0.08% | 0.19% | 0.04% |
Cr | 0.36% | 0.12% | 0.14% | 0.16% | 0.23% | 0.22% | 0.10% |
Mn | 0.41% | 0.50% | 0.49% | 0.47% | 0.41% | 0.49% | 0.48% |
Fe | 8.10% | 4.74% | 6.45% | 7.40% | 3.00% | 9.78% | 5.09% |
Ni | 0.07% | 0.02% | 0.02% | 0.02% | 0.07% | 0.03% | 0.03% |
Cu | 0.07% | 0.05% | 0.06% | 0.07% | 0.00% | 0.09% | 0.00% |
Zn | 0.02% | 0.01% | 0.02% | 0.02% | 0.03% | 0.02% | 0.02% |
Sr | 0.10% | 0.10% | 0.11% | 0.12% | 0.08% | 0.14% | 0.08% |
Y | 0.01% | 0.01% | 0.02% | 0.02% | 0.01% | 0.02% | 0.02% |
Zr | 2.54% | 1.40% | 2.10% | 2.48% | 0.13% | 3.38% | 0.09% |
Mo | 0.03% | 0.01% | 0.00% | 0.01% | 0.02% | 0.02% | 0.01% |
References
- Holechek, J.L.; Geli, H.M.E.; Sawalhah, M.N.; Valdez, R. A Global Assessment: Can Renewable Energy Replace Fossil Fuels by 2050? Sustainability 2022, 14, 4792. [Google Scholar] [CrossRef]
- Albayrak, E.; Özen, S. Enhancing Geopolymer Synthesis through Calcination: Increasing the Potential of Natural Material Utilization. Open Ceram. 2025, 22, 100796. [Google Scholar] [CrossRef]
- Peng, J.; Chen, W.; Dong, B.; Wang, Y. Alkali-Activated Sand Washing Slurry-Based Geopolymers: Mechanical Strength, Microstructure and Environmental Impact. Constr. Build. Mater. 2025, 483, 141779. [Google Scholar] [CrossRef]
- Shehata, N.; Mohamed, O.A.; Sayed, E.T.; Abdelkareem, M.A.; Olabi, A.G. Geopolymer Concrete as Green Building Materials: Recent Applications, Sustainable Development and Circular Economy Potentials. Sci. Total Environ. 2022, 836, 155577. [Google Scholar] [CrossRef]
- Philip, S.; Nidhi, M. A Review on the Material Performance of Geopolymer Concrete as Green Building Materials. Mater. Today Proc. 2023; in press. [Google Scholar] [CrossRef]
- Criado, M.; Provis, J.L. Alkali Activated Slag Mortars Provide High Resistance to Chloride-Induced Corrosion of Steel. Front. Mater. 2018, 5, 34. [Google Scholar] [CrossRef]
- Elfadaly, E.; Othman, A.M.; Aly, M.H.; Elgarhy, W.A.; Abdellatief, M. Assessing Performance and Environmental Benefits of High-Performance Geopolymer Mortar Incorporating Pumice and Rice Straw Ash. Sustain. Chem. Pharm. 2025, 44, 101918. [Google Scholar] [CrossRef]
- Fan, X.; Zhu, J.; Gao, X. Sea/Coral Sand in Marine Engineered Geopolymer Composites: Engineering, Mechanical, and Microstructure Properties. Int. J. Appl. Ceram. Tech. 2024, 22, e14874. [Google Scholar] [CrossRef]
- Liu, C.; Huang, X.; Wu, Y.-Y.; Deng, X.; Zheng, Z. The Effect of Graphene Oxide on the Mechanical Properties, Impermeability and Corrosion Resistance of Cement Mortar Containing Mineral Admixtures. Constr. Build. Mater. 2021, 288, 123059. [Google Scholar] [CrossRef]
- Huang, T.; Sun, Z. Advances in Multifunctional Graphene-Geopolymer Composites. Constr. Build. Mater. 2021, 272, 121619. [Google Scholar] [CrossRef]
- Arbi, K.; Nedeljković, M.; Zuo, Y.; Ye, G. A Review on the Durability of Alkali-Activated Fly Ash/Slag Systems: Advances, Issues, and Perspectives. Ind. Eng. Chem. Res. 2016, 55, 5439–5453. [Google Scholar] [CrossRef]
- Gevaudan, J.P.; Craun, Z.; Srubar, W.V. Sulfuric Acid Degradation of Alkali-Activated Metakaolin Cements Supplemented with Brucite. Cem. Concr. Compos. 2021, 121, 104063. [Google Scholar] [CrossRef]
- Bakharev, T. Durability of Geopolymer Materials in Sodium and Magnesium Sulfate Solutions. Cem. Concr. Res. 2005, 35, 1233–1246. [Google Scholar] [CrossRef]
- Shamsah, M.; Kalfat, R.; Subramaniam, K.V.L. Impact of Low NaOH Molarities on Mechanical and Durability Properties of Ambient and Oven-Cured Fly Ash Geopolymer Concrete. J. Build. Eng. 2025, 105, 112491. [Google Scholar] [CrossRef]
- Frieda, F.S.; Greeshma, S. Effects on the Strength and Durability of Graphene Oxide Modified Geopolymer Concrete Using Industrial Waste Bauxite Tailings. Case Stud. Constr. Mater. 2025, 22, e04726. [Google Scholar] [CrossRef]
- Tay, C.H.; Mazlan, N.; Wayayok, A.; Basri, M.S.; Albakri Abdullah, M.M. Zeolite Based Foamed Geopolymer Concrete Reinforced with Cellulose Nanofibril Prepared in Low Concentration Alkaline Solution: Porosity, Compressive Strength, and Water Permeability. J. Clean. Prod. 2025, 489, 144609. [Google Scholar] [CrossRef]
- Ismail, I.; Bernal, S.A.; Provis, J.L.; San Nicolas, R.; Brice, D.G.; Kilcullen, A.R.; Hamdan, S.; Van Deventer, J.S.J. Influence of Fly Ash on the Water and Chloride Permeability of Alkali-Activated Slag Mortars and Concretes. Constr. Build. Mater. 2013, 48, 1187–1201. [Google Scholar] [CrossRef]
- Bernal, S.A. The Resistance of Alkali-Activated Cement-Based Binders to Carbonation. In Handbook of Alkali-Activated Cements, Mortars and Concretes; Elsevier: Amsterdam, The Netherlands, 2015; pp. 319–332. ISBN 978-1-78242-276-1. [Google Scholar]
- Lamaa, G.; Duarte, A.P.C.; Silva, R.V.; De Brito, J. Carbonation of Alkali-Activated Materials: A Review. Materials 2023, 16, 3086. [Google Scholar] [CrossRef]
- Morandeau, A.; Thiéry, M.; Dangla, P. Investigation of the Carbonation Mechanism of CH and C-S-H in Terms of Kinetics, Microstructure Changes and Moisture Properties. Cem. Concr. Res. 2014, 56, 153–170. [Google Scholar] [CrossRef]
- Bernal, S.A.; Provis, J.L.; Mejía De Gutiérrez, R.; Van Deventer, J.S.J. Accelerated Carbonation Testing of Alkali-Activated Slag/Metakaolin Blended Concretes: Effect of Exposure Conditions. Mater. Struct. 2015, 48, 653–669. [Google Scholar] [CrossRef]
- Albitar, M.; Mohamed Ali, M.S.; Visintin, P.; Drechsler, M. Durability Evaluation of Geopolymer and Conventional Concretes. Constr. Build. Mater. 2017, 136, 374–385. [Google Scholar] [CrossRef]
- Luga, E.; Mustafaraj, E.; Corradi, M.; Atiș, C.D. Alkali-Activated Binders as Sustainable Alternatives to Portland Cement and Their Resistance to Saline Water. Materials 2024, 17, 4408. [Google Scholar] [CrossRef] [PubMed]
- Amran, M.; Al-Fakih, A.; Chu, S.H.; Fediuk, R.; Haruna, S.; Azevedo, A.; Vatin, N. Long-Term Durability Properties of Geopolymer Concrete: An in-Depth Review. Case Stud. Constr. Mater. 2021, 15, e00661. [Google Scholar] [CrossRef]
- Zhang, Y.H.; Zhong, W.L.; Fan, L.F. Long-Term Durability Investigation of Basalt Fiber-Reinforced Geopolymer Concrete in Marine Environment. J. Mater. Res. Technol. 2024, 31, 593–605. [Google Scholar] [CrossRef]
- Korniejenko, K.; Halyag, N.; Mucsi, G. Fly Ash as a Raw Material for Geopolymerisation-Chemical Composition and Physical Properties. IOP Conf. Ser. Mater. Sci. Eng. 2019, 706, 012002. [Google Scholar] [CrossRef]
- Burduhos Nergis, D.D.; Abdullah, M.M.A.B.; Vizureanu, P.; Tahir, M.F.M. Geopolymers and Their Uses: Review. IOP Conf. Ser. Mater. Sci. Eng. 2018, 374, 012019. [Google Scholar] [CrossRef]
- Fang, G.; Ho, W.K.; Tu, W.; Zhang, M. Workability and Mechanical Properties of Alkali-Activated Fly Ash-Slag Concrete Cured at Ambient Temperature. Constr. Build. Mater. 2018, 172, 476–487. [Google Scholar] [CrossRef]
- Indhumathi Anbarasan, M.; Leema Margret, A.; Ragavan, V.; Ramprashath, J. Investigation on Corrosion Behaviour of Geopolymer Concrete Using DMS and M−Sand as a Fine Aggregate under Ambient Curing Conditions. Mater. Today Proc. 2023; in press. [Google Scholar] [CrossRef]
- Zhang, B.; Yu, T.; Guo, H.; Chen, J.; Liu, Y.; Yuan, P. Effect of the SiO2/Al2O3 Molar Ratio on the Microstructure and Properties of Clay-Based Geopolymers: A Comparative Study of Kaolinite-Based and Halloysite-Based Geopolymers. Clays Clay Miner. 2022, 70, 882–902. [Google Scholar] [CrossRef]
- Khan, R.; Iqbal, S.; Soliyeva, M.; Ali, A.; Elboughdiri, N. Advanced Clay-Based Geopolymer: Influence of Structural and Material Parameters on Its Performance and Applications. RSC Adv. 2025, 15, 12443–12471. [Google Scholar] [CrossRef]
- Setlak, K.; Mikuła, J.; Łach, M. Application of Industrial Waste Materials by Alkaline Activation for Use as Geopolymer Binders. Materials 2023, 16, 7651. [Google Scholar] [CrossRef]
- Al-Noaimat, Y.A.; Ghaffar, S.H.; Chougan, M.; Al-Kheetan, M.J. A Review of 3D Printing Low-Carbon Concrete with One-Part Geopolymer: Engineering, Environmental and Economic Feasibility. Case Stud. Constr. Mater. 2023, 18, e01818. [Google Scholar] [CrossRef]
- Asadizadeh, M.; Hedayat, A.; Tunstall, L.; Gonzalez, J.A.V.; Alvarado, J.W.V.; Neira, M.T. The Impact of Slag on the Process of Geopolymerization and the Mechanical Performance of Mine-Tailings-Based Alkali-Activated Lightweight Aggregates. Constr. Build. Mater. 2024, 411, 134347. [Google Scholar] [CrossRef]
- Mohamed, O.; Ahmed, E.; Najm, O.; Al-Aribe, K.; Hijah, E. Water Absorption Characteristics and Rate of Strength Development of Mortar with Slag-Based Alkali-Activated Binder and 25% Fly Ash Replacement. Mater. Today Proc. 2023; in press. [Google Scholar] [CrossRef]
- Gastoł, W.; Shalomieiev, V.A.; Tabunschyk, G.V.; Łach, M.; Kozub, B.; Nykiel, M.; Korniejenko, K. Evaluation of the Possibility of Preparing Geopolymer Materials Based on Slags and Fly Ashes from the Thermal Treatment of Municipal Waste. Mater. Werkst. 2025, 56, 757–769. [Google Scholar] [CrossRef]
- Liu, J.; Lv, C. Durability of Cellulosic-Fiber-Reinforced Geopolymers: A Review. Molecules 2022, 27, 796. [Google Scholar] [CrossRef] [PubMed]
- Mu, S.; Liu, J.; Liu, J.; Wang, Y.; Shi, L.; Jiang, Q. Property and Microstructure of Waterborne Self-Setting Geopolymer Coating: Optimization Effect of SiO2/Na2O Molar Ratio. Minerals 2018, 8, 162. [Google Scholar] [CrossRef]
- Korniejenko, K.; Kejzlar, P.; Louda, P. The Influence of the Material Structure on the Mechanical Properties of Geopolymer Composites Reinforced with Short Fibers Obtained with Additive Technologies. Int. J. Mol. Sci. 2022, 23, 2023. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; He, X.; Wang, X. FTIR Analysis of the Functional Group Composition of Coal Tar Residue Extracts and Extractive Residues. Appl. Sci. 2023, 13, 5162. [Google Scholar] [CrossRef]
- Bredács, M.; Barretta, C.; Castillon, L.F.; Frank, A.; Oreski, G.; Pinter, G.; Gergely, S. Prediction of Polyethylene Density from FTIR and Raman Spectroscopy Using Multivariate Data Analysis. Polym. Test. 2021, 104, 107406. [Google Scholar] [CrossRef]
- Yusuf, M.O. Bond Characterization in Cementitious Material Binders Using Fourier-Transform Infrared Spectroscopy. Appl. Sci. 2023, 13, 3353. [Google Scholar] [CrossRef]
- Thomsen, R.M.; Skibsted, J.; Yue, Y. The Charge-Balancing Role of Calcium and Alkali Ions in Per-Alkaline Aluminosilicate Glasses. J. Phys. Chem. B 2018, 122, 3184–3195. [Google Scholar] [CrossRef]
- Toniolo, N.; Rincón, A.; Roether, J.A.; Ercole, P.; Bernardo, E.; Boccaccini, A.R. Extensive Reuse of Soda-Lime Waste Glass in Fly Ash-Based Geopolymers. Constr. Build. Mater. 2018, 188, 1077–1084. [Google Scholar] [CrossRef]
- Onutai, S.; Osugi, T.; Sone, T. Alumino-Silicate Structural Formation during Alkali-Activation of Metakaolin: In-Situ and Ex-Situ ATR-FTIR Studies. Materials 2023, 16, 985. [Google Scholar] [CrossRef]
- Finocchiaro, C.; Barone, G.; Mazzoleni, P.; Leonelli, C.; Gharzouni, A.; Rossignol, S. FT-IR Study of Early Stages of Alkali Activated Materials Based on Pyroclastic Deposits (Mt. Etna, Sicily, Italy) Using Two Different Alkaline Solutions. Constr. Build. Mater. 2020, 262, 120095. [Google Scholar] [CrossRef]
- Amar, M.; Ladduri, B.; Alloul, A.; Benzerzour, M.; Abriak, N.-E. Microstructure and Mechanical Properties of Geopolymers Utilizing Excavated Soils, Metakaolin and Slags. J. Build. Eng. 2024, 86, 108755. [Google Scholar] [CrossRef]
- Guan, X.; Wu, J.-Q.; Hernandez, A.G.; Li, B.; Do, H. Molecular Dynamic Simulations of Interfacial Interaction Mechanism between the NASH Gels and the Polyethene Fibre. Constr. Build. Mater. 2022, 349, 128769. [Google Scholar] [CrossRef]
- Kai, M.F.; Zhang, L.W.; Liew, K.M. Carbon Nanotube-Geopolymer Nanocomposites: A Molecular Dynamics Study of the Influence of Interfacial Chemical Bonding upon the Structural and Mechanical Properties. Carbon 2020, 161, 772–783. [Google Scholar] [CrossRef]
- Sekkal, W.; Zaoui, A. Residual Water and Interfacial Bonding Effects on the Mechanical Performance of CNT/Fly Ash Geopolymer Binder. Struct. Concr. 2024, 25, 3648–3661. [Google Scholar] [CrossRef]
- Růžek, V.; Dostayeva, A.M.; Walter, J.; Grab, T.; Korniejenko, K. Carbon Fiber-Reinforced Geopolymer Composites: A Review. Fibers 2023, 11, 17. [Google Scholar] [CrossRef]
- Rahman, S.K.; Al-Ameri, R. Long-Term Performance of Basalt Fibre-Reinforced Marine Geopolymer Concrete in Harsh Environment. Mag. Concr. Res. 2023, 75, 1165–1187. [Google Scholar] [CrossRef]
- Wardhono, A.; Risdianto, Y.; Sabariman, B.; Hidajati, N.W.; Andajani, N. The Effect of Sodium Silicate to NaOH Ratio on Strength Development of Fly Ash Geopolymer Mortar in Marine Environment. E3S Web Conf. 2023, 445, 01005. [Google Scholar] [CrossRef]
- Aiken, T.A.; Gu, L.; Kwasny, J.; Huseien, G.F.; McPolin, D.; Sha, W. Acid Resistance of Alkali-Activated Binders: A Review of Performance, Mechanisms of Deterioration and Testing Procedures. Constr. Build. Mater. 2022, 342, 128057. [Google Scholar] [CrossRef]
- Ariyadasa, P.W.; Manalo, A.C.; Lokuge, W.; Aravienthan, V.; Gerdes, A.; Kaltenbach, J. Degradation Mechanisms of Low-Calcium Fly Ash-Based Geopolymer Mortar in Simulated Aggressive Sewer Conditions. Cem. Concr. Res. 2025, 194, 107882. [Google Scholar] [CrossRef]
- Ma, Y.-K.; Rigolet, S.; Michelin, L.; Paillaud, J.-L.; Mintova, S.; Khoerunnisa, F.; Daou, T.J.; Ng, E.-P. Facile and Fast Determination of Si/Al Ratio of Zeolites Using FTIR Spectroscopy Technique. Microporous Mesoporous Mater. 2021, 311, 110683. [Google Scholar] [CrossRef]
- Provis, J.L.; Bernal, S.A. Geopolymers and Related Alkali-Activated Materials. Annu. Rev. Mater. Res. 2014, 44, 299–327. [Google Scholar] [CrossRef]
- Zhang, B. Durability of Low-Carbon Geopolymer Concrete: A Critical Review. Sustain. Mater. Technol. 2024, 40, e00882. [Google Scholar] [CrossRef]
- Bolina, F.L.; Henn, A.S. Eco-Friendly Reinforced Concrete Beams Exposed to Standardized Fire: A Thermal Finite Element Analysis. Sustainability 2025, 17, 2951. [Google Scholar] [CrossRef]
No. | Sample | Metakaolin [kg] | Amphibolite [kg] | Sodium Water Glass [kg] | Silicon Dioxide [kg] | Carbon Fibers [kg] | Cellulose [kg] | Slag [kg] |
---|---|---|---|---|---|---|---|---|
1 | GST 1 | 1 | 0 | 0.9 | 0.08 | 0.01 | 0.01 | 1 |
2 | GST 3 | 1 | 0 | 0.9 | 0.08 | 0.01 | 0.01 | 0.3 |
3 | GST 5 | 1 | 0 | 0.9 | 0.08 | 0.01 | 0.01 | 0.5 |
4 | GST 7 | 1 | 0 | 0.9 | 0.08 | 0.01 | 0.01 | 0.7 |
5 | Geo V5 | 1 | 0 | 0.9 | 0 | 0.01 | 0 | 0 |
6 | Geo V6 | 1 | 0 | 0.9 | 0 | 0.01 | 0 | 1 |
7 | Geo V7 | 1 | 1 | 0.9 | 0 | 0.01 | 0 | 0 |
Sample | Density [g/cm3] | Standard Deviation |
---|---|---|
GST1 | 1.952 | 0.014 |
GST3 | 1.756 | 0.036 |
GST5 | 1.627 | 0.022 |
GST7 | 1.807 | 0.026 |
GEOV5 | 1.867 | 0.018 |
GEOV6 | 1.900 | 0.021 |
GEOV7 | 1.826 | 0.030 |
Oxide | GST 1 | GST 3 | GST 5 | GST 7 | GEO V5 | GEO V6 | GEO V7 |
---|---|---|---|---|---|---|---|
MgO | 1.95% | 3.42% | 3.02% | 3.65% | 0.18% | 3.38% | 0.00% |
Al2O3 | 16.69% | 19.56% | 19.88% | 20.27% | 24.47% | 21.31% | 17.02% |
SiO2 | 55.19% | 47.34% | 46.29% | 45.06% | 49.90% | 40.87% | 56.95% |
P2O5 | 0.60% | 0.025% | 0.00% | 0.11% | 0.00% | 0.19% | 0.00% |
SO3 | 0.20% | 0.32% | 0.24% | 0.32% | 0.34% | 0.26% | 0.22% |
Cl | 0.03% | 0.03% | 0.03% | 0.03% | 0.00% | 0.02% | 0.01% |
K2O | 4.58% | 7.18% | 6.73% | 6.01% | 7.36% | 5.75% | 6.52% |
CaO | 12.90% | 16.50% | 16.51% | 16.22% | 13.47% | 17.21% | 14.80% |
Sc2O3 | 0.03% | 0.05% | 0.05% | 0.05% | 0.02% | 0.04% | 0.03% |
TiO2 | 0.90% | 1.10% | 1.15% | 1.13% | 1.73% | 1.27% | 0.92% |
V2O5 | 0.11% | 0.08% | 0.11% | 0.12% | 0.06% | 0.16% | 0.02% |
Cr2O3 | 0.22% | 0.07% | 0.09% | 0.11% | 0.14% | 0.15% | 0.06% |
MnO | 0.21% | 0.28% | 0.29% | 0.28% | 0.22% | 0.30% | 0.25% |
Fe2O3 | 4.82% | 3.03% | 4.18% | 4.91% | 1.81% | 6.70% | 3.04% |
NiO | 0.03% | 0.01% | 0.01% | 0.01% | 0.04% | 0.01% | 0.01% |
CuO | 0.04% | 0.02% | 0.03% | 0.04% | 0.00% | 0.05% | 0.00% |
ZnO | 0.01% | 0.01% | 0.01% | 0.01% | 0.01% | 0.01% | 0.01% |
SrO | 0.05% | 0.05% | 0.06% | 0.06% | 0.04% | 0.08% | 0.04% |
Y2O3 | 0.00% | 0.01% | 0.01% | 0.01% | 0.01% | 0.01% | 0.01% |
ZrO2 | 1.32% | 0.81% | 1.21% | 1.47% | 0.07% | 2.06% | 0.05% |
MoO3 | 0.02% | 0.01% | 0.01% | 0.01% | 0.01% | 0.02% | 0.00% |
Sample | Solution | Initial Mass [g] | Final Mass [g] | Change [%] |
---|---|---|---|---|
GST1 | H2O | 50.49 | 54.27 | 7.49 |
H2O + NaCl | 49.52 | 52.85 | 6.71 | |
H2O + HCl | 50.48 | 53.93 | 6.84 | |
H2O + HCl + CH3COOH + HNO3 | 50.50 | 53.31 | 5.56 | |
H2O + NaOH | 52.01 | 55.54 | 6.78 | |
GST3 | H2O | 49.19 | 52.64 | 7.01 |
H2O + NaCl | 48.22 | 52.01 | 7.89 | |
H2O + HCl | 49.16 | 52.06 | 5.90 | |
H2O + HCl + CH3COOH + HNO3 | 47.86 | 50.52 | 5.56 | |
H2O + NaOH | 49.64 | 52.48 | 5.71 | |
GST5 | H2O | 45.42 | 49.77 | 9.65 |
H2O + NaCl | 42.90 | 47.53 | 10.81 | |
H2O + HCl | 42.99 | 47.97 | 11.62 | |
H2O + HCl + CH3COOH + HNO3 | 43.66 | 47.67 | 9.18 | |
H2O + NaOH | 43.35 | 48.04 | 10.82 | |
GST7 | H2O | 53.22 | 56.91 | 6.94 |
H2O + NaCl | 52.53 | 55.90 | 6.42 | |
H2O + HCl | 53.06 | 56.02 | 5.57 | |
H2O + HCl + CH3COOH + HNO3 | 53.15 | 55.76 | 4.90 | |
H2O + NaOH | 52.95 | 55.99 | 5.73 | |
GEOV5 | H2O | 53.98 | 55.77 | 3.31 |
H2O + NaCl | 54.25 | 55.93 | 3.10 | |
H2O + HCl | 54.69 | 56.33 | 3.01 | |
H2O + HCl + CH3COOH + HNO3 | 52.79 | 53.69 | 1.70 | |
H2O + NaOH | 51.69 | 52.89 | 2.31 | |
GEOV6 | H2O | 50.21 | 53.28 | 6.13 |
H2O + NaCl | 49.68 | 52.43 | 5.54 | |
H2O + HCl | 50.77 | 53.55 | 5.46 | |
H2O + HCl + CH3COOH + HNO3 | 49.86 | 51.87 | 4.04 | |
H2O + NaOH | 50.35 | 53.27 | 5.79 | |
GEOV7 | H2O | 49.21 | 52.58 | 6.84 |
H2O + NaCl | 49.90 | 53.59 | 7.40 | |
H2O + HCl | 49.63 | 53.19 | 7.16 | |
H2O + HCl + CH3COOH + HNO3 | 49.01 | 51.8 | 5.69 | |
H2O + NaOH | 49.11 | 52.61 | 7.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oliwa, K.; Kozub, B.; Łoś, K.; Łoś, P.; Korniejenko, K. Assessment of Durability and Degradation Resistance of Geopolymer Composites in Water Environments. Materials 2025, 18, 3892. https://doi.org/10.3390/ma18163892
Oliwa K, Kozub B, Łoś K, Łoś P, Korniejenko K. Assessment of Durability and Degradation Resistance of Geopolymer Composites in Water Environments. Materials. 2025; 18(16):3892. https://doi.org/10.3390/ma18163892
Chicago/Turabian StyleOliwa, Kacper, Barbara Kozub, Katarzyna Łoś, Piotr Łoś, and Kinga Korniejenko. 2025. "Assessment of Durability and Degradation Resistance of Geopolymer Composites in Water Environments" Materials 18, no. 16: 3892. https://doi.org/10.3390/ma18163892
APA StyleOliwa, K., Kozub, B., Łoś, K., Łoś, P., & Korniejenko, K. (2025). Assessment of Durability and Degradation Resistance of Geopolymer Composites in Water Environments. Materials, 18(16), 3892. https://doi.org/10.3390/ma18163892