Durability of Concrete Reinforced with GFRP Bars Under Varying Alkalinity and Temperature Conditions
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Reinforced Concrete Aging
2.3. Interlaminar Shear Strength Test
2.4. Scanning Electron Microscope (SEM)
2.5. Fourier Transform Infrared Spectroscopy (FTIR)
3. Results
3.1. Fourier Transform Infrared Spectroscopy
3.2. Fracture Surface Analysis
3.3. Interlaminar Shear Strength (ISS)
3.4. Prediction of Interlaminar Shear Strength of GFRP Bars
4. Conclusions
- Elevated temperatures accelerated the degradation of GFRP bars embedded in concrete, regardless concrete composition.
- FTIR analysis indicated that exposure to concrete and elevated temperatures induced structural changes in the polymer matrices.
- SEM micrographs of fractured surfaces after interlaminar shear tests demonstrated the displacement of glass fibers from the polymer matrix, indicating interfacial weakening.
- Concretes containing pozzolanic additions (e.g, silica fume) and/or carbonation exhibited lower alkalinity and were less aggressive toward GFRP bars. Replacing 10% of cement (by mass) with silica fume proved beneficial to the durability of GFRP bars, indirectly extending the service life of concrete structures reinforced with GFRP bars.
- Accelerated aging led to evident degradation, characterized by matrix deterioration and interfacial debonding between the fibers and the matrix, with more pronounced effects at 60 °C.
- Among the bars studied, GFRP bars with a vinyl ester matrix exhibited the best performance after aging in concrete environments, considering the combination of all factors.
- A prediction model for the interlaminar shear strength of GFRP was calibrated using experimental data and demonstrated suitability for long-term performance estimation.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Goyal, A.; Pouya, H.S.; Ganjian, E.; Claisse, P. A review of corrosion and protection of steel in concrete. Arab. J. Sci. Eng. 2018, 43, 5035–5055. [Google Scholar] [CrossRef]
- Daniyal, M.; Akhtar, S. Corrosion assessment and control techniques for reinforced concrete structures: A review. J. Build. Pathol. Rehabil. 2020, 5, 1. [Google Scholar] [CrossRef]
- Zhang, P.; Su, Y.; Liu, Y.; Gao, D.; Sheikh, S.A. Flexural behavior of GFRP reinforced concrete beams with CFRP grid-reinforced ECC stay-in-place formworks. Compos. Struct. 2021, 277, 114653. [Google Scholar] [CrossRef]
- Ahmed, A.; Guo, S.; Zhang, Z.; Shi, C.; Zhu, D. A review on durability of fiber reinforced polymer (FRP) bars reinforced seawater sea sand concrete. Constr. Build. Mater. 2020, 256, 119484. [Google Scholar] [CrossRef]
- Benmokrane, B.; Ali, A.H.; Mohamed, H.M.; Elsafty, A.; Manalo, A. Laboratory assessment and durability performance of vinyl-ester polyester, and epoxy glass-FRP bars for concrete structures. Compos. Part B Eng. 2017, 114, 163–174. [Google Scholar] [CrossRef]
- Moura, R.C.A.; Ribeiro, D.V.; Lima, P.R.L. Mechanical damage assessment of GFRP rebars with different resins due to hydrothermal aging. Mater. Res. 2021, 24, 13. [Google Scholar] [CrossRef]
- Fergani, H.; Di Benedetti, M.; Oller, C.M.; Lynsdale, C.; Guadagnini, M. Durability, and degradation mechanisms of GFRP reinforcement subjected to severe environments and sustained stress. Constr. Build. Mater. 2018, 170, 637–648. [Google Scholar] [CrossRef]
- Morales, C.N.; Claude, G.; Alvarez, J.; Nanni, A. Evaluation of fiber content in GFRP bars image processing. Compos. Part B Eng. 2020, 200, 108307. [Google Scholar] [CrossRef]
- Benzecry, V.; Al-Khafaji, A.F.; Haluza, R.T.; Bakis, C.E.; Myers, J.J.; Nanni, A. Durability assessment of 15- to 20-year-old GFRP bars extracted from bridges in the US. I: Select bridges, bar extraction, and concrete assessment. J. Compos. Constr. 2021, 25, 04021007. [Google Scholar] [CrossRef]
- Manalo, A.; Maranan, G.; Benmokrane, B.; Cousin, P.; Alajarmeh, O.; Ferdous, W.; Liang, R.; Hota, G. Comparative durability of GFRP composite reinforcing bars in concrete and in simulated concrete environments. Cem. Concr. Compos. 2020, 109, 103564. [Google Scholar] [CrossRef]
- Shakiba, M.; Bazli, M.; Karamloo, M.; Mortazavi, S.M.R. Bond-slip performance of GFRP and steel reinforced beams under wet-dry and freeze-thaw cycles: The effect of concrete type. Constr. Build. Mater. 2022, 342, 127916. [Google Scholar] [CrossRef]
- Bazli, M.; Ashrafi, H.; Oskouei, A.V. Experiments and probabilistic models of bond strength between GFRP bar and different types of concrete under aggressive environments. Constr. Build. Mater. 2017, 148, 429–443. [Google Scholar] [CrossRef]
- Benmokrane, B.; Wang, P.; Ton-That, T.M.; Rahman, H.; Robert, J.F. Durability of glass fiber-reinforced polymer reinforcing bars in concrete environment. J. Compos. Constr. 2002, 6, 143–153. [Google Scholar] [CrossRef]
- Yu, Y.; Liu, S.; Pan, Y.; Mil, X.; Liu, J. Durability of glass fiber-reinforced polymer bars in water and simulated concrete pore solution. Constr. Build. Mater. 2021, 299, 123995. [Google Scholar] [CrossRef]
- Pan, Y.; Yan, D. Study on the durability of GFRP bars and carbon/glass hybrid fiber reinforced polymer (HFRP) bars aged in alkaline solution. Compos. Struct. 2021, 261, 113285. [Google Scholar] [CrossRef]
- Ramanathan, S.; Benzecry, V.; Suraneni, P.; Nanni, A. Condition assessment of concrete and glass fiber reinforced polymer (GFRP) rebar after 18 years of service life. Case Stud. Constr. Mater. 2021, 14, e00494. [Google Scholar] [CrossRef]
- Zeng, J.J.; Hao, Z.H.; Liang, Q.J.; Zhuge, Y.; Liu, Y. Durability assessment of GFRP bars exposed to combined accelerated aging in alkaline solution and a constant load. Eng. Struct. 2023, 297, 116990. [Google Scholar] [CrossRef]
- Benmokrane, B.; Hassan, M.; Robert, M.; Vijay, P.V.; Manalo, A. Effect of different constituent fiber, resin, and sizing combinations on alkaline resistance of basalt, carbon, and glass FRP bars. J. Compos. Constr. 2020, 24, 04020010. [Google Scholar] [CrossRef]
- American Society for Testing and Materials D792; Standard Test Methods for Density and Specific Gravity of Plastics by Displacement. ASTM—American Society for Testing and Materials: West Conshohocken, PA, USA, 2020.
- American Society for Testing and Materials D3171; Standard Test Methods for Constituent Content of Composite Materials. ASTM—American Society for Testing and Materials: West Conshohocken, PA, USA, 2022.
- American Society for Testing and Materials D7205; Standard Test Methods for Tensile Properties Matrix Composite Materials. ASTM—American Society for Testing and Materials: West Conshohocken, PA, USA, 2021.
- Brazilian Association for Technical Standards NBR 7211; Aggregates for Concrete—Specification. ABNT—Brazilian Association for Technical Standards: Rio de Janeiro, Brazil, 2009.
- Brazilian Association for Technical Standards NBR NM 52; Fine Aggregate—Determination of the Bulk Specific Gravity and Apparent Specific Gravity. ABNT—Brazilian Association for Technical Standards: Rio de Janeiro, Brazil, 2009.
- Brazilian Association for Technical Standards NBR NM 53; Coarse Aggregate—Determination of the Bulk Specific Gravity, Apparent Specific Gravity, and Water Absorption. ABNT—Brazilian Association for Technical Standards: Rio de Janeiro, Brazil, 2009.
- Brazilian Association for Technical Standards NBR NM 45; Aggregates—Determination of the Unit Weight and Air-Void Contents. ABNT—Brazilian Association for Technical Standards: Rio de Janeiro, Brazil, 2006.
- Brazilian Association for Technical Standards NBR NM 248; Aggregates—Sieve Analysis of Fine and Coarse Aggregates. ABNT—Brazilian Association for Technical Standards: Rio de Janeiro, Brazil, 2003.
- Ganapathy, V.; Muthukumaran, G.; Sudhagar, P.E.; Rashedi, A.; Norahim, M.N.F.; Ilyas, R.A.; Goh, K.L.; Jawaid, M.; Naveen, J. Mechanical properties of cellulose-based multiscale composites: A review. Polym. Compos. 2023, 44, 734–756. [Google Scholar] [CrossRef]
- International Standard 1920; Testing Concrete—Part. 12: Determination of the Carbonation Resistance of Concrete—Accelerated Carbonation Method. ISO—International Standard: Geneva, Switzerland, 2015.
- American Society for Testing and Materials D4475; Standard Test Methods for Apparent Horizontal Shear Strength of Pultruded Plastic Rods by the Short-Beam Method. ASTM—American Society for Testing and Materials: West Conshohocken, PA, USA, 2021.
- Vemuganti, S.; Chennareddy, R.; Riad, A.; Taha, M.M.R. Pultruded GFRP reinforcing bars using nanomodified vinyl ester. Materials 2020, 13, 5710. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.G.; Leung, C.K.L.; Kim, J.K.; Liu, M.Y. Degradation of glass fiber-reinforced plastic composites containing nano clay in alkaline environment. J. Compos. Mater. 2011, 45, 2147–2156. [Google Scholar] [CrossRef]
- Arczewska, P.; Polak, M.A.; Penlidis, A. Degradation of glass fiber reinforced polymer (GFRP) bars in concrete environment. Constr. Build. Mater. 2021, 293, 123451. [Google Scholar] [CrossRef]
- Sawpan, M.A.; Mamun, A.A.; Holdsworth, P.G. Long term durability of pultruded polymer composite rebar on concrete environment. Mater. Des. 2014, 57, 616–624. [Google Scholar] [CrossRef]
- Zhu, P.; Li, Z.; Zhu, Y.; Wu, Y.; Qu, W. Prediction of the long-term tensile strength of GFRP bars in concrete. Buildings 2023, 13, 1035. [Google Scholar] [CrossRef]
- Visco, A.M.; Brancato, V.; Campo, N. Degradation effects in polyester and vinyl ester resins induced by accelerated aging in seawater. J. Compos. Mater. 2011, 46, 2025–2040. [Google Scholar] [CrossRef]
- Tu, J.; Xie, H.; Gao, K. Prediction of the long-term performance and durability of GFRP bars under the combined effect of a sustained load and severe environments. Materials 2020, 13, 2341. [Google Scholar] [CrossRef] [PubMed]
- Silva, M.A.G.; Fonseca, B.S.; Biscaia, H. On estimates of durability of FRP based on accelerated tests. Compos. Struct. 2014, 116, 377–387. [Google Scholar] [CrossRef]
- Xue, W.; Li, Y.; Fu, K.; Hu, X.; Li, Y. Accelerated ageing test and durability prediction model for mechanical properties of GFRP connectors in precast concrete sandwich panels. Constr. Build. Mater. 2020, 237, 117632. [Google Scholar] [CrossRef]
- Phani, K.K.; Bose, N.R. Temperature dependence of hydrothermal ageing of CSM-laminate during water immersion. Compos. Sci. Technol. 1987, 29, 79–87. [Google Scholar] [CrossRef]
Property | Test Method | Polyester | Vinyl Ester | Epoxy |
---|---|---|---|---|
Relative density (g/cm3) | ASTM D 792 [19] | 2.1 ± 0.1 | 2.0 ± 0.1 | 1.9 ± 0.1 |
Fiber content by weight (%) | ASTM D 3171 [20] | 79.4 ± 0.6 | 82.2 ± 1.0 | 80.6 ± 1.2 |
Cross-sectional area (mm2) | ASTM 7205 [21] | 31.3 ± 0.2 | 31.0 ± 0.1 | 31.6 ± 0.4 |
Bar diameter—db (mm) | 6.3 ± 0.2 | 6.3 ± 0.3 | 6.3 ± 0.1 |
T (°C) | Concrete | Polyester (P) | Vinyl Ester (V) | Epoxy (E) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
500 h | 1000 h | 3000 h | 500 h | 1000 h | 3000 h | 500 h | 1000 h | 3000 h | ||
23.0 | REF | 44.7 ± 0.2 | 44.0 ± 1.7 | 43.0 ± 0.2 | 44.5 ± 0.8 | 44.2 ± 1.7 | 43.3 ± 1.3 | 44,1 ± 0,4 | 43.5 ± 1.1 | 42.4 ± 1.0 |
SA | 45.1 ± 1.2 | 44.9 ± 1.3 | 44.2 ± 1.6 | 46.7 ± 1.4 | 46.5 ± 1.5 | 45.9 ± 2.3 | 46,1 ± 0,2 | 45.4 ± 0.3 | 45.1 ±0.8 | |
CAR | 45.7 ± 0.7 | 45.5 ± 0.5 | 45.3 ± 0.9 | 46.0 ± 0.2 | 45.4 ± 1.3 | 45.1 ± 1.6 | 45,9 ± 0,2 | 45.6 ± 1.9 | 45.2 ± 0.1 | |
40.0 | REF | 43.4 ± 1.1 | 43.0 ± 0.9 | 41.8 ± 0.4 | 43.5 ± 2.5 | 43.3 ± 0.1 | 42.6 ± 0.2 | 43,1 ± 3,0 | 41.5 ± 1.7 | 41.2 ± 0.2 |
SA | 44.9 ± 0.8 | 44.2 ± 0.8 | 43.5 ± 1.4 | 46.1 ± 1.7 | 46.0 ± 1.9 | 45.2 ± 0.8 | 44,9 ± 4,0 | 44.5 ± 1.7 | 43.7 ± 2.0 | |
CAR | 44.7 ± 0.4 | 44.6 ± 2.5 | 44.0 ± 0.3 | 44.9 ± 1.8 | 44.8 ± 0.7 | 43.7 ± 0.3 | 44,9 ± 0,8 | 44.3 ± 0.2 | 43.9 ± 0.1 | |
60.0 | REF | 41.7 ± 0.8 | 41.1 ± 2.4 | 40.8 ± 0.8 | 41.8 ± 0.1 | 41.3 ± 2.4 | 40.9 ± 0.6 | 41,4 ± 0,5 | 41.1 ± 3.0 | 40.3 ± 1.6 |
SA | 44.6 ± 1.5 | 43.9 ± 3.5 | 42.6 ± 0.2 | 44.3 ± 4.7 | 43.3 ± 0.9 | 42.6 ± 0.6 | 44,3 ± 4,7 | 43.0 ± 2.5 | 42.5 ± 1.4 | |
CAR | 44.2 ± 2.2 | 43.6 ± 4.9 | 43.2 ± 0.6 | 44.3 ± 2.9 | 43.6 ± 3.1 | 43.3 ± 0.9 | 43,7 ± 1,1 | 43.1 ± 3.5 | 42.1 ± 0.2 | |
Polyester (P) | Vinyl Ester (V) | Epoxy (E) | ||||||||
Control—unaged bar | 48.2 ± 1.0 | 48.2 ± 2.5 | 50.6 ± 2.2 |
T (°C) | Concrete | Polyester (P) | ||
---|---|---|---|---|
Tre_∞ | τ | R2 (%) | ||
23.0 | REF | 89.0 | 20.0 | 99.2 |
SA | 91.5 | 18.0 | 96.3 | |
CAR | 93.5 | 15.0 | 99.8 | |
40.0 | REF | 86.0 | 20.0 | 98.8 |
SA | 90.0 | 19.0 | 98.7 | |
CAR | 91.0 | 16.0 | 95.5 | |
60.0 | REF | 84.5 | 12.0 | 99.8 |
SA | 88.5 | 20.0 | 98.8 | |
CAR | 89.5 | 17.0 | 99.8 |
T (°C) | Concrete | Epoxy (E) | ||
---|---|---|---|---|
Tre_∞ | τ | R2 (%) | ||
23.0 | REF | 84.0 | 15.0 | 99.0 |
SA | 89.0 | 14.0 | 99.8 | |
CAR | 89.0 | 15.0 | 98.3 | |
40.0 | REF | 81.0 | 13.0 | 100.0 |
SA | 86.0 | 16.0 | 98.3 | |
CAR | 86.5 | 13.0 | 99.6 | |
60.0 | REF | 79.5 | 13.0 | 98.6 |
SA | 84.0 | 14.0 | 100.0 | |
CAR | 83.0 | 15.0 | 98.9 |
T (°C) | Concrete | Vinyl Ester (V) | ||
---|---|---|---|---|
Tre_∞ | τ | R2 (%) | ||
23.0 | REF | 90.0 | 18.0 | 98.0 |
SA | 95.0 | 25.0 | 97.7 | |
CAR | 94.0 | 13.0 | 99.2 | |
40.0 | REF | 88.0 | 15.0 | 98.2 |
SA | 93.5 | 25.0 | 95.9 | |
CAR | 90.0 | 23.0 | 95.6 | |
60.0 | REF | 84.5 | 13.0 | 99.2 |
SA | 88.5 | 18.0 | 99.9 | |
CAR | 89.0 | 15.0 | 100.0 |
T (°C) | Concrete | Ea/R |
---|---|---|
GFRP-P | REF | 8875 |
SA | 3330 | |
CAR | 8627 | |
GFRP-E | REF | 4557 |
SA | 4535 | |
CAR | 5721 | |
GFRP-V | REF | 8728 |
SA | 21,613 | |
CAR | 7747 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Araújo Moura, R.C.; Ribeiro, D.V.; Lima, P.R.L. Durability of Concrete Reinforced with GFRP Bars Under Varying Alkalinity and Temperature Conditions. Buildings 2025, 15, 2832. https://doi.org/10.3390/buildings15162832
de Araújo Moura RC, Ribeiro DV, Lima PRL. Durability of Concrete Reinforced with GFRP Bars Under Varying Alkalinity and Temperature Conditions. Buildings. 2025; 15(16):2832. https://doi.org/10.3390/buildings15162832
Chicago/Turabian Stylede Araújo Moura, Ruan Carlos, Daniel Véras Ribeiro, and Paulo Roberto Lopes Lima. 2025. "Durability of Concrete Reinforced with GFRP Bars Under Varying Alkalinity and Temperature Conditions" Buildings 15, no. 16: 2832. https://doi.org/10.3390/buildings15162832
APA Stylede Araújo Moura, R. C., Ribeiro, D. V., & Lima, P. R. L. (2025). Durability of Concrete Reinforced with GFRP Bars Under Varying Alkalinity and Temperature Conditions. Buildings, 15(16), 2832. https://doi.org/10.3390/buildings15162832