Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (488)

Search Parameters:
Keywords = fiber/matrix adhesion

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 5525 KiB  
Article
Synthesis and Evaluation of a Photocatalytic TiO2-Ag Coating on Polymer Composite Materials
by Juan José Valenzuela Expósito, Elena Picazo Camilo and Francisco Antonio Corpas Iglesias
J. Compos. Sci. 2025, 9(8), 383; https://doi.org/10.3390/jcs9080383 - 22 Jul 2025
Viewed by 339
Abstract
This study explores the development and optimization of TiO2-based photoactive coatings enhanced with silver (Ag)—to boost photocatalytic performance—for application on glass-fiber-reinforced polyester (GFRP) and epoxy (GFRE) composites. The influence of Ag content on the structural, physicochemical, and functional properties of the [...] Read more.
This study explores the development and optimization of TiO2-based photoactive coatings enhanced with silver (Ag)—to boost photocatalytic performance—for application on glass-fiber-reinforced polyester (GFRP) and epoxy (GFRE) composites. The influence of Ag content on the structural, physicochemical, and functional properties of the coatings was evaluated. The TiO2-Ag coating showed the best performance and was tested under UV-A irradiation and visible light (Vis), with high efficiency in VOC degradation, self-cleaning, and microbial activity. The tests were repeated in multiple runs, showing high reproducibility in the results obtained. In GFRP, pollutant and microorganism removal ratios of more than 90% were observed. In contrast, GFRE showed a lower adhesion and stability of the coating. This result is attributed to incompatibility problems with the epoxy matrix, which significantly limited its functional performance. The results highlight the feasibility of using the TiO2-Ag coating on GFRP substrates, even under visible light. Under real-world conditions for 351 days, the coating on GFRP maintained its stability. This type of material has high potential for application in modular building systems using sandwich panels, as well as in facades and automotive components, where self-cleaning and contaminant-control properties are essential. Full article
Show Figures

Figure 1

24 pages, 5801 KiB  
Article
A Study on the Performance of Gel-Based Polyurethane Prepolymer/Ceramic Fiber Composite-Modified Asphalt
by Tengteng Guo, Xu Guo, Yuanzhao Chen, Chenze Fang, Jingyu Yang, Zhenxia Li, Jiajie Feng, Hao Huang, Zhi Li, Haijun Chen and Jiachen Wang
Gels 2025, 11(7), 558; https://doi.org/10.3390/gels11070558 - 20 Jul 2025
Viewed by 228
Abstract
In order to solve various problems in traditional roads and extend their service life, new road materials have become a research hotspot. Polyurethane prepolymers (PUPs) and ceramic fibers (CFs), as materials with unique properties, were chosen due to their synergistic effect: PUPs provide [...] Read more.
In order to solve various problems in traditional roads and extend their service life, new road materials have become a research hotspot. Polyurethane prepolymers (PUPs) and ceramic fibers (CFs), as materials with unique properties, were chosen due to their synergistic effect: PUPs provide elasticity and gel-like behavior, while CFs contribute to structural stability and high-temperature resistance, making them ideal for enhancing asphalt performance. PUPs, a thermoplastic and elastic polyurethane gel material, not only enhance the flexibility and adhesion properties of asphalt but also significantly improve the structural stability of composite materials when synergistically combined with CF. Using response surface methodology, an optimized preparation scheme for PUP/CF composite-modified asphalt was investigated. Through aging tests, dynamic shear rate (DSR) testing, bending rate (BBR) testing, microstructure scanning (MSCR), scanning electron microscopy (SEM), atomic force microscopy (AFM), and infrared spectroscopy (IR), the aging performance, rheological properties, permanent deformation resistance, microstructure, and modification mechanism of PUP/CF composite-modified asphalt were investigated. The results indicate that the optimal preparation scheme is a PUP content of 7.4%, a CF content of 2.1%, and a shear time of 40 min. The addition of the PUP and CF significantly enhances the asphalt’s aging resistance, and compared with single-CF-modified asphalt and base asphalt, the PUP/CF composite-modified asphalt exhibits superior high- and low-temperature rheological properties, demonstrating stronger strain recovery capability. The PUP forms a gel network structure in the material, effectively filling the gaps between CF and asphalt, enhancing interfacial bonding strength, and making the overall performance more stable. AFM microscopic morphology shows that PUP/CF composite-modified asphalt has more “honeycomb structures” than matrix asphalt and CF-modified asphalt, forming more structural asphalt and enhancing overall structural stability. This study indicates that the synergistic effect of PUP gel and CF significantly improves the macro and micro properties of asphalt. The PUP forms a three-dimensional elastic gel network in asphalt, improving adhesion and deformation resistance. Using response surface methodology, the optimal formulation (7.4% PUP, 2.1% CF) improves penetration (↓41.5%), softening point (↑6.7 °C), and ductility (↑9%), demonstrating the relevance of gel-based composites for asphalt modification. Full article
(This article belongs to the Special Issue Synthesis, Properties, and Applications of Novel Polymer-Based Gels)
Show Figures

Figure 1

20 pages, 13675 KiB  
Article
Research on the Use of Hydro-Pneumatic Shock Absorbers for the Rear Suspension of a Vehicle Cabin
by Vasile Gheorghe, Eliza Chircan and Horatiu Teodorescu Draghicescu
Appl. Sci. 2025, 15(14), 7759; https://doi.org/10.3390/app15147759 - 10 Jul 2025
Viewed by 252
Abstract
This work explores enhancing rear cabin suspension in vehicles using hydro-pneumatic shock absorbers to maintain the cabin position regardless of load and improve safety by mitigating oscillation impacts. Advanced solutions employ pneumatic elastic elements with automatic adjustment, addressing classic suspension disadvantages like variable [...] Read more.
This work explores enhancing rear cabin suspension in vehicles using hydro-pneumatic shock absorbers to maintain the cabin position regardless of load and improve safety by mitigating oscillation impacts. Advanced solutions employ pneumatic elastic elements with automatic adjustment, addressing classic suspension disadvantages like variable cab position and natural frequency with load changes. The experimental analysis of reinforced rubber samples from the air socket material involved tensile testing and scanning electron microscopy. The tensile results showed a clear trend: weak reinforced samples (L, T) were ductile but had a lower strength, while the ones on the reinforcing direction (D_45, D_60) exhibited a significantly increased strength and stiffness, with D_60 being the strongest but least ductile. Stress–strain curves visually confirmed these mechanical behaviors. Crucially, SEM images of fracture surfaces consistently revealed widespread fiber pull out. This indicates that weak interfacial adhesion between the reinforcing fibers and the rubber matrix is a primary limiting factor for the composite′s overall strength. Full article
(This article belongs to the Section Mechanical Engineering)
Show Figures

Figure 1

18 pages, 6078 KiB  
Article
Composites with Flax and Hemp Fibers Obtained Using Osmotic Degumming, Water-Retting, and Dew-Retting Processes
by Wanda Różańska and Szymon Rojewski
Materials 2025, 18(13), 3200; https://doi.org/10.3390/ma18133200 - 7 Jul 2025
Viewed by 327
Abstract
This study presents the application of flax (Linum usitatissimum L.) and hemp (Cannabis sativa L.) fibers into composites with polyethylene matrices. The applied fibers were obtained using osmotic, water-retting, and dew-retting processes. The study determined the impact of the fiber extraction [...] Read more.
This study presents the application of flax (Linum usitatissimum L.) and hemp (Cannabis sativa L.) fibers into composites with polyethylene matrices. The applied fibers were obtained using osmotic, water-retting, and dew-retting processes. The study determined the impact of the fiber extraction method on the properties of the composites obtained from natural filler and polyethylene matrix. These properties included color, tensile strength, thermal stability, adhesion of filler to the polymer, and flammability. It has been shown that the addition of flax and hemp fibers improves the mechanical properties of the composite compared to pure polymer. The tensile strength of the pure polymer samples was 24.64 MPa, while the tensile strength of composites reinforced with flax fibers ranged from 31.26 to 34.45 MPa, and those reinforced with hemp fibers ranged from 31.41 to 33.36 MPa. Studying the composites’ flammability showed that filling them with osmotic degummed hemp fibers reduced the maximum heat release rate by over 34% for hemp compared to pure polymer. This research shows that the composites filled with flax and hemp fibers, regardless of extraction method, are characterized by reduced flammability and improved mechanical properties compared to the pure polyethylene samples. Full article
Show Figures

Figure 1

36 pages, 2504 KiB  
Article
Long-Term Durability of CFRP Strips Used in Infrastructure Rehabilitation
by Karunya Kanagavel and Vistasp M. Karbhari
Polymers 2025, 17(13), 1886; https://doi.org/10.3390/polym17131886 - 7 Jul 2025
Viewed by 463
Abstract
Prefabricated unidirectional carbon fiber reinforced polymer (CFRP) composite strips are extensively used as a means of infrastructure rehabilitation through adhesive bonding to the external surface of structural concrete elements. Most data to date are from laboratory tests ranging from a few months to [...] Read more.
Prefabricated unidirectional carbon fiber reinforced polymer (CFRP) composite strips are extensively used as a means of infrastructure rehabilitation through adhesive bonding to the external surface of structural concrete elements. Most data to date are from laboratory tests ranging from a few months to 1–2 years providing an insufficient dataset for prediction of long-term durability. This investigation focuses on the assessment of the response of three different prefabricated CFRP systems exposed to water, seawater, and alkaline solutions for 5 years of immersion in deionized water conducted at three temperatures of 23, 37.8 and 60 °C, all well below the glass transition temperature levels. Overall response is characterized through tensile and short beam shear (SBS) testing at periodic intervals. It is noted that while the three systems are similar, with the dominant mechanisms of deterioration being related to matrix plasticization followed by fiber–matrix debonding with levels of matrix and interface deterioration being accelerated at elevated temperatures, their baseline characteristics and distributions are different emphasizing the need for greater standardization. While tensile modulus does not degrade appreciably over the 5-year period of exposure with final levels of deterioration being between 7.3 and 11.9%, both tensile strength and SBS strength degrade substantially with increasing levels based on temperature and time of immersion. Levels of tensile strength retention can be as low as 61.8–66.6% when immersed in deionized water at 60 °C, those for SBS strength can be 38.4–48.7% at the same immersion condition for the three FRP systems. Differences due to solution type are wider in the short-term and start approaching asymptotic levels within FRP systems at longer periods of exposure. The very high levels of deterioration in SBS strength indicate the breakdown of the materials at the fiber–matrix bond and interfacial levels. It is shown that the level of deterioration exceeds that presumed through design thresholds set by specific codes/standards and that new safety factors are warranted in addition to expanding the set of characteristics studied to include SBS or similar interface-level tests. Alkali solutions are also shown to have the highest deteriorative effects with deionized water having the least. Simple equations are developed to enable extrapolation of test data to predict long term durability and to develop design thresholds based on expectations of service life with an environmental factor of between 0.56 and 0.69 for a 50-year expected service life. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Graphical abstract

16 pages, 3436 KiB  
Article
Synthesis and Characterization of Polymethylhydrosiloxane-Modified Phenol–Formaldehyde Resin
by Luong Nhu Hai, Nguyen Van Thao, Pham The Long, Nguyen Xuan Anh, Le Tran Tiep, Hoang Quoc Nam, Nguyen Minh Viet, Tran The Dinh, Le Duy Binh, Ta Kim Thanh Hien and Cong Tien Dung
Chemistry 2025, 7(4), 112; https://doi.org/10.3390/chemistry7040112 - 7 Jul 2025
Viewed by 450
Abstract
Resol phenol–formaldehyde (PF) resin was modified with 2.5 and 5.0 wt% polymethylhydrosiloxane (PMHS). This study characterizes the modified resin and its subsequently fabricated glass fiber (GF)-reinforced composites (30–60 wt% GF). Formation of an organic–inorganic hybrid network, via reaction between Si-H groups of PMHS [...] Read more.
Resol phenol–formaldehyde (PF) resin was modified with 2.5 and 5.0 wt% polymethylhydrosiloxane (PMHS). This study characterizes the modified resin and its subsequently fabricated glass fiber (GF)-reinforced composites (30–60 wt% GF). Formation of an organic–inorganic hybrid network, via reaction between Si-H groups of PMHS and hydroxyl (-OH) groups of the resol resin, was confirmed by FTIR and 1H NMR. DSC and TGA/DTG revealed enhanced thermal stability for PMHS-modified resin: the decomposition temperature of Resol–PMHS 5.0% increased to 483 °C (neat resin: 438 °C), and char yield at 800 °C rose to 57% (neat resin: 38%). The 60 wt% GF-reinforced Resol–PMHS 5.0% composite exhibited tensile, flexural, and impact strengths of 145 ± 7 MPa, 160 ± 7 MPa, and 71 ± 5 kJ/m2, respectively, superior to the unmodified resin composite (136 ± 6 MPa, 112 ± 6 MPa, and 51 ± 5 kJ/m2). SEM observations indicated improved fiber–matrix interfacial adhesion and reduced delamination. These results demonstrate that PMHS modification effectively enhances the thermo-mechanical properties of the PF resin and its composites, highlighting potential for industrial applications. Full article
(This article belongs to the Section Supramolecular Chemistry)
Show Figures

Graphical abstract

16 pages, 2749 KiB  
Article
Collagen/Polypyrrole Biomimetic Electroactive Composite Coating with Fiber Network Structure on Titanium Surface for Bone Tissue Engineering
by Yuan Liang, Xin Xin, Xuzhao He, Wenjian Weng, Chengwei Wu and Kui Cheng
J. Compos. Sci. 2025, 9(7), 325; https://doi.org/10.3390/jcs9070325 - 24 Jun 2025
Viewed by 351
Abstract
Both biochemical cues and the electrophysiological microenvironment play a pivotal role in influencing cell behaviors. In this study, collagen/polypyrrole biomimetic electroactive composite coatings with a fiber network structure were constructed on the surface of titanium substrates by hot alkali treatment and stepwise electrochemical [...] Read more.
Both biochemical cues and the electrophysiological microenvironment play a pivotal role in influencing cell behaviors. In this study, collagen/polypyrrole biomimetic electroactive composite coatings with a fiber network structure were constructed on the surface of titanium substrates by hot alkali treatment and stepwise electrochemical deposition. Materialistic characterization and electrochemical performance tests demonstrated that the titanium electrodes modified with collagen/polypyrrole composite coatings exhibited the surface morphology of a collagen film layer, and their electroactivity was significantly enhanced. Cellular experiments demonstrated that the collagen in the composite coatings could provide good biomimetic biochemical cues as a main extracellular matrix component, which have a substantial effect in promoting cell adhesion, proliferation, and osteogenic differentiation. Furthermore, under exogenous electrical signals, the polypyrrole coating has the capacity to facilitate an appropriate electrophysiological microenvironment, thereby promoting osteogenic differentiation. The collagen/polypyrrole composite coating exhibited a better effect in promoting osteogenic differentiation among all samples by simultaneously providing the appropriate biochemical cues and electrophysiological microenvironments. This work demonstrates the feasibility of synergistic pro-osteogenesis by biochemical cues and an electrophysiological microenvironment, which is instructive for the field of bone tissue engineering. Full article
(This article belongs to the Special Issue Biomedical Composite Applications)
Show Figures

Figure 1

28 pages, 11703 KiB  
Article
Enhancing the Interfacial Adhesion and Mechanical Strength of Pultruded ECR–Glass Fiber Composites with Nanofiller-Infused Epoxy Resin
by Poorna Chandra, Ravikumar Venkatarayappa, Savitha D. Chandrashekar, Kiran Raveendra, Asha P. Bhaskararao, Suresha Bheemappa, Dayanand M. Goudar, Rajashekhar V. Kurhatti, K. Raju and Deesy G. Pinto
J. Compos. Sci. 2025, 9(7), 321; https://doi.org/10.3390/jcs9070321 - 23 Jun 2025
Viewed by 823
Abstract
The effect of the interaction between silica (nS) and hydroxyapatite (nHap) nanomaterials on the characteristics of unidirectional glass-fiber-reinforced epoxy (GF/Ep) composite systems is investigated in this work. The goal of the study is to use these nanofillers to improve the microstructure and mechanical [...] Read more.
The effect of the interaction between silica (nS) and hydroxyapatite (nHap) nanomaterials on the characteristics of unidirectional glass-fiber-reinforced epoxy (GF/Ep) composite systems is investigated in this work. The goal of the study is to use these nanofillers to improve the microstructure and mechanical characteristics. Pultrusion was used to produce hybrid nanocomposites while keeping the GF loading at a consistent 75% by weight. The hybrid nanocomposites were made with a total filler loading of 6 wt.%, including nHap, and a nS loading ranging from 2 to 4 wt.%. The mechanical performance of the composite was greatly improved by the use of these nanofillers. Compared to neat GF/Ep, hybrid nanocomposites with 6 wt.% combined fillers exhibited increased hardness (14%), tensile strength (25%), interlaminar shear strength (21.3%), and flexural strength (33%). These improvements are attributed to efficient filler dispersion, enhanced fiber-matrix adhesion, and crack propagation resistance. Incorporating 4 wt.% nS alone improved hardness (6%), tensile strength (9%), tensile modulus (21%), interlaminar shear strength (11.4%), flexural strength (12%), and flexural modulus (14%). FTIR analysis indicated Si-O-Si network formation and increased hydrogen bonding, supporting enhanced interfacial interactions. Ultraviolet reflectance measurements showed increased UV reflectivity with nS, especially in hybrid systems, due to synergistic effects. Impact strength also improved, with a notable 11.6% increase observed in the hybrid nanocomposite. Scanning and transmission electron microscopy confirmed that the nanofillers act as secondary reinforcements within the matrix. These hybrid nanocomposites present a promising material choice for various industries, including marine structural applications and automotive components. Full article
(This article belongs to the Special Issue Mechanical Properties of Composite Materials and Joints)
Show Figures

Figure 1

15 pages, 6776 KiB  
Article
Evolution of Frictional Wear Behavior of C/C-CuNi Composites by Arc Discharge
by Xizong Liu, Yulei Zhang, Heng Wu, Dongsheng Zhang, Jiaqi Liu and Haibo Ouyang
Lubricants 2025, 13(7), 282; https://doi.org/10.3390/lubricants13070282 - 23 Jun 2025
Viewed by 462
Abstract
This study fabricated a C/C-CuNi composite using the hydrothermal co-deposition method and investigated its friction and wear behavior as well as the underlying mechanisms after being subjected to arc discharge ablation. The results indicate that the graphitization degree of the material matrix was [...] Read more.
This study fabricated a C/C-CuNi composite using the hydrothermal co-deposition method and investigated its friction and wear behavior as well as the underlying mechanisms after being subjected to arc discharge ablation. The results indicate that the graphitization degree of the material matrix was significantly enhanced after arc discharge ablation, accompanied by a transformation in the carbon microstructure. Carbon nanotubes and graphene structures were generated in the arc ablation zone. Under low arc discharge density, limited pits and open pores are formed on the material surface, with the generated graphene structures effectively reducing friction. Specifically, CN-5 exhibited a stable friction coefficient, a wear rate of 5.2 mg/km, and partial self-repair capability. In contrast, CN-10, under high arc discharge density, suffered from structural collapse, matrix-fiber debonding, and extensive open pores, leading to increased surface roughness. The combined effects of frictional heat and Joule heating elevated the wear surface temperature, triggering matrix oxidation and a sharp rise in wear rate to 14.7 mg/km. The wear mechanisms of C/C-CuNi composites under continuous arc conditions involve arc erosion wear, oxidative wear, abrasive wear, and adhesive wear. Full article
Show Figures

Figure 1

20 pages, 2208 KiB  
Article
Physical Characteristics of Durum Wheat Dough and Pasta with Different Carrot Pomace Varieties
by Marian Ilie Luca, Mădălina Ungureanu-Iuga, Ana Batariuc and Silvia Mironeasa
Gels 2025, 11(7), 481; https://doi.org/10.3390/gels11070481 - 22 Jun 2025
Viewed by 363
Abstract
Carrot pomace is a valuable, underutilized by-product suitable for obtaining novel foods. The durum wheat dough and pasta network structure is affected by fiber-rich ingredients like carrot pomace, leading to changes in rheological and texture parameters. In this context, this paper aimed to [...] Read more.
Carrot pomace is a valuable, underutilized by-product suitable for obtaining novel foods. The durum wheat dough and pasta network structure is affected by fiber-rich ingredients like carrot pomace, leading to changes in rheological and texture parameters. In this context, this paper aimed to evaluate the rheological, textural, and color properties of durum wheat dough and pasta as affected by different varieties and addition levels of carrot pomace. For this purpose, oscillatory dynamic rheological tests, compression mechanical texture evaluation, cooking behavior observation, and reflectance color measurements were made. The results indicated that carrot pomace has a strengthening effect on the durum wheat dough protein–starch matrix, while the maximum creep compliance decreased with the addition level increase. A delay in starch gelatinization was suggested by the evolution of visco-elastic moduli during heating. Dough hardness and gumminess increased (from 2849.74 for the control to 5080.67 g for 12% Baltimore, and from 1073.73 for the control to 1863.02 g for 12% Niagara, respectively), while springiness and resilience exhibited a reduction trend (from 100.11% for the control to 99.50% for 12% Sirkana, and from 1.23 for the 3% Niagara to 0.87 for 12% Belgrado respectively) as the amount of carrot pomace raised. An increasing tendency of pasta solids loss during cooking and fracturability was observed with carrot pomace addition level increase. Color properties changed significantly depending on carrot pomace variety and addition level, indicating a reduction in lightness from 71.71 for the control to 63.12 for 12% Niagara and intensification of red nuance (0.05 for the control vs. 2.85 for 12% Sirkana). Cooked pasta elasticity, chewiness, gumminess, hardness, and resilience increased, while adhesiveness and stickiness decreased as the level of carrot pomace was higher. These results can represent a starting point for further industrial development of pasta enriched with fiber-rich ingredients like carrot pomace. The study highlights the possibility of using a fiber-rich waste stream (carrot pomace) in a staple product like pasta, providing a basis for clean-label pasta formulations. In addition, the novelty of the study consists in highlighting how compositional differences of different carrot pomace varieties lead to distinct effects on dough rheology, texture, color, and cooking behavior. Full article
(This article belongs to the Special Issue Food Gels: Structures, Properties and Applications)
Show Figures

Figure 1

23 pages, 4779 KiB  
Article
Ti-C and CFs Work Together to Enhance the Comprehensive Tribological Properties of PTFE-Based Composites for the Manufacture of Wave Glider Power Shafts
by Angang Yan, Xingju Yao, Yuan Wei, Qianjian Guo, Yulong Wang, Wuqiang Tang and Xian Xu
Lubricants 2025, 13(7), 277; https://doi.org/10.3390/lubricants13070277 - 20 Jun 2025
Viewed by 649
Abstract
Wave gliders’ power system shafts face complex conditions. To enhance their operational stability, it is crucial to study PTFE, a polymer material that could replace traditional metals. This study added carbon fiber (CF), titanium carbide (Ti-C), and both to a PTFE matrix. The [...] Read more.
Wave gliders’ power system shafts face complex conditions. To enhance their operational stability, it is crucial to study PTFE, a polymer material that could replace traditional metals. This study added carbon fiber (CF), titanium carbide (Ti-C), and both to a PTFE matrix. The impact of seawater immersion on water absorption and the mechanical properties was examined, as well as friction and wear characteristics under constant amplitude cyclic (CAC) loading and seawater lubrication. The results indicated that while Ti-C boosts PTFE matrix hardness, its poor binding with the PTFE matrix leads to high water absorption in Ti-C/PTFE (PTFE-3), causing a significant decrease in the mechanical properties post-immersion and poor friction and wear performance. In contrast, CFs and the PTFE matrix have good interfacial bonding and greatly improve the resistance of the PTFE matrix to cyclic loading and seawater immersion. Therefore, CF/PTFE (PTFE-2) shows good mechanical and tribological properties. Moreover, incorporating a certain amount of CFs into Ti-C enhances its adhesion to the PTFE matrix, reducing the occurrence three-body wear and allowing Ti-C to fully utilize its high hardness. Thus, the combination of Ti-C and CFs markedly improves PTFE’s mechanical and tribological properties under cyclic loading and in seawater. Full article
(This article belongs to the Special Issue Tribology of Polymeric Composites)
Show Figures

Figure 1

36 pages, 12446 KiB  
Article
Investigation of Diffusion Induced Fiber–Matrix Interface Damages in Adhesively Bonded Polymer Composites
by Dudu Mertgenç Yoldaş
Polymers 2025, 17(12), 1672; https://doi.org/10.3390/polym17121672 - 17 Jun 2025
Viewed by 443
Abstract
Composite materials have the advantages of high strength and low weight, and are therefore used in many areas. However, in humid and marine environments, mechanical properties may deteriorate due to moisture diffusion, especially in glass fiber reinforced polymers (GFRP) and carbon fiber reinforced [...] Read more.
Composite materials have the advantages of high strength and low weight, and are therefore used in many areas. However, in humid and marine environments, mechanical properties may deteriorate due to moisture diffusion, especially in glass fiber reinforced polymers (GFRP) and carbon fiber reinforced polymers (CFRP). This study investigated the damage formation and changes in mechanical properties of single-layer adhesive-bonded GFRP and CFRP connections under the effect of sea water. In the experiment, 0/90 orientation, twill-woven GFRP (7 ply) and CFRP (8 ply) plates were produced as prepreg using the hand lay-up method in accordance with ASTM D5868-01 standard. CNC Router was used to cut 36 samples were cut from the plates produced for the experiments. The samples were kept in sea water taken from the Aegean Sea, at 3.3–3.7% salinity and 23.5 °C temperature, for 1, 2, 3, 6, and 15 months. Moisture absorption was monitored by periodic weighings; then, the connections were subjected to three-point bending tests according to the ASTM D790 standard. The damages were analyzed microscopically with SEM (ZEISS GEMINI SEM 560). As a result of 15 months of seawater storage, moisture absorption reached 4.83% in GFRP and 0.96% in CFRP. According to the three-point bending tests, the Young modulus of GFRP connections decreased by 25.23% compared to dry samples; this decrease was 11.13% in CFRP. Moisture diffusion and retention behavior were analyzed according to Fick’s laws, and the moisture transfer mechanism of single-lap adhesively bonded composites under the effect of seawater was evaluated. Full article
(This article belongs to the Special Issue Multifunctional Polymer Composite Materials, 2nd Edition)
Show Figures

Figure 1

12 pages, 9987 KiB  
Article
Sarcoglycans Role in Actin Cytoskeleton Dynamics and Cell Adhesion of Human Articular Chondrocytes: New Insights from siRNA-Mediated Gene Silencing
by Antonio Centofanti, Michele Runci Anastasi, Fabiana Nicita, Davide Labellarte, Michele Scuruchi, Alice Pantano, Josè Freni, Angelo Favaloro and Giovanna Vermiglio
Int. J. Mol. Sci. 2025, 26(12), 5732; https://doi.org/10.3390/ijms26125732 - 15 Jun 2025
Viewed by 665
Abstract
Chondrocytes maintain cartilage integrity through coordinated regulation of extracellular matrix (ECM) synthesis and remodeling. These processes depend on ECM dynamic interactions, mediated by integrin-based focal adhesions and associated cytoskeletal components. While the roles of core adhesion proteins are well described, the involvement of [...] Read more.
Chondrocytes maintain cartilage integrity through coordinated regulation of extracellular matrix (ECM) synthesis and remodeling. These processes depend on ECM dynamic interactions, mediated by integrin-based focal adhesions and associated cytoskeletal components. While the roles of core adhesion proteins are well described, the involvement of sarcoglycans (SGs) remains unclear in chondrocytes. Drawing parallels from striated muscle, where the SG subcomplex stabilizes the sarcolemma, we hypothesized that SGs similarly integrate into chondrocyte adhesion complexes. This study investigated the SGs (α, β, γ, δ) expression with cytoskeletal and adhesion proteins, including actin and vinculin, in human chondrocytes cultured by immunofluorescence, qPCR, and siRNA-mediated silencing. All four SG isoforms were expressed in the cytoplasmic and membrane domains, with enrichment at focal adhesion sites. Double labeling revealed SG colocalization with F-actin stress fibers and vinculin, indicating integration into the core adhesion complex. Silencing of each SG resulted in disrupted actin stress fibers, diffuse vinculin distribution, reduced focal plaque number, and a change in cell morphology. These findings support the hypothesis that SGs regulate actin cytoskeletal dynamics and focal contact stabilization. Loss of SG function compromises chondrocyte shape and adhesion, highlighting the importance of these glycoproteins also in non-muscle cells. Full article
Show Figures

Figure 1

18 pages, 2542 KiB  
Article
From Plant to Polymers: Micro-Processing Sisal Fiber-Reinforced PLA/PHA Bio-LFTs at Laboratory Scale
by Rumeysa Yıldırım, Nursel Karakaya, Bas Liebau, Tim Welten, Beyza Bayram, Mehmet Kodal and Güralp Özkoç
Polymers 2025, 17(12), 1618; https://doi.org/10.3390/polym17121618 - 11 Jun 2025
Viewed by 673
Abstract
This study explores the development of long fiber-reinforced thermoplastic (LFT) composites based on blends of poly(lactic acid) (PLA) and polyhydroxyalkanoate (PHA), reinforced with sisal fibers. A novel lab-scale LFT line was employed to fabricate the long fiber composites, effectively addressing the challenges associated [...] Read more.
This study explores the development of long fiber-reinforced thermoplastic (LFT) composites based on blends of poly(lactic acid) (PLA) and polyhydroxyalkanoate (PHA), reinforced with sisal fibers. A novel lab-scale LFT line was employed to fabricate the long fiber composites, effectively addressing the challenges associated with dispersing and processing high-aspect-ratio natural fibers. The rheological, mechanical, thermal, and morphological properties of the resulting bio-LFT composites were systematically characterized using FTIR, SEM, rotational rheology, mechanical testing, DSC, and TGA. The results demonstrated generally homogeneous fiber dispersion, although limited interfacial adhesion between the fibers and polymer matrix was observed. Mechanical tests revealed that sisal fiber incorporation significantly enhanced tensile strength and stiffness, while impact toughness decreased. Thermal analyses showed improved crystallinity and thermal stability with increasing PHA content and fiber reinforcement. Overall, this work highlights the potential of natural fibers to create high-performance, sustainable biocomposites and lays a solid foundation for future advancements in developing eco-friendly structural materials. Full article
Show Figures

Graphical abstract

21 pages, 3633 KiB  
Article
Enhancing Mechanical Properties of Hemp and Sisal Fiber-Reinforced Composites Through Alkali and Fungal Treatments for Sustainable Applications
by Rahul Kovuru and Jens Schuster
J. Manuf. Mater. Process. 2025, 9(6), 191; https://doi.org/10.3390/jmmp9060191 - 10 Jun 2025
Viewed by 687
Abstract
The growing demand for sustainable materials has driven interest in natural fiber-reinforced composites as eco-friendly alternatives to synthetic materials. This research investigates the fabrication and mechanical performance of hemp and sisal fiber-reinforced composites, with a focus on improving fiber–matrix bonding through alkali and [...] Read more.
The growing demand for sustainable materials has driven interest in natural fiber-reinforced composites as eco-friendly alternatives to synthetic materials. This research investigates the fabrication and mechanical performance of hemp and sisal fiber-reinforced composites, with a focus on improving fiber–matrix bonding through alkali and fungal treatments. Experimental results show that fungal treatment significantly improves tensile and flexural strength, while hardness slightly decreases. Water absorption tests revealed moderate reductions in hydrophilicity compared to untreated samples, although absolute water uptake remains higher than conventional glass/epoxy composites. Microscopy analysis further confirmed enhanced fiber adhesion and structural integrity in treated specimens. These findings suggest that hybrid composites reinforced with hemp and sisal, particularly with fungal treatment, hold promise for low-to-medium load sustainable applications in the automotive interiors, packaging, and construction industries, where moderate mechanical performance and partial biodegradability are acceptable. This research contributes to the advancement of bio-based composite materials while acknowledging current limitations in long-term durability and complete biodegradability. Full article
Show Figures

Figure 1

Back to TopTop