Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,271)

Search Parameters:
Keywords = fertility protection

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3818 KB  
Article
Mechanistic Shifts in Organic Carbon Stabilization in a Black Soil Driven by Nitrogen Fertilization
by Yantian Cui, Qi Li, Hongyan Chang, Yanan Li, Chengyu Wang, Rong Jiang, Shuxia Liu and Wentian He
Agronomy 2026, 16(2), 268; https://doi.org/10.3390/agronomy16020268 - 22 Jan 2026
Viewed by 27
Abstract
The phaeozem in Northeast China is rich in soil organic carbon (SOC). However, the excessive and inefficient application of chemical fertilizers, particularly nitrogen fertilizers, has primarily led to a decrease in soil pH in this region. Currently, the relationship between soil pH and [...] Read more.
The phaeozem in Northeast China is rich in soil organic carbon (SOC). However, the excessive and inefficient application of chemical fertilizers, particularly nitrogen fertilizers, has primarily led to a decrease in soil pH in this region. Currently, the relationship between soil pH and the stability of soil organic carbon (SOC) remains ambiguous. This study, conducted over 13 years of field experiments, focused on soils exhibiting varying degrees of pH resulting from different nitrogen application rates. The research employed aggregate classification, 13C nuclear magnetic resonance spectroscopy, and analysis of microbial community composition to investigate the alterations in the SOC stabilization mechanisms under varying nitrogen application levels. Our results demonstrated that the decline in soil pH led to reductions in macroaggregates (>2 mm) and the soil aggregate destruction rate (PAD) by 4.8–14.6%, and in soil aggregate unstable agglomerate index (ELT) by 9.7–13.4%. The mean weight diameter (MWD) and geometric mean diameter (GMD) exhibited significant declines (p < 0.05) with decreasing pH levels. According to the 13C NMR analysis, the SOC was predominantly composed of O-alkyl carbon and aromatic carbon. At a pH of 5.32, the Alip/Arom values decreased, while the molecular structure of SOC became more complex under different levels of pH. In addition, the increase in [Fe(Al)-OC] (31.4–71.9%) complex indicates a shift in the stability of organic carbon from physical protection to organic mineral binding. Declining soil pH significantly reduced the diversity of soil microbial communities and promoted a shift toward copiotrophic microbial groups. Overall, declining soil pH resulted in a decline in soil aggregate stability and an increase in SOC aromaticity. This drove the shift in the stabilization mechanism of SOC in the black soil ecosystem of meadows in Northeast China from physical protection to chemical stability. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

23 pages, 797 KB  
Review
Seminal Plasma and Extracellular Vesicles as Molecular Gatekeepers: Oxidative Stress, Endocrine Crosstalk, and Biomarker Discovery in Male Infertility
by Pallav Sengupta, Sulagna Dutta, Mahir Khalil Jallo, Israel Maldonado Rosas and Shubhadeep Roychoudhury
Curr. Issues Mol. Biol. 2026, 48(1), 117; https://doi.org/10.3390/cimb48010117 - 22 Jan 2026
Viewed by 38
Abstract
Conventional semen analysis fails to capture the molecular determinants underlying impaired reproductive function. Emerging evidence positions seminal plasma (SP) and extracellular vesicles (EVs) as dynamic regulators of sperm physiology, rather than passive transport components. SP, enriched with proteins, metabolites, hormones, and antioxidants, modulates [...] Read more.
Conventional semen analysis fails to capture the molecular determinants underlying impaired reproductive function. Emerging evidence positions seminal plasma (SP) and extracellular vesicles (EVs) as dynamic regulators of sperm physiology, rather than passive transport components. SP, enriched with proteins, metabolites, hormones, and antioxidants, modulates sperm motility, capacitation, acrosome reaction, and immune tolerance. Complementarily, EVs, including prostasomes, epididymosomes, and testicular vesicles, deliver proteins, lipids, and small RNAs that remodel sperm membranes, protect against oxidative insults, and influence fertilization success. A critical dimension of the SP-EV axis is its role in balancing oxidative stress (OS) and endocrine signaling. Hormones and metabolic regulators within SP, together with EV-mediated transfer of receptors and regulatory RNAs, further integrate systemic metabolic health with local reproductive outcomes. Dysregulation of these networks, particularly in conditions such as varicocele, obesity, diabetes, and idiopathic infertility, compromises sperm function and reduces assisted reproductive technology (ART) success. This evidence-based review synthesizes current evidence on SP and EVs as ‘molecular gatekeepers’ in male infertility, emphasizing OS regulation, endocrine crosstalk, and their potential as biomarker reservoirs. By integrating proteomic, metabolomic, and transcriptomic insights, the translational opportunities for biomarker-informed diagnostics, prognostication, and therapeutic interventions are highlighted. Full article
(This article belongs to the Section Biochemistry, Molecular and Cellular Biology)
Show Figures

Figure 1

8 pages, 591 KB  
Communication
Reducing Photo-Oxidative Stress in IVF: A Retrospective Analysis of Cycles with Poor Blastocyst Development
by Krisztina Gödöny, Ákos Várnagy, Péter Mauchart, Bernadett Nagy, Kálmán Kovács and József Bódis
J. Clin. Med. 2026, 15(2), 881; https://doi.org/10.3390/jcm15020881 (registering DOI) - 21 Jan 2026
Viewed by 107
Abstract
Background: The success of in vitro fertilization (IVF) is influenced by multiple patient- and laboratory-related factors, including maternal age, body mass index (BMI), ovarian stimulation, and embryo quality. Laboratory illumination may induce photo-oxidative stress, potentially impairing embryo development and implantation. This study evaluated [...] Read more.
Background: The success of in vitro fertilization (IVF) is influenced by multiple patient- and laboratory-related factors, including maternal age, body mass index (BMI), ovarian stimulation, and embryo quality. Laboratory illumination may induce photo-oxidative stress, potentially impairing embryo development and implantation. This study evaluated the clinical impact of introducing a light-protection protocol in an IVF laboratory. Methods: We retrospectively analyzed 2125 IVF cycles with fresh embryo transfer performed at the Assisted Reproduction Centre of the University of Pécs between 1 March 2016 and 30 November 2020. A light-protection protocol was implemented on 1 March 2017, while all other laboratory and clinical parameters remained unchanged. Pregnancy outcomes before and after implementation were compared, with additional subgroup analyses focusing on cycles with low blastocyst-formation rates. Results: After implementation of light protection, overall pregnancy rates increased by approximately 5%; however, this difference was not statistically significant. In contrast, subgroup analyses demonstrated a markedly greater improvement in pregnancy outcomes—up to 37%—in cycles characterized by low blastocyst-formation rates. Conclusions: Although light protection did not significantly improve overall pregnancy rates, the findings suggest a clinically relevant benefit in selected cases with reduced embryonic developmental competence. Minimizing photo-oxidative stress may therefore represent a targeted laboratory intervention to improve IVF outcomes in vulnerable embryo populations. Full article
(This article belongs to the Section Reproductive Medicine & Andrology)
Show Figures

Figure 1

55 pages, 778 KB  
Review
Oxidative Stress and SIRT1-Nrf2 Anti-Ferroptotic Pathways in Granulosa Cells: A Molecular Key to Follicular Atresia and Ovarian Aging
by Charalampos Voros, Fotios Chatzinikolaou, Georgios Papadimas, Spyridon Polykalas, Despoina Mavrogianni, Aristotelis-Marios Koulakmanidis, Diamantis Athanasiou, Vasiliki Kanaka, Kyriakos Bananis, Antonia Athanasiou, Aikaterini Athanasiou, Ioannis Papapanagiotou, Charalampos Tsimpoukelis, Athanasios Karpouzos, Maria Anastasia Daskalaki, Nikolaos Kanakas, Marianna Theodora, Nikolaos Thomakos, Panagiotis Antsaklis, Dimitrios Loutradis and Georgios Daskalakisadd Show full author list remove Hide full author list
Int. J. Mol. Sci. 2026, 27(2), 950; https://doi.org/10.3390/ijms27020950 - 18 Jan 2026
Viewed by 99
Abstract
The functional deterioration of granulosa cells (GCs), essential for follicular growth, steroidogenesis, and oocyte competence, indicates ovarian aging and reduced fertility. An expanding corpus of research indicates that oxidative stress is a primary molecular contributor to granulosa cell dysfunction, culminating in mitochondrial impairment, [...] Read more.
The functional deterioration of granulosa cells (GCs), essential for follicular growth, steroidogenesis, and oocyte competence, indicates ovarian aging and reduced fertility. An expanding corpus of research indicates that oxidative stress is a primary molecular contributor to granulosa cell dysfunction, culminating in mitochondrial impairment, reduced metabolic support for oocytes, and the activation of regulated apoptotic pathways that end in follicular atresia. Ferroptosis, an emergent type of iron-dependent lipid peroxidation, has been identified as a crucial mechanism contributing to chemotherapy-induced ovarian insufficiency, polycystic ovary syndrome (PCOS), and granulosa cell death in aging ovaries, in addition to conventional apoptosis. The SIRT1-Nrf2 axis acts as a crucial anti-oxidative and anti-ferroptotic system that protects GC viability, maintains mitochondrial homeostasis, and upholds redox equilibrium. SIRT1 promotes mitochondrial biogenesis and metabolic resilience by deacetylating downstream proteins, including FOXO3 and PGC-1α. Nrf2 simultaneously controls the transcriptional activation of detoxifying and antioxidant enzymes, including HO-1, SOD2, NQO1, and GPX4, which are critical inhibitors of ferroptosis. Disruption of SIRT1-Nrf2 signalling accelerates GC senescence, follicular depletion, and reproductive aging. In contrast, pharmaceutical and nutraceutical therapies, including metformin, melatonin, resveratrol, and agents that increase NAD+ levels, may reverse ovarian deterioration and reactivate SIRT1-Nrf2 activity. This narrative review highlights innovative treatment prospects for ovarian aging, fertility preservation, and assisted reproduction by synthesising current evidence on ferroptotic pathways, SIRT1-Nrf2 interactions, and oxidative stress in granulosa cells. An understanding of these interrelated biological networks enables the development of tailored therapies that postpone ovarian ageing and enhance reproductive outcomes for women receiving fertility therapy. Full article
(This article belongs to the Special Issue Molecular Studies in Endocrinology and Reproductive Biology)
Show Figures

Figure 1

19 pages, 4513 KB  
Article
Ginseng Polysaccharides Protect Against Endoplasmic Reticulum Stress-Induced Damage via PI3K/Akt Signalling Pathway in Bovine Ovarian Granulosa Cells
by Hongjie Wang, Yi Fang, Lei Huang, Xu Yang, Xin Ma, Yang Lyu, Guo Jing, He Ding, Hongyu Liu and Wenfa Lyu
Cells 2026, 15(2), 172; https://doi.org/10.3390/cells15020172 - 17 Jan 2026
Viewed by 259
Abstract
Necroptosis and dysfunction of ovarian granulosa cells are major contributors to follicular atresia and reduced fertility in cattle, processes that are closely associated with endoplasmic reticulum stress (ERS). Ginseng polysaccharides (GPSs) are known to reduce ER stress, display anti-inflammatory properties, and modulate reproductive [...] Read more.
Necroptosis and dysfunction of ovarian granulosa cells are major contributors to follicular atresia and reduced fertility in cattle, processes that are closely associated with endoplasmic reticulum stress (ERS). Ginseng polysaccharides (GPSs) are known to reduce ER stress, display anti-inflammatory properties, and modulate reproductive function; however, whether GPS can protect against granulosa cell injury and the underlying mechanisms remain unclear. To address this gap, this study aimed to investigate the protective effects of GPS on ERS-induced bovine granulosa cell damage and to elucidate the associated mechanisms. An ERS model was established in bovine granulosa cells using tunicamycin (Tm), and cellular responses were evaluated via flow cytometry, ELISA, and EdU assays. Further, a mouse model was used to validate the protective effects of GPS against Tm-induced ovarian injury. The results showed that 40 μg/mL of GPS significantly alleviated ERS-induced granulosa cell damage, inhibited necroptosis, and mitigated ERS. Moreover, using the PI3K/Akt pathway inhibitor LY294002, we demonstrated that the inhibitor antagonized the effects of GPS, indicating that GPS promotes granulosa cell proliferation and restores estrogen secretion via activating the PI3K/Akt pathway. In vivo experiments further confirmed that GPS effectively attenuates ERS-induced ovarian damage in mice. Collectively, these findings reveal that GPS improves granulosa cell function and ovarian tissue integrity by modulating the ERS network and the PI3K/Akt pathway, yielding a theoretical basis for preventing follicular atresia and enhancing reproductive efficiency in cattle. Full article
Show Figures

Figure 1

20 pages, 2354 KB  
Article
Combined Effects of Vegetable Oil-, Micronutrient-, and Activated Flavonoid-Based Biostimulants on Photosynthesis, Nematode Suppression, and Fruit Quality of Cucumber (Cucumis sativus L.)
by Georgia Ouzounidou, Niki-Sophia Antaraki, Antonios Anagnostou, George Daskas and Ioannis-Dimosthenis Adamakis
Plants 2026, 15(2), 274; https://doi.org/10.3390/plants15020274 - 16 Jan 2026
Viewed by 225
Abstract
The agricultural industry faces increasing environmental degradation due to the intensive use of conventional chemical fertilizers, leading to water pollution and alterations in soil composition. In addition, root-knot and cyst nematodes are major constraints to cucumber production, causing severe root damage and yield [...] Read more.
The agricultural industry faces increasing environmental degradation due to the intensive use of conventional chemical fertilizers, leading to water pollution and alterations in soil composition. In addition, root-knot and cyst nematodes are major constraints to cucumber production, causing severe root damage and yield losses worldwide, underscoring the need for sustainable alternatives to conventional fertilization and pest management. Under greenhouse conditions, a four-month cultivation trial evaluated vegetable oil-, micronutrient-, and activated flavonoid-based biostimulants, applying Key Eco Oil® (Miami, USA) via soil drench (every 15 days) combined with foliar sprays of CropBioLife® (Victoria, Australia) and KeyPlex 120® (Miami, USA) (every 7 days). Results showed reduced parasitic nematodes by 66% in soil and decreased gall formation by 41% in roots. Chlorophyll fluorescence and infrared gas analysis revealed higher oxygen-evolving complex efficiency (38%), increased PSII electron transport, improved the fluorescence decrease ratio, also known as the vitality index (Rfd), and higher CO2 assimilation compared to conventional treatments. Processed cucumbers showed higher sugar and nearly double ascorbic acid content, with improved flesh consistency and color. Therefore, the application of these bioactive products significantly reduced nematode infestation while enhancing plant growth and physiological performance, underscoring their potential as sustainable tools for crop cultivation and protection. These results provide evidence that sustainable bioactive biostimulants improve plant resilience, productivity, and nutritional quality, offering also an environmentally sound approach to pest management. Full article
(This article belongs to the Special Issue Plants 2025—from Seeds to Food Security)
Show Figures

Figure 1

18 pages, 6393 KB  
Article
Deep Plowing Increases Subsoil Carbon Accrual Through Enhancing Macroaggregate Protection in a Mollisol with Two Different Tillage Regimes
by Jiuhui Chen, Zhicheng Bao, Yulong Yang, Jingkun Lu, Baoyu Chen, Xingmin Zhao, Hongbin Wang, Fangming Liu, Dongmei Wang, Chenyu Zhao, Li Wang, Hongjun Wang and Biao Sui
Agronomy 2026, 16(2), 198; https://doi.org/10.3390/agronomy16020198 - 14 Jan 2026
Viewed by 230
Abstract
Soil organic carbon (SOC) is a core component of farmland fertility, and its content is significantly influenced by tillage practices. To clarify the effects of alternate tillage on soil organic carbon sequestration and soil aggregate stability, a tillage experiment was initiated in 2017. [...] Read more.
Soil organic carbon (SOC) is a core component of farmland fertility, and its content is significantly influenced by tillage practices. To clarify the effects of alternate tillage on soil organic carbon sequestration and soil aggregate stability, a tillage experiment was initiated in 2017. The study focused on the distribution of soil aggregates across different particle sizes and their organic carbon contents under four tillage treatments: (1) rotary tillage for two consecutive years after initial deep plowing (RT_DP); (2) no-tillage for two consecutive years after initial deep plowing (NT_DP); (3) continuous rotary tillage (RT); and (4) continuous no-tillage (NT). Compared with continuous rotary tillage (RT), RT_DP increased the crop yield by 14.78%, NT decreased the yield by 10.59%, and NT_DP increased the yield by 3.40%. In the topsoil, soil organic carbon (SOC) content increased by 21.57% under RT_DP, 24.47% under NT, and 21.57% under NT_DP. In the subsoil, SOC content increased by 36.91% under RT_DP, 24.80% under NT, and 42.52% under NT_DP. Compared with the RT treatment, practices such as RT_DP increased the SOC content and the proportion of macroaggregates. No significant differences were observed among all treatments in the topsoil. However, in the subsoil, RT_DP significantly increased the SOC content (by 36.91%), SOC content within >0.25 mm aggregates (by 35.75%), and the proportion of >0.25 mm aggregates (by 1.28%), relative to RT. Compared with NT, NT_DP also increased these three indices by 14.2%, 13.38%, and 0.32%, respectively. In the topsoil, the NT_DP treatment resulted in higher mean weight diameter (MWD) stability than the other treatments. In the subsoil, the NT treatment showed the highest MWD and geometric mean diameter (GMD) values, while both RT_DP and NT_DP had significantly higher MWD and GMD than RT. In the deeper soil layer, the NT treatment exhibited the highest aggregate stability. Further analysis indicated that the positive effects of alternate tillage (NT_DP and RT_DP) on aggregate distribution, aggregate stability, and subsoil SOC sequestration were mainly due to improvements in the soil’s nutrient availability, bulk density, porosity, and water content. The optimization of these soil properties further enhanced soil enzyme activity and ultimately promoted the stabilization and accumulation of SOC. In conclusion, incorporating deep plowing into rotational tillage can effectively promote SOC accumulation, especially in the subsoil of maize farmland, and enhance the physical protection of SOC. This study provides a practical tillage strategy for increasing the maize yield and enhancing soil organic carbon sequestration. Full article
(This article belongs to the Special Issue Plant Nutrition Eco-Physiology and Nutrient Management)
Show Figures

Figure 1

22 pages, 980 KB  
Review
The Use of Plant Extracts to Improve Male Reproductive Performance: A Review Focusing on Mammalian Semen Quality and Preservation
by Rantloko Rolly Maapola, Khathutshelo Agree Nephawe, Masindi Lottus Mphaphathi and Jabulani Nkululeko Ngcobo
Agriculture 2026, 16(2), 184; https://doi.org/10.3390/agriculture16020184 - 11 Jan 2026
Viewed by 421
Abstract
In African countries and many developing countries, communal farmers rely on livestock such as cattle, goats, and sheep to support food security, income, and agricultural activities. Fertility in these animals is often limited by poor semen quality, which reduces sperm concentration, total motility, [...] Read more.
In African countries and many developing countries, communal farmers rely on livestock such as cattle, goats, and sheep to support food security, income, and agricultural activities. Fertility in these animals is often limited by poor semen quality, which reduces sperm concentration, total motility, and morphology. Assisted reproductive biotechnologies, including semen cryopreservation and artificial insemination, are increasingly essential to enhance reproductive efficiency and productivity. Although cryopreservation preserves valuable genetic material, it can damage sperm cells, making high-quality extenders critical for protection. Common extenders, such as Tris-egg yolk glucose, citrate-sugar-based, and skimmed milk solutions, supply nutrients and protect sperm membranes. To further minimize oxidative stress, antioxidants are incorporated, with growing interest in plant-derived compounds. Many plants contain bioactive substances, including antioxidants and phytomelatonin, which can enhance sperm quality safely and effectively. This review examines the use of plant-based antioxidants during semen cryopreservation and highlights their potential to improve fertility in mammalian livestock. Full article
(This article belongs to the Section Farm Animal Production)
Show Figures

Figure 1

28 pages, 9478 KB  
Article
Integrating Agro-Hydrological Modeling with Index-Based Vulnerability Assessment for Nitrate-Contaminated Groundwater
by Dawid Potrykus, Adam Szymkiewicz, Beata Jaworska-Szulc, Gianluigi Busico, Anna Gumuła-Kawęcka, Wioletta Gorczewska-Langner and Micol Mastrocicco
Sustainability 2026, 18(2), 729; https://doi.org/10.3390/su18020729 - 10 Jan 2026
Viewed by 254
Abstract
Protecting groundwater against pollution from agricultural sources is a key aspect of sustainable management of soil and water resources. Implementation of sustainable strategies for agricultural production can be supported by modeling tools, which allow us to quantify the effects of different agricultural practices [...] Read more.
Protecting groundwater against pollution from agricultural sources is a key aspect of sustainable management of soil and water resources. Implementation of sustainable strategies for agricultural production can be supported by modeling tools, which allow us to quantify the effects of different agricultural practices in the context of groundwater vulnerability to contamination. In this study we present a method to assess groundwater vulnerability to nitrate pollution based on a combination of the SWAT agro-hydrological model and the DRASTIC index method. SWAT modeling was applied to assess different scenarios of agricultural practices and identify solutions for sustainable management of soil and groundwater and reduction of nitrate pollution. The developed method was implemented for groundwater resources in a study area (Puck Bay region, southern Baltic coast), which represented a complex multi-aquifer system formed in Quaternary fluvioglacial deposits (sand and gravel) separated by moraine tills. In order to investigate the effects of different agricultural practices, 12 scenarios have been defined, which were grouped into four classes: crop type, fertilizer management, tillage, and grazing. An overlay index structure was applied, and ratings and weights to several factors were assigned. All analyses were processed using GIS tools, and the results are presented in the form of maps, which categorize groundwater vulnerability to nitrate pollution into five classes, ranging from very low to very high. The results reveal significant variability in groundwater vulnerability to nitrate pollution in the study area. Agricultural practices have a very strong influence on groundwater vulnerability by controlling both recharge rates and nitrogen losses from the soil profile. The most pronounced increases in vulnerability were associated with scenarios involving excessive fertilization and intensive grazing. Among crop types, potato cultivation appears to pose the greatest risk to groundwater quality. Full article
Show Figures

Figure 1

26 pages, 3672 KB  
Article
A Computational Sustainability Framework for Vegetation Degradation and Desertification Assessment in Arid Lands in Saudi Arabia
by Afaf AlAmri, Majdah Alshehri and Ohoud Alharbi
Sustainability 2026, 18(2), 641; https://doi.org/10.3390/su18020641 - 8 Jan 2026
Viewed by 186
Abstract
Vegetation degradation in arid and semi-arid regions is intensifying due to rising temperatures, declining rainfall, soil exposure, and persistent human pressures. Drylands cover over 41% of the global land surface and support nearly two billion people, making their degradation a major environmental and [...] Read more.
Vegetation degradation in arid and semi-arid regions is intensifying due to rising temperatures, declining rainfall, soil exposure, and persistent human pressures. Drylands cover over 41% of the global land surface and support nearly two billion people, making their degradation a major environmental and socio-economic concern. However, many remote sensing and GIS-based assessment approaches remain fragmented and difficult to reproduce. This study proposes a Computational Sustainability Framework for vegetation degradation assessment that integrates multi-source satellite data, biophysical indicators, automated geospatial preprocessing, and the Analytical Hierarchy Process (AHP) within a transparent and reproducible workflow. The framework comprises four phases: data preprocessing, indicator extraction and normalization, AHP-based modeling, and spatial classification with qualitative validation. The framework was applied to the Al-Khunfah and Harrat al-Harrah Protected Areas in northern Saudi Arabia using multi-source datasets for the January–April 2023 period, including Sentinel-2, Landsat-8, CHIRPS precipitation, ESA-CCI land cover, FAO soil data, and SRTM DEM. High degradation zones were associated with low NDVI (<0.079), high BSI (>0.276), and elevated LST (>49 °C), whereas low degradation areas were concentrated near wadis and relatively more fertile soils. Overall, the proposed framework provides a scalable and interpretable tool for early-stage vegetation degradation screening in arid environments, supporting the prioritization of areas for ecological investigation and restoration planning. Full article
(This article belongs to the Section Sustainable Agriculture)
Show Figures

Figure 1

23 pages, 4022 KB  
Article
Machine Learning—Driven Analysis of Agricultural Nonpoint Source Pollution Losses Under Variable Meteorological Conditions: Insights from 5 Year Site-Specific Tracking
by Ran Jing, Yinghui Xie, Zheng Hu, Xingjian Yang, Xueming Lin, Wenbin Duan, Feifan Zeng, Tianyi Chen, Xin Wu, Xiaoming He and Zhen Zhang
Sustainability 2026, 18(2), 590; https://doi.org/10.3390/su18020590 - 7 Jan 2026
Viewed by 206
Abstract
Agricultural nonpoint source pollution is emerging as one of the increasingly serious environmental concerns all over the world. This study conducted field experiments in Zengcheng District, Guangzhou City, from 2019 to 2023 to explore the mechanisms by which different crop types, fertilization modes, [...] Read more.
Agricultural nonpoint source pollution is emerging as one of the increasingly serious environmental concerns all over the world. This study conducted field experiments in Zengcheng District, Guangzhou City, from 2019 to 2023 to explore the mechanisms by which different crop types, fertilization modes, and meteorological conditions affect the loss of nitrogen and phosphorus in agricultural nonpoint source pollution. In rice and corn, the CK and PK treatment groups showed significant fitting advantages, such as the R2 of rice-CK reaching 0.309. MAE was 0.395, and the R2 of corn-PK was as high as 0.415. For compound fertilization groups such as NPK and OF, the model fitting ability decreased, such as the R2 of rice-NPK dropping to 0.193 and the R2 of corn-OF being only 0.168. In addition, the overall performance of the model was limited in the modeling of total phosphorus. A relatively good fit was achieved in corn (such as NPK group R2 = 0.272) and in vegetables and citrus. R2 was mostly below 0.25. The results indicated that fertilization management, crop types, and meteorological conditions affected nitrogen and phosphorus losses in agricultural runoff. Cornfields under conventional nitrogen, phosphorus, and potassium fertilizer (NPK) and conventional nitrogen and potassium fertilizer treatment without phosphorus fertilizer (NK) treatments exhibited the highest nitrogen losses, while citrus fields showed elevated phosphorus concentrations under NPK and PK treatments. Organic fertilizer treatments led to moderate nutrient losses but greater variability. Organic fertilizer treatments resulted in moderate nutrient losses but showed greater interannual variability. Meteorological drivers differed among crop types. Nitrogen enrichment was mainly associated with high temperature and precipitation, whereas phosphorus loss was primarily triggered by short-term extreme weather events. Linear regression models performed well under simple fertilization scenarios but struggled with complex nutrient dynamics. Crop-specific traits such as flooding in rice fields, irrigation in corn, and canopy coverage in citrus significantly influenced nutrient migration. The findings of this study highlight that nutrient losses are jointly regulated by crop systems, fertilization practices, and meteorological variability, particularly under extreme weather conditions. These findings underscore the necessity of crop-specific and climate-adaptive nutrient management strategies to reduce agricultural nonpoint source pollution. By integrating long-term field observations with machine learning–based analysis, this study provides scientific evidence to support sustainable fertilizer management, protection of water resources, and environmentally responsible agricultural development in subtropical regions. The proposed approaches contribute to sustainable land and water resource utilization and climate-resilient agricultural systems, aligning with the goals of sustainable development in rapidly urbanizing river basins. Full article
Show Figures

Figure 1

31 pages, 2716 KB  
Article
REGENA: Growth Function for Regenerative Farming
by Georgios Karakatsanis, Dimitrios Managoudis and Emmanouil Makronikolakis
Agriculture 2026, 16(1), 134; https://doi.org/10.3390/agriculture16010134 - 5 Jan 2026
Viewed by 287
Abstract
Our work develops the structural mathematical framework of the REGENerative Agriculture (REGENA) Production Function, contributing to the limited global literature of regenerative farming production functions with consistency to the 2nd Law of Thermodynamics and the underlying biophysical processes for ecosystem services’ generation. [...] Read more.
Our work develops the structural mathematical framework of the REGENerative Agriculture (REGENA) Production Function, contributing to the limited global literature of regenerative farming production functions with consistency to the 2nd Law of Thermodynamics and the underlying biophysical processes for ecosystem services’ generation. The accurate structural economic modeling of regenerative farming practices comprises a first vital step for the shift of global agriculture from conventional farming—utilizing petrochemical fertilizers, pesticides and intensive tillage—to regenerative farming—utilizing local agro-ecological capital forms, such as micro-organisms, organic biomasses, no-tillage and resistant varieties. In this context, we empirically test the REGENA structural change patterns with data from eight experimental plots in six Mediterranean countries in Southern Europe and Northern Africa for three crop compositions: (a) with exclusively conventional practices, (b) with exclusively regenerative practices and (c) with mixed conventional and regenerative practices. Finally, we discuss in detail the scientific, institutional, economic and financial engineering challenges for the market uptake of regenerative farming and the contribution of REGENA for the achievement of this goal. In addition, as regenerative farming is knowledge-intensive, we review the vital aspect of Open Innovation (OI) and protected Intellectual Property (IP) business models as essential parts of regenerative farming knowledge-sharing clusters and trading alliances. Full article
(This article belongs to the Section Agricultural Economics, Policies and Rural Management)
Show Figures

Figure 1

23 pages, 10183 KB  
Article
Retinoic Acid and Calcitriol Protect Mouse Primordial Follicles from Cyclophosphamide Treatment-Induced Apoptosis
by Sihui He, Xiaodan Zhang, Wenjun Zhou, Ye Chen, Fengxin Liu, Weiyong Wang, Hongwei Wei, Yan Du and Meijia Zhang
Antioxidants 2026, 15(1), 68; https://doi.org/10.3390/antiox15010068 - 4 Jan 2026
Viewed by 491
Abstract
Chemotherapy causes primordial follicle apoptosis, resulting in premature ovarian insufficiency (POI) and infertility. In this study, we found that intraperitoneal injection of retinoic acid (RA) and calcitriol partially reversed the cyclophosphamide and doxorubicin treatment-induced decrease in primordial follicles in neonatal mouse ovaries. Furthermore, [...] Read more.
Chemotherapy causes primordial follicle apoptosis, resulting in premature ovarian insufficiency (POI) and infertility. In this study, we found that intraperitoneal injection of retinoic acid (RA) and calcitriol partially reversed the cyclophosphamide and doxorubicin treatment-induced decrease in primordial follicles in neonatal mouse ovaries. Furthermore, RA and calcitriol co-treatment reversed cyclophosphamide treatment-induced PI3K/Akt activity and FOXO3a nuclear export in the oocytes within primordial follicles, suggesting that the oocyte transcriptional activity was decreased, which in turn reduced the binding of chemotherapeutic drugs to DNA. Consistent with these findings, RA and calcitriol co-treatment reversed cyclophosphamide treatment-induced changes in reactive oxygen species (ROS), DNA damage response proteins (γH2AX, p-CHK2, p-p53, PUMA, BAX, Cleaved Caspase-3, and cPARP), and antioxidant proteins (NRF2, HO-1, and GPX4). Moreover, RA and calcitriol co-treatment preserved fertility in cyclophosphamide-treated mice without impairing cyclophosphamide’s antitumor efficacy in MCF-7 tumor-bearing mice. Thus, RA and calcitriol protect mouse primordial follicles from cyclophosphamide treatment-induced apoptosis by inhibiting cyclophosphamide treatment-induced oocyte transcriptional activity and enhancing antioxidant capacity. Our results suggest a potential strategy for preserving ovarian reserve during chemotherapy in female cancer patients. Full article
Show Figures

Figure 1

16 pages, 2459 KB  
Article
Hydrochemical Evolution and Pollution Source Apportionment of Groundwater in Arid Regions: A Case Study of the Datong River Basin, Northwest China
by Tao Liu, Jian Kang, Youwei Yu, Yue Qi and Zizhao Zhang
Water 2026, 18(1), 105; https://doi.org/10.3390/w18010105 - 1 Jan 2026
Viewed by 281
Abstract
Understanding hydrochemical evolution and apportioning pollution sources are prerequisites for effective groundwater protection at the regional scale; nevertheless, the governing processes and anthropogenic drivers in arid regions remain poorly constrained. Here, we present a comprehensive geochemical survey of the Datong River Basin, a [...] Read more.
Understanding hydrochemical evolution and apportioning pollution sources are prerequisites for effective groundwater protection at the regional scale; nevertheless, the governing processes and anthropogenic drivers in arid regions remain poorly constrained. Here, we present a comprehensive geochemical survey of the Datong River Basin, a representative arid catchment in north-western China. Thirty-seven groundwater samples were analyzed with hydrochemical methods and Positive-Matrix Factorization (PMF) to delineate natural controls and contaminant sources. Results showed that the aquifer is dominated by HCO3–Ca(Mg) water controlled predominantly by silicate and carbonate weathering, modified locally by evapo-concentration and human activities. Water-quality indices classify 70.3% of the samples as excellent, but spatially restricted degradation is evident. PMF resolved three independent sources: a natural end-member enriched in Mn, Na+ and Cl; a mixed source reflecting domestic wastewater, agricultural fertilizers and rock weathering; and an industrial source dominated by Fe. The mixed source contributes most major ions and chemical oxygen demand (COD), whereas the industrial source accounts for 75.7% of total Fe. These findings provide a robust scientific basis for groundwater management and pollution mitigation in arid regions under similar hydrogeological settings. Full article
Show Figures

Figure 1

20 pages, 8309 KB  
Article
Artificial Cultivation Reshapes Soil Nutrient Heterogeneity, Microbial Community Structure, and Multi-Nutrient Cycling Drivers of the Endangered Medicinal Plant Sinopodophyllum hexandrum
by Lin Xu, Penghui Guo, Wen Luo, Zhihong He, Aiai Ma, Hanyue Wang, Xinru Chen and Liqin Na
Diversity 2026, 18(1), 24; https://doi.org/10.3390/d18010024 - 31 Dec 2025
Viewed by 219
Abstract
Artificial cultivation of the endangered medicinal plant Sinopodophyllum hexandrum is a key strategy for resource protection and supply, yet cultivation can cause soil degradation and microbial disorder, while the effect of cultivation on the microbial community and its relationship with soil nutrients remains [...] Read more.
Artificial cultivation of the endangered medicinal plant Sinopodophyllum hexandrum is a key strategy for resource protection and supply, yet cultivation can cause soil degradation and microbial disorder, while the effect of cultivation on the microbial community and its relationship with soil nutrients remains unclear. This study aimed to explore the effects of artificial cultivation on the soil–microorganism–nutrient cycling system of Sinopodophyllum hexandrum, a rare medicinal plant. We compared three groups (Native-wild, Mix-wild, Mix-cultivated) by analyzing soil physicochemical properties, microbial diversity, community structure, co-occurrence networks, and multi-nutrient cycling drivers. Geographic position drove spatial (landscape scale) heterogeneity of soil nutrients, while cultivation shaped its vertical (soil depth) counterpart. Cultivation altered the natural vertical nutrient pattern via surface fertilization, causing nutrient surface retention. Microbial communities exhibited wild-specific/cultivation-specific responses, bacteria were slightly more sensitive to cultivation effect than fungi. Cultivation altered microbial network complexity depending on the host and increased instability, with only bacterial network associations correlating with soil factors. Fungal diversity and specific taxa became core drivers of multi-nutrient cycling. This study clarifies cultivation’s regulatory mechanism on S. hexandrum’s soil–microorganism system, providing a basis for optimizing cultivation management and protecting this endangered species. Full article
(This article belongs to the Section Microbial Diversity and Culture Collections)
Show Figures

Graphical abstract

Back to TopTop