Machine Learning—Driven Analysis of Agricultural Nonpoint Source Pollution Losses Under Variable Meteorological Conditions: Insights from 5 Year Site-Specific Tracking
Abstract
1. Introduction
2. Methodology
2.1. Characteristics of Experimental Sites
2.2. Field Experiment Design and Setup
2.3. Phosphorus and Nitrogen Measurement of Water Runoff Samples
2.4. Correlation Analysis of Meteorological Dataset
2.5. K-Means Cluster Analysis for Water Runoff Samples with Concentrations of Nitrogen and Phosphorus Fertilizers
2.6. Multiple Linear Regression of Meteorological Conditions for Concentrations of Total Nitrogen and Phosphorus Predicting
2.7. Model Performance Metrics
3. Result and Discussion
3.1. Total Concentration of Nitrogen and Phosphorus Through Surface Water Runoff
3.2. Total Losses of Nitrogen and Phosphorus Through Surface Water Runoff
3.3. Correlation Analysis of Meteorological Condition Dataset
3.4. Cluster Analysis for Water Runoff Samples with Concentrations of Nitrogen and Phosphorus Fertilizers
3.5. Results of Multiple Linear Regression of Meteorological Conditions for Concentrations of Total Nitrogen and Phosphorus Predicting
4. Discussion
4.1. Causes for Fluctuation of Nitrogen and Phosphorus Concentrations Under Different Fertilization Treatments
4.2. Correlation Between Crop Types and Nitrogen/Phosphorus Loss
4.3. Characteristics and Limitations of Multiple Linear Regression Models Driven by Meteorology Data
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xie, Z.J.; Ye, C.; Li, C.H.; Shi, X.G.; Shao, Y.; Qi, W. The global progress on the non-point source pollution research from 2012 to 2021: A bibliometric analysis. Environ. Sci. Eur. 2022, 34, 17. [Google Scholar] [CrossRef]
- Fleming, P.M.; Stephenson, K.; Collick, A.S.; Easton, Z.M. Targeting for nonpoint source pollution reduction: A synthesis of lessons learned, remaining challenges, and emerging opportunities. J. Environ. Manag. 2022, 308, 10. [Google Scholar] [CrossRef]
- Wu, Y.P.; Chen, J. Investigating the effects of point source and nonpoint source pollution on the water quality of the East River (Dongjiang) in South China. Ecol. Indic. 2013, 32, 294–304. [Google Scholar] [CrossRef]
- Delkash, M.; Al-Faraj, F.A.M.; Scholz, M. Impacts of Anthropogenic Land Use Changes on Nutrient Concentrations in Surface Waterbodies: A Review. Clean-Soil Air Water 2018, 46, 10. [Google Scholar] [CrossRef]
- Pretty, J.; Sutherland, W.J.; Ashby, J.; Auburn, J.; Baulcombe, D.; Bell, M.; Bentley, J.; Bickersteth, S.; Brown, K.; Burke, J.; et al. The top 100 questions of importance to the future of global agriculture. Int. J. Agric. Sustain. 2010, 8, 219–236. [Google Scholar] [CrossRef]
- You, H.Y.; Li, J.W.; Xu, F.Y. Off-farm employment and nonpoint source pollution from chemical fertilizers in China: Mediating role of farmland transfer. Environ. Dev. Sustain. 2024; online ahead of print. [Google Scholar] [CrossRef]
- Sun, B.; Zhang, L.X.; Yang, L.Z.; Zhang, F.S.; Norse, D.; Zhu, Z.L. Agricultural Non-Point Source Pollution in China: Causes and Mitigation Measures. Ambio 2012, 41, 370–379. [Google Scholar] [CrossRef]
- Ju, X.T.; Gu, B.J.; Wu, Y.Y.; Galloway, J.N. Reducing China’s fertilizer use by increasing farm size. Glob. Environ. Chang.-Hum. Policy Dimens. 2016, 41, 26–32. [Google Scholar] [CrossRef]
- Wang, C.; Shen, Y.; Fang, X.T.; Xiao, S.Q.; Liu, G.Y.; Wang, L.G.; Gu, B.J.; Zhou, F.; Chen, D.L.; Tian, H.Q.; et al. Reducing soil nitrogen losses from fertilizer use in global maize and wheat production. Nat. Geosci. 2024, 17, 22. [Google Scholar] [CrossRef]
- Bechmann, M.; Stålnacke, P. Agricultural nitrogen and phosphorus pollution in surface waters. In Oxford Research Encyclopedia of Environmental Science; Oxford University Press: Oxford, UK, 2019. [Google Scholar]
- Wurtsbaugh, W.A.; Paerl, H.W.; Dodds, W.K.J.W.I.R.W. Nutrients, eutrophication and harmful algal blooms along the freshwater to marine continuum. Wiley Interdiscip. Rev. Water 2019, 6, e1373. [Google Scholar] [CrossRef]
- Wang, X.B.; Wang, X.L.; Sheng, H.J.; Wang, X.Z.; Zhao, H.T.; Feng, K. Excessive Nitrogen Fertilizer Application Causes Rapid Degradation of Greenhouse Soil in China. Pol. J. Environ. Stud. 2022, 31, 1527–1534. [Google Scholar] [CrossRef]
- Srivastav, A.L.; Patel, N.; Rani, L.; Kumar, P.; Dutt, I.; Maddodi, B.S.; Chaudhary, V.K. Sustainable options for fertilizer management in agriculture to prevent water contamination: A review. Environ. Dev. Sustain. 2024, 26, 8303–8327. [Google Scholar] [CrossRef]
- Hussain, F.; Ahmed, S.; Muhammad Zaigham Abbas Naqvi, S.; Awais, M.; Zhang, Y.; Zhang, H.; Raghavan, V.; Zang, Y.; Zhao, G.; Hu, J.J.A. Agricultural Non-Point Source Pollution: Comprehensive Analysis of Sources and Assessment Methods. Agriculture 2025, 15, 531. [Google Scholar] [CrossRef]
- Agrawal, N.; Govil, H.; Kumar, T. Agricultural land suitability classification and crop suggestion using machine learning and spatial multicriteria decision analysis in semi-arid ecosystem. Environ. Dev. Sustain. 2025, 27, 13689–13726. [Google Scholar] [CrossRef]
- Huan, J.; Fan, Y.X.; Xu, X.G.; Zhou, L.W.; Zhang, H.; Zhang, C.; Hu, Q.C.; Cai, W.X.; Ju, H.R.; Gu, S.L. Deep learning model based on coupled SWAT and interpretable methods for water quality prediction under the influence of non-point source pollution. Comput. Electron. Agric. 2025, 231, 14. [Google Scholar] [CrossRef]
- Yin, M.W.; Wu, Z.J.; Zhang, Q.; Su, Y.Y.; Hong, Q.; Jia, Q.Q.; Wang, X.; Wang, K.; Cheng, J.R. Combining SWAT with Machine Learning to Identify Primary Controlling Factors and Their Impacts on Non-Point Source Pollution. Water 2024, 16, 3026. [Google Scholar] [CrossRef]
- Zeng, F.F.; Zuo, Z.; Mo, J.C.; Chen, C.Y.; Yang, X.J.; Wang, J.J.; Wang, Y.; Zhao, Z.Q.; Chen, T.Y.; Li, Y.T.; et al. Runoff Losses in Nitrogen and Phosphorus from Paddy and Maize Cropping Systems: A Field Study in Dongjiang Basin, South China. Front. Plant Sci. 2021, 12, 15. [Google Scholar] [CrossRef]
- Ho, K.C.; Chow, Y.L.; Yau, J.T.S. Chemical and microbiological qualities of the East River (Dongjiang) water, with particular reference to drinking water supply in Hong Kong. Chemosphere 2003, 52, 1441–1450. [Google Scholar] [CrossRef]
- Ding, J.; Jiang, Y.; Liu, Q.; Hou, Z.; Liao, J.; Fu, L.; Peng, Q. Influences of the land use pattern on water quality in low-order streams of the Dongjiang River basin, China: A multi-scale analysis. Sci. Total Environ. 2016, 551, 205–216. [Google Scholar] [CrossRef]
- Kleinman, P.J.A.; Srinivasan, M.S.; Dell, C.J.; Schmidt, J.P.; Sharpley, A.N.; Bryant, R.B. Role of rainfall intensity and hydrology in nutrient transport via surface runoff. J. Environ. Qual. 2006, 35, 1248–1259. [Google Scholar] [CrossRef]
- Kulkarni, S. Climate change, soil erosion risks, and nutritional security. In Climate Change and Resilient Food Systems: Issues, Challenges, and Way Forward; Springer: Singapore, 2021; pp. 219–244. [Google Scholar] [CrossRef]
- Costa, D.; Sutter, C.; Shepherd, A.; Jarvie, H.; Wilson, H.; Elliott, J.; Liu, J.; Macrae, M. Impact of climate change on catchment nutrient dynamics: Insights from around the world. Environ. Rev. 2022, 31, 4–25. [Google Scholar] [CrossRef]
- HJ 636-2012; Water Quality—Determination of Total Nitrogen—Alkaline Potassium Persulfate Digestion UV Spectrophotometric Method. Ministry of Environmental Protection of the People’s Republic of China: Beijing, China, 2012.
- HJ 671-2013; Water Quality—Determination of Total Phosphorus—Continuous Injection–Ammonium Molybdate Spectrophotometric Method. Ministry of Environmental Protection of the People’s Republic of China: Beijing, China, 2013.
- Hodson, T.O. Root-mean-square error (RMSE) or mean absolute error (MAE): When to use them or not. Geosci. Model Dev. 2022, 15, 5481–5487. [Google Scholar] [CrossRef]
- Wang, X.; Wang, B.; Gu, W.; Li, J.J.A. Effects of carbon-based fertilizer on soil physical and chemical properties, soil enzyme activity and soil microorganism of maize in northeast China. Agronomy 2023, 13, 877. [Google Scholar] [CrossRef]
- Shah, F.; Wu, W. Soil and Crop Management Strategies to Ensure Higher Crop Productivity within Sustainable Environments. Sustainability 2019, 11, 1485. [Google Scholar] [CrossRef]
- Sherman, J.F.; Young, E.O.; Jokela, W.E.; Casler, M.D.; Coblentz, W.K.; Cavadini, J.J.S.S. Influence of soil and manure management practices on surface runoff phosphorus and nitrogen loss in a corn silage production system: A paired watershed approach. Soil Syst. 2020, 5, 1. [Google Scholar] [CrossRef]
- Liu, R.; Zhang, Y.T.; Wang, Z.C.; Zhang, X.L.; Xu, W.J.; Zhang, J.W.; Zhang, Y.Q.; Hu, B.; Shi, X.J.; Rennenberg, H. Groundcover improves nutrition and growth of citrus trees and reduces water runoff, soil erosion and nutrient loss on sloping farmland. Front. Plant Sci. 2024, 15, 16. [Google Scholar] [CrossRef]
- Heinen, M.; Assinck, F.; Groenendijk, P.; Schoumans, O. Soil dynamic models: Predicting the behavior of fertilizers in the soil. In Biorefinery of Inorganics: Recovering Mineral Nutrients from Biomass and Organic Waste; Wiley: New York, NY, USA, 2020; pp. 405–435. [Google Scholar]









| Property | Value |
|---|---|
| Soil type | Acidic red soil |
| Texture | Sandy loam |
| Clay (%) | 14.6 |
| Silt (%) | 15.9 |
| Sand (%) | 69.5 |
| pH | 5.83 |
| Bulk density (g/cm3) | 1.26 |
| Organic matter (g/kg) | 15.49 |
| Total nitrogen (g/kg) | 1.2 |
| Total phosphorus (g/kg) | 0.6 |
| Alkaline nitrogen (mg/kg) | 60.97 |
| Available phosphorus (mg/kg) | 19.47 |
| Total potassium (g/kg) | 4.14 |
| Crop Type | Treatment | Total Nitrogen Runoff Loss (kg/hm2) | Total Phosphorus Runoff Loss (kg/hm2) | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| 2019 | 2020 | 2021 | 2022 | 2023 | 2019 | 2020 | 2021 | 2022 | 2023 | ||
| Rice | NPK a | 4.22 ± 0.29 | 10.01 ± 0.95 | 8.21 ± 0.95 | 9.66 ± 0.48 | 11.29 ± 0.56 | 0.13 ± 0.01 | 0.89 ± 0.09 | 0.87 ± 0.09 | 0.96 ± 0.05 | 0.90 ± 0.05 |
| PK b | 2.48 ± 0.19 | 5.70 ± 1.03 | 5.41 ± 1.03 | 4.10 ± 0.21 | 3.85 ± 0.19 | 0.17 ± 0.03 | 1.06 ± 0.07 | 0.88 ± 0.07 | 0.94 ± 0.05 | 0.93 ± 0.05 | |
| NK c | 4.38 ± 0.46 | 11.54 ± 0.77 | 10.04 ± 0.77 | 10.18 ± 0.51 | 11.81 ± 0.59 | 0.06 ± 0.01 | 0.22 ± 0.04 | 0.22 ± 0.04 | 0.23 ± 0.01 | 0.16 ± 0.01 | |
| CK d | 2.10 ± 0.12 | 4.56 ± 0.96 | 4.66 ± 0.96 | 4.08 ± 0.20 | 3.60 ± 0.18 | 0.04 ± 0.01 | 0.18 ± 0.04 | 0.17 ± 0.04 | 0.19 ± 0.01 | 0.20 ± 0.01 | |
| OF e | 6.19 ± 0.00 | 8.75 ± 0.56 | 8.56 ± 0.57 | 8.35 ± 0.42 | 9.23 ± 0.46 | 0.43 ± 0.00 | 0.71 ± 0.08 | 0.57 ± 0.08 | 0.73 ± 0.04 | 0.64 ± 0.03 | |
| Vegetables | NPK a | 6.08 ± 0.33 | 8.73 ± 0.64 | 8.12 ± 0.64 | 9.03 ± 0.45 | 7.84 ± 0.39 | 0.58 ± 0.04 | 0.40 ± 0.05 | 0.37 ± 0.05 | 0.47 ± 0.02 | 0.31 ± 0.02 |
| PK b | 2.99 ± 0.49 | 2.54 ± 0.29 | 2.26 ± 0.29 | 2.59 ± 0.13 | 2.31 ± 0.12 | 0.64 ± 0.06 | 0.50 ± 0.02 | 0.45 ± 0.02 | 0.39 ± 0.02 | 0.31 ± 0.02 | |
| NK c | 5.35 ± 0.73 | 8.99 ± 0.79 | 8.09 ± 0.79 | 7.37 ± 0.37 | 8.28 ± 0.41 | 0.17 ± 0.03 | 0.14 ± 0.02 | 0.13 ± 0.02 | 0.13 ± 0.01 | 0.03 ± 0.00 | |
| CK d | 1.64 ± 0.18 | 2.44 ± 0.09 | 2.17 ± 0.40 | 1.98 ± 0.10 | 2.28 ± 0.11 | 0.21 ± 0.03 | 0.14 ± 0.03 | 0.12 ± 0.03 | 0.13 ± 0.01 | 0.05 ± 0.01 | |
| OF e | 7.49 ± 0.00 | 8.63 ± 0.79 | 7.42 ± 0.10 | 6.01 ± 0.30 | 6.10 ± 0.31 | 0.25 ± 0.00 | 0.44 ± 0.03 | 0.38 ± 0.03 | 0.37 ± 0.02 | 0.24 ± 0.01 | |
| Corn | NPK a | 23.19 ± 1.44 | 22.26 ± 0.84 | 17.81 ± 0.84 | 16.83 ± 0.84 | 13.67 ± 0.68 | 0.82 ± 0.05 | 0.69 ± 0.03 | 0.64 ± 0.03 | 0.69 ± 0.03 | 0.41 ± 0.02 |
| PK b | 10.52 ± 0.66 | 8.73 ± 1.47 | 7.07 ± 1.47 | 7.21 ± 0.36 | 3.67 ± 0.18 | 0.80 ± 0.05 | 0.73 ± 0.03 | 0.59 ± 0.03 | 0.66 ± 0.03 | 0.37 ± 0.02 | |
| NK c | 24.22 ± 0.83 | 19.77 ± 0.96 | 15.81 ± 0.96 | 16.45 ± 0.82 | 12.14 ± 0.61 | 0.34 ± 0.05 | 0.43 ± 0.02 | 0.41 ± 0.02 | 0.39 ± 0.02 | 0.14 ± 0.01 | |
| CK d | 8.77 ± 0.48 | 7.82 ± 0.93 | 6.72 ± 0.93 | 7.34 ± 0.37 | 3.87 ± 0.19 | 0.29 ± 0.03 | 0.44 ± 0.02 | 0.38 ± 0.02 | 0.41 ± 0.02 | 0.10 ± 0.00 | |
| OF e | 27.72 ± 0.00 | 19.88 ± 0.90 | 16.70 ± 0.70 | 13.42 ± 0.67 | 10.81 ± 0.54 | 0.73 ± 0.00 | 0.70 ± 0.06 | 0.59 ± 0.06 | 0.47 ± 0.02 | 0.33 ± 0.02 | |
| Citrus | NPK a | 4.84 ± 0.21 | 5.72 ± 0.27 | 5.32 ± 0.27 | 6.36 ± 0.32 | 5.89 ± 0.29 | 0.46 ± 0.07 | 0.34 ± 0.02 | 0.39 ± 0.02 | 0.43 ± 0.02 | 0.50 ± 0.03 |
| PK b | 2.55 ± 0.04 | 2.71 ± 0.37 | 2.42 ± 0.37 | 2.55 ± 0.13 | 2.61 ± 0.13 | 0.51 ± 0.07 | 0.40 ± 0.03 | 0.36 ± 0.03 | 0.18 ± 0.01 | 0.55 ± 0.03 | |
| NK c | 4.8 ± 0.10 | 6.27 ± 0.55 | 5.64 ± 0.55 | 6.13 ± 0.31 | 6.58 ± 0.33 | 0.17 ± 0.02 | 0.19 ± 0.02 | 0.17 ± 0.02 | 0.42 ± 0.02 | 0.29 ± 0.01 | |
| CK d | 2.68 ± 0.09 | 2.15 ± 0.51 | 2.21 ± 0.51 | 2.48 ± 0.12 | 2.58 ± 0.13 | 0.13 ± 0.02 | 0.18 ± 0.02 | 0.16 ± 0.02 | 0.17 ± 0.01 | 0.27 ± 0.01 | |
| OF e | 4.31 ± 0.11 | 4.52 ± 0.44 | 3.89 ± 0.44 | 5.09 ± 0.25 | 4.21 ± 0.21 | 0.42 ± 0.02 | 0.41 ± 0.02 | 0.35 ± 0.02 | 0.39 ± 0.02 | 0.46 ± 0.02 | |
| Cluster-Based Summary of Meteorological Conditions for Total Nitrogen | |||||||||
| Crops | Cluster | Dew Point Temperature (°F) | Visibility (mi) | Average Wind Speed (Knots) | Maximum Sustained Wind Speed (Knots) | Maximum Gust (Knots) | Maximum Temperature (°F) | Minimum Temperature (°F) | Precipitation (in) |
| Rice | 0 | 0.492 | 0.189 | 0.483 | 0.326 | 0.006 | 0.510 | 0.551 | −0.106 |
| 1 | 0.112 | 0.466 | −0.091 | −0.207 | 0.325 | 0.026 | 0.065 | −0.137 | |
| 2 | 0.137 | 0.243 | 0.334 | 0.400 | −0.259 | 0.292 | 0.239 | 0.367 | |
| Vegetables | 0 | −0.269 | −0.105 | 0.094 | −0.153 | 0.092 | −0.263 | −0.334 | 0.167 |
| 1 | −0.211 | 0.121 | 0.382 | 0.261 | −0.335 | −0.199 | −0.103 | −0.130 | |
| 2 | −0.756 | −0.294 | 0.320 | 0.425 | 0.553 | −0.653 | −0.797 | −0.136 | |
| Corn | 0 | 0.472 | 0.114 | 0.094 | 0.049 | 0.096 | 0.456 | 0.457 | 0.407 |
| 1 | 0.246 | 0.294 | 0.249 | 0.542 | −0.737 | 0.436 | 0.484 | −0.132 | |
| 2 | 0.215 | −0.133 | 0.000 | 0.072 | 0.294 | 0.220 | 0.161 | −0.121 | |
| Citrus | 0 | 0.044 | 0.207 | 0.286 | 0.288 | 0.094 | −0.057 | −0.049 | 0.097 |
| 1 | −0.284 | 0.228 | 0.614 | 0.175 | 0.361 | −0.102 | −0.261 | 0.331 | |
| 2 | 0.320 | −0.028 | 0.193 | −0.004 | 0.298 | 0.176 | 0.265 | −0.126 | |
| Cluster-Based Summary of Meteorological Conditions for Total Phosphorus | |||||||||
| Crops | Cluster | Dew Point Temperature (°F) | Visibility (mi) | Average Wind Speed (Knots) | Maximum Sustained Wind Speed (Knots) | Maximum Gust (Knots) | Maximum Temperature (°F) | Minimum Temperature (°F) | Precipitation (in) |
| Rice | 0 | 0.291 | 0.295 | 0.322 | 0.294 | 0.009 | 0.282 | 0.295 | 0.110 |
| 1 | 0.014 | 0.488 | 0.307 | 0.129 | −0.017 | 0.292 | 0.141 | 0.323 | |
| 2 | 0.405 | −0.039 | 0.253 | 0.341 | −0.279 | 0.397 | 0.513 | −0.081 | |
| Vegetables | 0 | −0.390 | 0.103 | 0.237 | 0.132 | 0.177 | −0.332 | −0.434 | 0.209 |
| 1 | −0.238 | −0.181 | 0.194 | 0.059 | −0.083 | −0.275 | −0.213 | −0.127 | |
| 2 | −1.435 | 0.018 | 0.934 | 0.354 | 0.101 | −0.718 | −1.304 | −0.140 | |
| Corn | 0 | 0.219 | 0.256 | 0.106 | 0.038 | −0.576 | 0.456 | 0.351 | −0.134 |
| 1 | 0.386 | −0.057 | 0.141 | 0.236 | 0.520 | 0.315 | 0.312 | 0.327 | |
| 2 | 0.500 | −0.015 | −0.272 | 0.002 | −0.624 | 0.345 | 0.598 | −0.112 | |
| Citrus | 0 | 0.013 | −0.012 | 0.526 | 0.234 | 0.070 | −0.186 | −0.062 | −0.110 |
| 1 | −0.009 | 0.324 | 0.106 | 0.142 | 0.383 | 0.161 | −0.062 | 0.466 | |
| 2 | 0.159 | 0.635 | 0.387 | 0.216 | 0.293 | 0.259 | 0.261 | −0.131 | |
| Citrus | Corn | Rice | Vegetables | |||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Total nitrogen | R2 | MAE | MSE | RMSE | R2 | MAE | MSE | RMSE | R2 | MAE | MSE | RMSE | R2 | MAE | MSE | RMSE |
| NPK | 0.179 | 1.902 | 5.126 | 2.264 | 0.189 | 3.361 | 16.304 | 4.038 | 0.193 | 2.436 | 9.777 | 3.127 | 0.121 | 2.305 | 7.473 | 2.734 |
| PK | 0.154 | 0.982 | 1.233 | 1.11 | 0.415 | 1.009 | 1.553 | 1.246 | 0.274 | 0.493 | 0.299 | 0.547 | 0.16 | 0.631 | 0.73 | 0.854 |
| NK | 0.151 | 1.472 | 3.393 | 1.842 | 0.202 | 2.884 | 12.651 | 3.557 | 0.151 | 1.999 | 7.034 | 2.652 | 0.104 | 2.067 | 6.367 | 2.523 |
| CK | 0.203 | 0.632 | 0.577 | 0.76 | 0.337 | 1.052 | 1.6 | 1.265 | 0.309 | 0.395 | 0.199 | 0.446 | 0.132 | 0.544 | 0.531 | 0.729 |
| OF | 0.125 | 0.783 | 0.901 | 0.949 | 0.168 | 2.244 | 10.617 | 3.258 | 0.215 | 1.945 | 5.497 | 2.345 | 0.137 | 1.409 | 3.65 | 1.91 |
| Total phosphorus | R2 | MAE | MSE | RMSE | R2 | MAE | MSE | RMSE | R2 | MAE | MSE | RMSE | R2 | MAE | MSE | RMSE |
| NPK | 0.145 | 0.181 | 0.046 | 0.214 | 0.272 | 0.147 | 0.037 | 0.192 | 0.093 | 0.276 | 0.101 | 0.318 | 0.183 | 0.143 | 0.029 | 0.17 |
| PK | 0.03 | 0.024 | 0.001 | 0.032 | 0.243 | 0.141 | 0.029 | 0.17 | 0.154 | 0.238 | 0.085 | 0.292 | 0.23 | 0.138 | 0.027 | 0.164 |
| NK | 0.255 | 0.206 | 0.064 | 0.253 | 0.328 | 0.029 | 0.002 | 0.045 | 0.145 | 0.03 | 0.001 | 0.032 | 0.271 | 0.019 | 0.001 | 0.032 |
| CK | 0.216 | 0.033 | 0.002 | 0.045 | 0.301 | 0.032 | 0.002 | 0.045 | 0.119 | 0.034 | 0.002 | 0.045 | 0.199 | 0.064 | 0.031 | 0.176 |
| OF | 0.134 | 0.115 | 0.019 | 0.138 | 0.141 | 0.072 | 0.008 | 0.089 | 0.048 | 0.175 | 0.052 | 0.228 | 0.248 | 0.067 | 0.009 | 0.095 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Jing, R.; Xie, Y.; Hu, Z.; Yang, X.; Lin, X.; Duan, W.; Zeng, F.; Chen, T.; Wu, X.; He, X.; et al. Machine Learning—Driven Analysis of Agricultural Nonpoint Source Pollution Losses Under Variable Meteorological Conditions: Insights from 5 Year Site-Specific Tracking. Sustainability 2026, 18, 590. https://doi.org/10.3390/su18020590
Jing R, Xie Y, Hu Z, Yang X, Lin X, Duan W, Zeng F, Chen T, Wu X, He X, et al. Machine Learning—Driven Analysis of Agricultural Nonpoint Source Pollution Losses Under Variable Meteorological Conditions: Insights from 5 Year Site-Specific Tracking. Sustainability. 2026; 18(2):590. https://doi.org/10.3390/su18020590
Chicago/Turabian StyleJing, Ran, Yinghui Xie, Zheng Hu, Xingjian Yang, Xueming Lin, Wenbin Duan, Feifan Zeng, Tianyi Chen, Xin Wu, Xiaoming He, and et al. 2026. "Machine Learning—Driven Analysis of Agricultural Nonpoint Source Pollution Losses Under Variable Meteorological Conditions: Insights from 5 Year Site-Specific Tracking" Sustainability 18, no. 2: 590. https://doi.org/10.3390/su18020590
APA StyleJing, R., Xie, Y., Hu, Z., Yang, X., Lin, X., Duan, W., Zeng, F., Chen, T., Wu, X., He, X., & Zhang, Z. (2026). Machine Learning—Driven Analysis of Agricultural Nonpoint Source Pollution Losses Under Variable Meteorological Conditions: Insights from 5 Year Site-Specific Tracking. Sustainability, 18(2), 590. https://doi.org/10.3390/su18020590
