Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (478)

Search Parameters:
Keywords = ferromagnetic phase

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 7989 KiB  
Article
Microstructures and Magnetic Properties of Rare-Earth-Free Co-Zr-Mo-B Alloys
by Tetsuji Saito and Masaru Itakura
Crystals 2025, 15(8), 698; https://doi.org/10.3390/cryst15080698 (registering DOI) - 31 Jul 2025
Viewed by 157
Abstract
The growing demand for rare-earth magnets has raised concerns over their price and the country’s risk of depleting the supply of rare-earth elements. These severe concerns have led to the study of rare-earth-free magnets that do not rely on rare-earth elements. Co-Zr-Mo-B alloys, [...] Read more.
The growing demand for rare-earth magnets has raised concerns over their price and the country’s risk of depleting the supply of rare-earth elements. These severe concerns have led to the study of rare-earth-free magnets that do not rely on rare-earth elements. Co-Zr-Mo-B alloys, one of the prospective candidates for rare-earth-free magnets, were produced by the melt-spinning technique and subsequent annealing. It was found that a small substitution of Mo for Zr in the Co-Zr-B alloys increased coercivity. The Co-Zr-Mo-B alloy with a Mo content of 2 at% showed a high coercivity of 6.2 kOe with a remanence of 40 emu/g. SEM studies showed that the annealed Co-Zr-Mo-B alloys had fine, uniform grains with an average diameter of about 0.6 μm. Further studies using STEM demonstrated that the ferromagnetic phase in the annealed Co-Zr-Mo-B alloys with high coercivity was composed of the Co5Zr phase and the long-period stacking ordered (LPSO) phase. That is, the fine grains observed in the SEM studies were found to be ferromagnetic dendrites containing numerous twin boundaries of the Co5Zr phase and its derived LPSO phase. Therefore, the high coercivity of the Co-Zr-Mo-B alloys can be attributed to the presence of ferromagnetic crystals of Co5Zr and the derived LPSO phase. Full article
(This article belongs to the Special Issue Innovations in Magnetic Composites: Synthesis to Application)
Show Figures

Figure 1

19 pages, 4549 KiB  
Article
Synthesis, Structure, and Magnetic Properties of (Co/Eu) Co-Doped ZnO Nanoparticles
by Adil Guler
Coatings 2025, 15(8), 884; https://doi.org/10.3390/coatings15080884 - 29 Jul 2025
Viewed by 198
Abstract
Transition-metal and rare-earth element co-doped ZnO nanoparticles have attracted significant attention due to their potential applications in spintronics and optoelectronics. In this study, Zn0.95Co0.01EuxO (x = 0.01–0.05) nanoparticles were synthesized using the sol–gel technique. The estimated stress, strain, and [...] Read more.
Transition-metal and rare-earth element co-doped ZnO nanoparticles have attracted significant attention due to their potential applications in spintronics and optoelectronics. In this study, Zn0.95Co0.01EuxO (x = 0.01–0.05) nanoparticles were synthesized using the sol–gel technique. The estimated stress, strain, and crystallite sizes of the synthesized Co/Eu co-doped ZnO nanoparticles were calculated using the Williamson–Hall method, and their electron spin resonance (ESR) properties were investigated to examine the effect on their magnetic and structural properties. X-ray diffraction (XRD) analysis confirmed the presence of a single-phase structure. Surface morphology, elemental composition, crystal quality, defect types, density, and magnetic behavior were characterized using scanning electron microscope (SEM), electron-dispersive spectroscopy (EDS), and ESR techniques, respectively. The effect of Eu concentration on the linewidth (ΔBpp) and g-factor in the ESR spectra was studied. By correlating ESR results with the obtained structural properties, room-temperature ferromagnetic behavior was identified. Full article
Show Figures

Figure 1

24 pages, 3701 KiB  
Article
Multifunctional REE Selective Hybrid Membranes Based on Ion-Imprinted Polymers and Modified Multiwalled Carbon Nanotubes: A Physicochemical Characterization
by Aleksandra Rybak, Aurelia Rybak, Sławomir Boncel, Anna Kolanowska, Waldemar Kaszuwara, Mariusz Nyc, Rafał Molak, Jakub Jaroszewicz and Spas D. Kolev
Int. J. Mol. Sci. 2025, 26(15), 7136; https://doi.org/10.3390/ijms26157136 - 24 Jul 2025
Viewed by 270
Abstract
A novel type of multifunctional hybrid membranes combining modified chitosan, functionalized multi-walled carbon nanotubes (MWCNTs), and rare earth element ion-imprinted polymers (REEIIPs) were designed and characterized. The synthesized materials were characterized by thermogravimetric analysis (TGA), scanning electron microscopy (SEM), vibrating sample magnetometry (VSM), [...] Read more.
A novel type of multifunctional hybrid membranes combining modified chitosan, functionalized multi-walled carbon nanotubes (MWCNTs), and rare earth element ion-imprinted polymers (REEIIPs) were designed and characterized. The synthesized materials were characterized by thermogravimetric analysis (TGA), scanning electron microscopy (SEM), vibrating sample magnetometry (VSM), X-ray diffraction (XRD), X-ray micro-tomography, and Fourier transform infrared spectroscopy (FTIR). The hybrid membranes were also studied in terms of their mechanical and rheological properties. The key element of the proper preparation of hybrid membranes using the casting method in an external magnetic field was to synthesize membrane components with appropriate magnetic properties. It was found that they showed tunable weak ferromagnetic properties, and the increase in modified nanotube addition caused the rise in the membrane’s saturation magnetization, which for Nd-selective hybrid membranes reached 0.44 emu/g. Also, the increase in thermooxidative stability was noted after introducing functionalized nanotubes into polymer matrices, which, in the case of Gd-selective membranes, were stable even up to 730 °C. The rise in the modified MWCNT addition and selection of appropriate REE ion-imprinted polymers improved mechanical (Rm and E values increase even twice) and rheological parameters (almost double growth of E′ and E″ values) of the tested membranes. Synthesized hybrid membranes showed a high rejection of matrix components and an increase in retention ratio with rising MWCNT-REEIIP addition, ultimately reaching 94.35%, 92.12%, and 90.11% for Nd, Pr, and Gd, respectively. The performed analysis confirmed homogeneous dispersion, phase compatibility, network integration, formation of a complex 3D microstructure, and improved operational stability of created hybrid membranes, which is significant for their future applications in Nd, Pr, and Gd recovery from coal fly ash extracts. Full article
Show Figures

Graphical abstract

23 pages, 4585 KiB  
Article
Power Losses in the Multi-Turn Windings of High-Speed PMSM Electric Machine Armatures
by Oleksandr Makarchuk and Dariusz Całus
Energies 2025, 18(14), 3761; https://doi.org/10.3390/en18143761 - 16 Jul 2025
Viewed by 267
Abstract
This paper investigates the dependencies between the design parameters of the armature (stator) winding of a high-speed PMSM machine and the electrical losses in its windings resulting from eddy currents. In addition, the factors accounting for the occurrence of parasitic circulating currents, whose [...] Read more.
This paper investigates the dependencies between the design parameters of the armature (stator) winding of a high-speed PMSM machine and the electrical losses in its windings resulting from eddy currents. In addition, the factors accounting for the occurrence of parasitic circulating currents, whose presence in the phase windings is associated with the design specificity, are analyzed. Quantitative analysis is carried out by the application of a newly developed mathematical model for the calculation of fundamental and additional losses in a multi-turn coil enclosed in the slots of a ferromagnetic core. The analysis takes into account the actual design of the slot and the conductor, the variable arrangement of individual conductors in the slot, the core saturation and the presence of the excitation field—to represent the main factors that affect the process of additional losses in the slot of the electric machine. The verification of the mathematical model developed in this study was carried out by comparing the distribution of power losses in the slot section of the coil, consisting of several elementary conductors connected in parallel and located in a rectangular open slot, with an identical distribution derived on the basis of an analytical method from the classical circuit theory. For the purpose of confirming the results and conclusions derived from simulation studies, a number of physical experiments were carried out, consisting in determining the power losses in multi-turn coils of different designs. Recommendations have been developed to minimize additional losses by optimizing the arrangement of conductors within the slot, selecting the appropriate cross-sectional size of a single conductor and the saturation level of the tooth zone. Full article
Show Figures

Figure 1

12 pages, 3782 KiB  
Article
Structural, Magnetic and THz Emission Properties of Ultrathin Fe/L10-FePt/Pt Heterostructures
by Claudiu Locovei, Garik Torosyan, Evangelos Th. Papaioannou, Alina D. Crisan, Rene Beigang and Ovidiu Crisan
Nanomaterials 2025, 15(14), 1099; https://doi.org/10.3390/nano15141099 - 16 Jul 2025
Viewed by 275
Abstract
Recent achievements in ultrafast spin physics have enabled the use of heterostructures composed of ferromagnetic (FM)/non-magnetic (NM) thin layers for terahertz (THz) generation. The mechanism of THz emission from FM/NM multilayers has been typically ascribed to the inverse spin Hall effect (ISHE). In [...] Read more.
Recent achievements in ultrafast spin physics have enabled the use of heterostructures composed of ferromagnetic (FM)/non-magnetic (NM) thin layers for terahertz (THz) generation. The mechanism of THz emission from FM/NM multilayers has been typically ascribed to the inverse spin Hall effect (ISHE). In this work, we probe the mechanism of the ISHE by inserting a second ferromagnetic layer in the form of an alloy between the FM/NM system. In particular, by utilizing the co-sputtering technique, we fabricate Fe/L10-FePt/Pt ultra-thin heterostructures. We successfully grow the tetragonal phase of FePt (L10-phase) as revealed by X-ray diffraction and reflection techniques. We show the strong magnetic coupling between Fe and L10-FePt using magneto-optical and Superconducting Quantum Interference Device (SQUID) magnetometry. Subsequently, by utilizing THz time domain spectroscopy technique, we record the THz emission and thus we the reveal the efficiency of spin-to-charge conversion in Fe/L10-FePt/Pt. We establish that Fe/L10-FePt/Pt configuration is significantly superior to the Fe/Pt bilayer structure, regarding THz emission amplitude. The unique trilayer structure opens new perspectives in terms of material choices for the future spintronic THz sources. Full article
Show Figures

Figure 1

25 pages, 5298 KiB  
Article
Microstructural, Mechanical, Thermal, and Magnetic Properties of the Mechanically Alloyed and Consolidated Al–16 wt. % Mn–7 wt. % Cu Alloy
by Ahlem Saad Bekhouche, Safia Alleg, Abdelaziz Bouasla, Hacene Hachache and Joan José Sunol
Magnetochemistry 2025, 11(7), 59; https://doi.org/10.3390/magnetochemistry11070059 - 11 Jul 2025
Viewed by 374
Abstract
The effect of severe plastic deformation during milling and conventional and Spark Plasma Sintering (SPS) on the wt. % microstructural, structural, thermal, magnetic, and mechanical properties of the Al–16 wt. % Mn–7 wt. % Cu alloy was studied. A milling process for up [...] Read more.
The effect of severe plastic deformation during milling and conventional and Spark Plasma Sintering (SPS) on the wt. % microstructural, structural, thermal, magnetic, and mechanical properties of the Al–16 wt. % Mn–7 wt. % Cu alloy was studied. A milling process for up to 24 h (A24) leads to microstructure refinement and the presence of Al, Mn, and Cu solid solutions. The energy dispersive spectroscopy (EDS) analysis reveals the existence of Cu–Al, Mn–Al, and Al–Mn enriched particles. The powders exhibit weak ferromagnetism and an exchange bias (EB) behaviour that decreases with increasing milling time. The Ms values fitted using the law of approach to saturation (LAS) are comparable to the experimental values. The exothermic and endothermic peaks that appear in the differential scanning calorimetry (DSC) scans in the 500–900 °C range on heating/cooling are related to different phase transformations. The crystal structure of the A24 powders heated up to 900 °C (A24_900 °C) consists of a dual-phase microstructure of Al20Cu2Mn3 nanoprecipitates (~28%) and Al matrix (~72%). The sintering of the A24 powders at 500 °C for one hour (A24S) leads to the precipitation of Al6Mn, Al2Cu, and the Al20Cu2Mn3 T-phase into the Al-enriched matrix. In contrast, the consolidation by SPS (A24SPS) leads to a mixture of an Al solid solution, Al6Mn, T-phase, and α-Mn with an increased weight fraction of the T-phase and Al6Mn. The sintered samples exhibit the coexistence of a significant PM/AFM contribution to the M-H curves, with increasing Hc and decreasing EB. A higher microhardness value of about 581 HV is achieved for the A24SPS sample compared to those of the A24 (68 HV) and A24S (80 HV) samples. Full article
Show Figures

Figure 1

14 pages, 17044 KiB  
Article
Evolution of Griffiths-like Anomaly in Isostructural Swedenborgite Compounds Ho1−xErxBaCo4O7+δ
by Biplab Pakhuria, Rafikul Ali Saha, Carlo Meneghini, Fabrice Bert, Shruti Kundu and Sugata Ray
Magnetochemistry 2025, 11(7), 55; https://doi.org/10.3390/magnetochemistry11070055 - 30 Jun 2025
Viewed by 348
Abstract
In this study, we investigate the presence of the Griffiths-like anomaly in the geometrically frustrated antiferromagnet HoBaCo4O7+δ and globally its absence in ErBaCo4O7+δ, despite only small differences in the ionic radii, f [...] Read more.
In this study, we investigate the presence of the Griffiths-like anomaly in the geometrically frustrated antiferromagnet HoBaCo4O7+δ and globally its absence in ErBaCo4O7+δ, despite only small differences in the ionic radii, f-electron occupancy, and the corresponding crystal structures of the Ho3+ and Er3+-members. Previous studies have identified the Griffiths phase in the Dy-analog, DyBaCo4O7+δ, suggesting certain inherent features of this class of materials that regularly give rise to such anomalies. To explore the curious disappearance of such an anomalous feature in ErBaCo4O7+δ, we prepared a series of compounds with varying compositions Ho1xErxBaCo4O7+δ (0x1) and systematically studied the evolution of various physical properties as a function of Er-doping. Our experimental studies, including X-ray diffraction (XRD), magnetic, X-ray absorption spectroscopy (XAS), X-ray photoelectron spectroscopy (XPS), heat capacity, and muon spin relaxation spectroscopy (μSR spectroscopy), revealed that while the Griffiths-like anomaly indeed disappears with doping at the macroscopic level, signatures of inhomogeneity are retained in ErBaCo4O7+δ too, at least at the local level. Overall, our results highlight the significant role of ionic radius and local structural distortions in stabilizing the Griffiths phase in this class of systems. Full article
Show Figures

Figure 1

21 pages, 9209 KiB  
Article
Effects of Exchange, Anisotropic, and External Field Couplings on a Nanoscale Spin-2 and Spin-3/2 System: A Thermomagnetic Analysis
by Julio Cesar Madera, Elisabeth Restrepo-Parra and Nicolás De La Espriella
Magnetochemistry 2025, 11(7), 56; https://doi.org/10.3390/magnetochemistry11070056 - 30 Jun 2025
Viewed by 278
Abstract
In this research, an analysis of the thermomagnetic properties of a nanoscale spin-2 and spin-3/2 system is conducted. This system is modeled with as a quasi-spherical Ising-type nanoparticle with a diameter of 2 nm, in which atoms with spin-2 and spin-3/2 configured in [...] Read more.
In this research, an analysis of the thermomagnetic properties of a nanoscale spin-2 and spin-3/2 system is conducted. This system is modeled with as a quasi-spherical Ising-type nanoparticle with a diameter of 2 nm, in which atoms with spin-2 and spin-3/2 configured in body-centered cubic (BCC) lattices interact within their relevant nanostructures. To determine the thermomagnetic behaviors of the nanoparticle, numerical simulations using Monte Carlo techniques and thermal bath class algorithms are performed. The results exhibit the effects of exchange couplings (J1,J2), magnetocrystalline anisotropies (D3/2,D2), and external magnetic fields (h) on the finite-temperature phase diagrams of magnetization (MT), magnetic susceptibility (χT), and thermal energy (kBT). The influences of the exchange, anisotropic, and external field parameters are clearly reflected in the compensation, hysteretic, and pseudocritical phenomena presented by the quasi-spherical nanoparticle. When the parameter reflecting ferromagnetic second-neighbor exchanges in the nanosphere (J2) increases, for a given value of the external magnetic field, the compensation (Tcomp) and pseudocritical (Tpc) temperatures increase. Similarly, in the ranges 0<J24.5 and 15h15 at a specific temperature, an increase in J2 results in the appearance of exchange anisotropies (exchange bias) and and increased hysteresis loop areas in the nanomodel. Full article
Show Figures

Figure 1

16 pages, 2296 KiB  
Article
Magnetoelectric Effects in Bilayers of PZT and Co and Ti Substituted M-Type Hexagonal Ferrites
by Sujoy Saha, Sabita Acharya, Sidharth Menon, Rao Bidthanapally, Michael R. Page, Menka Jain and Gopalan Srinivasan
J. Compos. Sci. 2025, 9(7), 336; https://doi.org/10.3390/jcs9070336 - 27 Jun 2025
Viewed by 283
Abstract
This report is on Co and Ti substituted M-type barium and strontium hexagonal ferrites that are reported to be single phase multiferroics due to a transition from Neel type ferrimagnetic order to a spiral spin structure that is accompanied by a ferroelectric polarization [...] Read more.
This report is on Co and Ti substituted M-type barium and strontium hexagonal ferrites that are reported to be single phase multiferroics due to a transition from Neel type ferrimagnetic order to a spiral spin structure that is accompanied by a ferroelectric polarization in an applied magnetic field. The focus here is the nature of magnetoelectric (ME) interactions in the bilayers of ferroelectric PZT and Co and Ti substituted BaM and SrM. The ME coupling in the ferrite-PZT bilayers arise due to the transfer of magnetostriction-induced mechanical deformation in a magnetic field in the ferrite resulting in an induced electric field in PZT. Polycrystalline Co and Ti doped ferrites, Ba (CoTi)x Fe12−2xO19, (BCTx), and Sr (CoTi)x Fe12−2xO19 (SCTx) (x = 0–4) were found to be free of impurity phases for all x-values except for SCTx, which had a small amount of α-Fe2O3 in the X-ray diffraction patterns for x ≤ 2.0. The magnetostriction for the ferrites increased with applied filed H to a maximum value of around 2 to 6 ppm for H~5 kOe. BCTx/SCTx samples showed ferromagnetic resonance (FMR) for x = 1.5–2.0, and the estimated anisotropy field was on the order of 5 kOe. The magnetization increased with the amount of Co and Ti doping, and it decreased rapidly with x for x > 1.0. Measurements of ME coupling strengths were conducted on the bilayers of BCTx/SCTx platelets bonded to PZT. The bilayer was subjected to an AC and DC magnetic field H, and the magnetoelectric voltage coefficient (MEVC) was measured as a function of H and frequency of the AC field. For BCTx-PZT, the maximum value of MEVC at low frequency was ~5 mV/cm Oe, and a 40-fold increase at electromechanical resonance (EMR). SCTx–PZT composites also showed a similar behavior with the highest MEVC value of ~14 mV/cm Oe at low frequencies and ~200 mV/cm Oe at EMR. All the bilayers showed ME coupling for zero magnetic bias due to the magnetocrystalline anisotropy field in the ferrite that provided a built-in bias field. Full article
(This article belongs to the Special Issue Metal Composites, Volume II)
Show Figures

Figure 1

18 pages, 3622 KiB  
Article
Insights into the Crystal Structure and Magnetodielectric Properties of High-Energy Ball Milled Sr Substituted LaFeO3
by Julio C. Aguirre-Espinosa, Félix Sánchez-De Jesús, Claudia A. Cortés-Escobedo and Ana M. Bolarín-Miró
Materials 2025, 18(13), 3014; https://doi.org/10.3390/ma18133014 - 25 Jun 2025
Viewed by 335
Abstract
The effect of strontium substitution on the crystal tructure, as well as the magnetic, and electrical properties of lanthanum ferrite (LaFeO3) synthesized by high-energy ball milling, is studied, with an emphasis on magnetodielectric coupling. X-ray diffraction (XRD) confirmed the successful synthesis [...] Read more.
The effect of strontium substitution on the crystal tructure, as well as the magnetic, and electrical properties of lanthanum ferrite (LaFeO3) synthesized by high-energy ball milling, is studied, with an emphasis on magnetodielectric coupling. X-ray diffraction (XRD) confirmed the successful synthesis of orthorhombic La1−xSrxFeO3 for doping levels up to 0.2 mol. At 0.3 mol Sr2+, two phases appear: La0.6Sr0.4FeO2.976 and La0.8Sr1.2FeO3.714, the latter being metastable. This phase vanishes at 0.5 mol. The Fourier Transform Infrared Spectroscopy (FT-IR) and Scanning Electron Microscopy coupled with Energy Dispersive X-ray Spectroscopy (SEM-EDS) analysis confirmed these results using a vibrating sample magnetometer (VSM), whose measurements show ferromagnetism at 0.1 and 0.3 mol Sr2+, attributed to crystal distortion, magnetic spin rearrangement, and as consequence, modifications in the double-exchange interactions. Dielectric tests reveal that higher Sr2+ concentrations lead to increased relative permittivity, dielectric losses, and conductivity, linked to oxygen vacancy formation. This study demonstrates a room-temperature magnetodielectric coupling of 32% in Sr-doped lanthanum ferrite, highlighting its potential for technological applications. Full article
Show Figures

Graphical abstract

17 pages, 4655 KiB  
Article
Conductivity Measurement for Non-Magnetic Materials Using Eddy Current Method with a Novel Simplified Model
by Changli Yan, Jun Bao and Xuyang Zheng
Sensors 2025, 25(13), 3900; https://doi.org/10.3390/s25133900 - 23 Jun 2025
Viewed by 387
Abstract
The eddy current testing (ECT) technique enables efficient and non-destructive conductivity measurement. However, conventional ECT is significantly influenced by the thickness of the material, often resulting in the arbitrary selection of excitation frequency. In addition, complex inverse calculations in the eddy current analytical [...] Read more.
The eddy current testing (ECT) technique enables efficient and non-destructive conductivity measurement. However, conventional ECT is significantly influenced by the thickness of the material, often resulting in the arbitrary selection of excitation frequency. In addition, complex inverse calculations in the eddy current analytical model pose challenges for practical application. This paper proposes a method for measuring the conductivity of non-ferromagnetic materials based on a simplified analytical model. Firstly, the classical Dodd–Deeds analytical model is simplified based on the electromagnetic properties of materials under high-frequency conditions, resulting in a simplified model that directly relates the coil impedance phase to the material’s conductivity. Furthermore, in combination with a finite element method (FEM) analysis, a frequency selection criterion is proposed, and a corresponding measurement method is developed. This method enables direct conductivity calculation by substituting the measured coil impedance phase into the simplified model. Finally, experiments were conducted to verify the effectiveness of the proposed method. The results demonstrate that the proposed method accurately measures the conductivity of non-ferromagnetic materials over a range of 0.5–58.5 MS/m, achieving absolute and relative errors less than 1.05 MS/m and 1.83%, respectively, without requiring complex inversion calculations or multiple calibrations. This advancement in measurement principles provides a new theoretical foundation and technical pathway for developing online inspection systems and portable instrumentation. Full article
Show Figures

Figure 1

14 pages, 2510 KiB  
Article
DFT Study of Hydrostatic Pressure Effects up to 1.0 GPa on the Electronic and Magnetic Properties of Laves Phases ErAl2 and ErNi2
by Tomás López-Solenzal, José Luis Sánchez Llamazares, José Luis Enríquez-Carrejo and César Fidel Sánchez-Valdés
Metals 2025, 15(6), 680; https://doi.org/10.3390/met15060680 - 19 Jun 2025
Viewed by 318
Abstract
This study employs DFT+U calculations to investigate the ferromagnetic properties of ErAl2 and ErNi2 Laves phases under an external hydrostatic pressure P (0 GPa ≤ P ≤ 1.0 GPa). The calculated magnetic moments per formula unit for both crystalline structures align [...] Read more.
This study employs DFT+U calculations to investigate the ferromagnetic properties of ErAl2 and ErNi2 Laves phases under an external hydrostatic pressure P (0 GPa ≤ P ≤ 1.0 GPa). The calculated magnetic moments per formula unit for both crystalline structures align with experimentally reported values: 4.40 μB/f.u. in the hard magnetization <001> axis for ErAl2 and 5.56 μB/f.u. in the easy magnetization <001> axis for ErNi2. The DFT results indicate that the magnetic moment remains unchanged up to 1 GPa of hydrostatic pressure, with no structural instabilities observed, as evidenced by a nearly constant formation energy for ErAl2 and ErNi2 alloys. The simulations confirm that the magnetic behavior of ErAl2 is primarily driven by the electrons localized in the f orbitals. In contrast, for ErNi2, both d and f orbitals significantly contribute to the total magnetic moment. Finally, the electronic specific heat coefficient was calculated and reported as a function of hydrostatic pressure up to P = 1.0 GPa for each Laves phase. Full article
(This article belongs to the Special Issue Study on the Preparation and Properties of Metal Functional Materials)
Show Figures

Graphical abstract

20 pages, 3663 KiB  
Article
Sol–Gel Synthesis and Comprehensive Study of Structural, Electrical, and Magnetic Properties of BiBaO3 Perovskite
by Faouzia Tayari, Kais Iben Nassar, João Pedro Carvalho, Sílvia Soreto Teixeira, Imen Hammami, Sílvia Rodrigues Gavinho, Manuel P. F. Graça and Manuel Almeida Valente
Gels 2025, 11(6), 450; https://doi.org/10.3390/gels11060450 - 12 Jun 2025
Cited by 1 | Viewed by 1320
Abstract
In this study, BiBaO3 perovskite was successfully synthesized via the sol–gel method and thoroughly characterized to evaluate its structural, microstructural, dielectric, electrical, and magnetic properties. X-ray diffraction (XRD) confirmed the formation of a single-phase perovskite structure with high crystallinity. Scanning electron microscopy [...] Read more.
In this study, BiBaO3 perovskite was successfully synthesized via the sol–gel method and thoroughly characterized to evaluate its structural, microstructural, dielectric, electrical, and magnetic properties. X-ray diffraction (XRD) confirmed the formation of a single-phase perovskite structure with high crystallinity. Scanning electron microscopy (SEM) coupled with energy-dispersive X-ray spectroscopy (EDX) revealed a uniform grain morphology and elemental composition consistent with the intended stoichiometry. Dielectric measurements exhibited strong frequency-dependent behavior, suggesting potential for capacitive applications. The electrical conductivity displayed thermally activated behavior, indicative of semiconducting characteristics. Magnetic measurements showed weak ferromagnetic behavior at room temperature, an unusual observation for undoped BaBiO3-based systems. This magnetism may stem from subtle structural distortions or compositional variations introduced during synthesis. Comparison with previously reported studies underscores the significant influence of the synthesis route and microstructural features on the multifunctional properties of BiBaO3. Overall, the results highlight the promise of sol–gel-derived BiBaO3 as a candidate for multifunctional electronic and magnetic applications. Full article
(This article belongs to the Special Issue Gels for Efficient Energy Storage and Conversion)
Show Figures

Figure 1

11 pages, 3461 KiB  
Article
Magnetotransport Measurements in Overdoped Mn:Bi2Te3 Thin Films
by Angadjit Singh, Varun S. Kamboj, Crispin H. W. Barnes and Thorsten Hesjedal
Crystals 2025, 15(6), 557; https://doi.org/10.3390/cryst15060557 - 11 Jun 2025
Viewed by 786
Abstract
Introducing magnetic dopants into topological insulators (TIs) provides a pathway to realizing novel quantum phenomena, including the quantum anomalous Hall effect (QAHE) and axionic states. One of the most commonly used 3d transition metal dopants is Mn, despite its known tendency to [...] Read more.
Introducing magnetic dopants into topological insulators (TIs) provides a pathway to realizing novel quantum phenomena, including the quantum anomalous Hall effect (QAHE) and axionic states. One of the most commonly used 3d transition metal dopants is Mn, despite its known tendency to be highly mobile and to cause phase segregation. In this study, we present a detailed magnetotransport investigation of Mn-overdoped Bi2Te3 thin films using field-effect transistor architectures. Building on our previous structural investigations of these samples, we examine how high Mn content influences their electronic transport properties. From our earlier studies, we know that high Mn doping concentrations lead to the formation of secondary phases, which significantly alter weak antilocalization behavior and suppress topological surface transport. To probe the gate response of these doped films over extended areas, we fabricate field-effect transistor structures, and we observe uniform electrostatic control of conduction across the magnetic phase. Inspired by recent developments in intrinsic topological systems such as the MnTe-Bi2Te3 septuple-layer compounds, we explore the influence of embedded ferromagnetic chalcogenide inclusions as an alternative route to engineer magnetic topological states and potentially expand the operational temperature range of QAHE-enabled devices. Full article
(This article belongs to the Special Issue Advances in Thin-Film Materials and Their Applications)
Show Figures

Figure 1

14 pages, 10385 KiB  
Article
Correlation Between Structure, Microstructure, and Magnetic Properties of AlCoCrFeNi High-Entropy Alloy
by Renee Joselin Sáenz-Hernández, Carlos Roberto Santillán-Rodríguez, Jesús Salvador Uribe-Chavira, José Andrés Matutes-Aquino and María Cristina Grijalva-Castillo
Condens. Matter 2025, 10(2), 31; https://doi.org/10.3390/condmat10020031 - 27 May 2025
Viewed by 826
Abstract
This study explores the crystal structure, microstructure and magnetic phase evolution of the AlCoCrFeNi high-entropy alloy (HEA), highlighting its potential for applications requiring tailored magnetic properties across diverse temperatures. Electron microscopy and X-ray diffraction revealed that the as-cast alloy’s microstructure comprises equiaxed grains [...] Read more.
This study explores the crystal structure, microstructure and magnetic phase evolution of the AlCoCrFeNi high-entropy alloy (HEA), highlighting its potential for applications requiring tailored magnetic properties across diverse temperatures. Electron microscopy and X-ray diffraction revealed that the as-cast alloy’s microstructure comprises equiaxed grains with branching dendrites, showing compositional variations between interdendritic regions enriched in Al and Ni. Temperature-induced phase transformations were observed above room temperature, transitioning from body centered cubic (BCC) phases (A2 and B2) to a predominant FCC phase at higher temperatures, followed by recrystallization of the A2 phase upon cooling. Magnetization measurements showed a drop near 380 K, suggesting the Curie temperature of BCC phases, a peak at 830 K attributed to optimal magnetic alignment in the FCC phase, and a sharp decline at 950 K marking the transition to a paramagnetic state. Magnetic moment calculations provided insights into magnetic alignment dynamics, while low-temperature analysis highlighted the alloy’s magnetically soft nature, dominated by ferromagnetic contributions from the A2 phase. These findings underscore the strong interdependence of microstructural features and magnetic behavior, offering a foundation for optimizing HEAs for temperature-sensitive scientific and industrial applications. Full article
(This article belongs to the Section Magnetism)
Show Figures

Figure 1

Back to TopTop