Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,501)

Search Parameters:
Keywords = feeding insect

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 9775 KB  
Article
Insect Community Diversity in Photovoltaic Power Station and Its Response to Environmental Factors
by Ying Wang, Yuanrun Cheng, Liping Ban, Xuewei Yin, Shuhua Wei, Wei Sun and Rong Zhang
Biology 2025, 14(10), 1388; https://doi.org/10.3390/biology14101388 (registering DOI) - 11 Oct 2025
Abstract
To investigate the impact of PV power station construction on insect community diversity in the desert steppe of Ningxia and its response to environmental factors, insect communities were surveyed in different areas within the PV station (both under and between PV panels) and [...] Read more.
To investigate the impact of PV power station construction on insect community diversity in the desert steppe of Ningxia and its response to environmental factors, insect communities were surveyed in different areas within the PV station (both under and between PV panels) and outside the station. The species composition, diversity differences, and responses to environmental factors of insect communities in these areas were analyzed. The results showed that a total of 19,833 insect specimens, belonging to 68 species and 23 families, were collected across different areas of the PV station. The dominant species within the PV station (both under and between PV panels) were Labidura riparia japonica (Dermaptera: Labiduridae), Harpalus sinicus (Coleoptera: Carabidae) and Harpalus calceatus (Coleoptera: Carabidae), while outside the station, the dominant species were L. r. japonica, H. sinicus, H. calceatus and Harpalus pallidipennis (Coleoptera: Carabidae). The number of species by feeding habit ranked as follows: phytophagous insects > predatory insects, whereas the abundance of individuals followed the order: predatory insects > phytophagous insects. The species richness, abundance, Margalef richness index, Shannon–Wiener index and Pielou evenness index of phytophagous insects were significantly higher outside the PV power station than inside (both under and between PV panels). In contrast, Simpson dominance index was significantly lower outside the PV power station compared to inside (both under and between PV panels). For predatory insects, no significant differences were observed in species richness, Margalef richness index, Shannon–Wiener diversity index, Simpson dominance index, or Pielou evenness index among different PV panel areas. However, the abundance of predatory insects was significantly higher outside the PV power station than inside (both under and between PV panels); phytophagous insects in the PV station were primarily positively driven by soil nutrients (total nitrogen, available potassium), whereas predatory insect diversity was more responsive to soil organic matter and nitrogen levels. Both predatory and phytophagous insects showed a significant negative correlation with vegetation height. This study holds significant importance for exploring biodiversity conservation within PV power stations, providing a scientific basis for the planning, design, and implementation of ecological protection measures during the operation of PV station in Ningxia’s desert steppe. Full article
Show Figures

Figure 1

13 pages, 5128 KB  
Article
Influence of Host’s Plant Diet on Gut Microbial Communities and Metabolic Potential in Spodoptera frugiperda
by Wan-Ying Dong, Muhammad Hafeez, Sheng-Yuan Zhao, Jin-Ming Zhang, Muhammad Imran, Farman Ullah, Xiao-Wei Li and Yao-Bin Lu
Insects 2025, 16(10), 1042; https://doi.org/10.3390/insects16101042 - 10 Oct 2025
Abstract
The gut microbiota of insects, shaped by extensive coevolution, plays a crucial role in host adaptability and ecological expansion. The fall armyworm (Spodoptera frugiperda J.E. Smith), a highly polyphagous and migratory invasive pest, infests more than 350 plant species worldwide, resulting in [...] Read more.
The gut microbiota of insects, shaped by extensive coevolution, plays a crucial role in host adaptability and ecological expansion. The fall armyworm (Spodoptera frugiperda J.E. Smith), a highly polyphagous and migratory invasive pest, infests more than 350 plant species worldwide, resulting in substantial crop losses and increased reliance on pesticide applications. In this study, we employed 16S rRNA high-throughput sequencing to investigate diet-induced alternations in the gut microbial communities of larvae fed corn, rice, or an artificial diet. The results showed that diet significantly influenced microbial diversity, with rice-fed larvae exhibiting the highest richness. Firmicutes, Proteobacteria, and Cyanobacteria were the predominant bacterial phyla. Genus-level analysis revealed notable diet-dependent shifts, with Enterobacter and other genera (e.g., Ochrobactrum and Allorhizobium–Neorhizobium–Pararhizobium–Rhizobium) only detected in plant-fed groups. Additionally, current findings suggest that gut microbial genera are more prevalent when S. frugiperda larvae feed on rice plants than on corn plants or an artificial diet and are closely linked to their metabolic activities. Dominant microbial genera are expected to support essential metabolic processes and exhibit increased abundance on rice. These results indicate that the gut microbiome of S. frugiperda is diet-driven reorganization, potentially facilitating its polyphagy. This study extends the current understanding by elucidating the specific gut microbial taxa and their putative metabolic associations that are responsive to diet in S. frugiperda, thereby providing a theoretical basis for its polyphagous capability and underscoring microbiota-based strategies for sustainable pest management. Full article
(This article belongs to the Special Issue Invasive Pests: Bionomics, Damage, and Management)
Show Figures

Figure 1

18 pages, 1690 KB  
Article
Utilization of Aflatoxin-B1-Contaminated Corn by Yellow Mealworm Larvae for Common Carp Feed and Assessing Residual Frass Toxicity by Zebrafish Embryo Microinjection
by Zoltán Vajnai, Zsolt Csenki-Bakos, Balázs Csorbai, Tamás Bartucz, Illés Bock, Endre Csókás, Mátyás Cserháti, Balázs Kriszt and István Szabó
Int. J. Mol. Sci. 2025, 26(20), 9851; https://doi.org/10.3390/ijms26209851 - 10 Oct 2025
Abstract
The aim of our study was to make one step further to verify a method that can turn back mycotoxin-contaminated crops into the circular economy. Thus, the possibility of utilizing aflatoxin B1 (AfB1)-contaminated corn by yellow mealworms (Tenebrio molitor) was investigated [...] Read more.
The aim of our study was to make one step further to verify a method that can turn back mycotoxin-contaminated crops into the circular economy. Thus, the possibility of utilizing aflatoxin B1 (AfB1)-contaminated corn by yellow mealworms (Tenebrio molitor) was investigated to be used as fish feed components. Four different self-contaminated corn samples were used in our study, of which one was below and three were above the threshold limit (20 µg/kg) regulated by the European Union. The highest applied AfB1 concentration in our study for insect feeding was 415 µg/kg (more than twenty times higher than the threshold). After a five-week feeding period insect mortality was not increased, even in the highly contaminated group, compared to the negative control. The mycotoxin in the dried and ground insects was only detected in the case of feeding with the highest-concentration corn, however it remained as low as 2.2 µg/kg. For studying the possible physiology effects, insect grounds were used in feeding experiments of common carp (Cyprinus carpio) fries. Results showed that insect meal, even if originated from a highly mycotoxin-contaminated crop, did not have a significant effect on the examined fish fries, compared with the control groups. The AfB1 concentrations of the leftover frass after insect rearing were also measured, and in the case of the highest concentration mealworm group, it was 157.6 µg/kg (other groups were under 20 µg/kg). Toxicity of frass extracts from different contaminated groups was also studied using microinjected zebrafish (Danio rerio) embryos. Extracts of the highly contaminated frass samples caused 91.67 ± 3.33% mortality and led to numerous phenotypic changes, which highlights the need for responsible usage of the by-product. However, the effects of injected frass samples, originating from corn with lower and more environmentally relevant AfB1 concentrations, were significantly lower. Full article
(This article belongs to the Special Issue Toxicological Impacts of Emerging Contaminants on Aquatic Organisms)
Show Figures

Graphical abstract

18 pages, 807 KB  
Article
Novel Food Safety Evaluation: Potentially Toxic Elements in Acheta domesticus (House Cricket) Reared on Seaweed-Enriched Diets
by Behixhe Ajdini, Irene Biancarosa, Silvia Illuminati, Anna Annibaldi, Federico Girolametti, Matteo Fanelli, Lorenzo Massi and Cristina Truzzi
Molecules 2025, 30(19), 3958; https://doi.org/10.3390/molecules30193958 - 2 Oct 2025
Viewed by 284
Abstract
In recent years, insects have emerged as a nutritious and eco-sustainable alternative food source, with the house cricket (Acheta domesticus, AD) recently authorized by the European Commission as a novel food. However, the presence of harmful substances in insects poses potential [...] Read more.
In recent years, insects have emerged as a nutritious and eco-sustainable alternative food source, with the house cricket (Acheta domesticus, AD) recently authorized by the European Commission as a novel food. However, the presence of harmful substances in insects poses potential health risks. This study investigated the content of potentially toxic elements (PTEs) such as cadmium (Cd), arsenic (As), lead (Pb), mercury (Hg), nickel (Ni), chromium (Cr), and aluminium (Al) in Acheta domesticus fed diets enriched with graded levels of the red seaweed Palmaria palmata or the brown seaweed Ascophyllum nodosum in two feeding trials. Chemical analyses were carried out by graphite furnace atomic absorption spectrophotometry for all elements except Hg, which was analyzed by thermal decomposition amalgamation atomic absorption spectrometry. The results showed that PTE content in the diets was below the legal limits for feed. The PTEs in AD ranged (mg kg−1 dry matter) as follows: Cd (0.069 ± 0.005–0.127 ± 0.002), As (0.08 ± 0.01–0.36 ± 0.03), Pb (0.05 ± 0.01–0.12 ± 0.01), Hg (0.0065 ± 0.0002–0.0141 ± 0.0010), Ni (0.64 ± 0.06–1.20 ± 0.10), Cr (0.16 ± 0.02–0.58 ± 0.01), and Al (17 ± 2–61 ± 1). AD bioaccumulated As and Hg; however, the PTE levels remained below European Union food safety limits. The absence of non-carcinogenic risk for consumers suggests that AD fed seaweed-enriched diets are a safe, healthy, and low-chemical risk food for humans. Full article
Show Figures

Figure 1

11 pages, 2838 KB  
Article
Intergenerational and Intersexual Differentiation in Respiratory Metabolic Rates of Schlechtendalia chinensis: A Comparison Across Sexuales, Parental Sexuparae, and Progeny Fundatrices
by Shuxia Shao, Bo Jiang, Xin Xu, Zhaohui Shi, Chang Tong and Zixiang Yang
Insects 2025, 16(10), 1015; https://doi.org/10.3390/insects16101015 - 1 Oct 2025
Viewed by 324
Abstract
The sexual generation of Schlechtendalia chinensis (Bell) is pivotal for gallnut yield yet cannot feed due to mouthpart degeneration. Could respiratory metabolic rate (RMR) modulation compensate for nutritional deficits? We quantified the RMR across key developmental stages of sexual morphs (including parental sexuparae [...] Read more.
The sexual generation of Schlechtendalia chinensis (Bell) is pivotal for gallnut yield yet cannot feed due to mouthpart degeneration. Could respiratory metabolic rate (RMR) modulation compensate for nutritional deficits? We quantified the RMR across key developmental stages of sexual morphs (including parental sexuparae and progeny fundatrices) using an LI-6400XT portable photosynthesis system equipped with a customized insect respiration chamber (6400-89). All morphotypes exhibited significantly lower nocturnal RMRs compared to their diurnal rates (p < 0.05), while RMRs did not differ significantly between morning (9:00–12:00) and afternoon (14:00–17:00) (p > 0.05). Significant RMR variation occurred among morphotypes: females and sexuparae displayed the lowest rates, fundatrices were intermediate, and males exhibited remarkably elevated rates (2–3 times higher than those of females or sexuparae). Both sexes showed a characteristic RMR trajectory: elevated at birth and declining during early postnatal development, followed by a gradual resurgence that culminated in peak values on postnatal day 8, coinciding with mating. This physiological zenith was immediately succeeded by marked respiratory metabolic downregulation following copulation, with RMRs decreasing substantially during the post-copulatory phase. Our findings demonstrate significant intergenerational and intersexual RMR differentiation. This research addresses critical knowledge gaps in the respiratory metabolism of S. chinensis, is the first to elucidate a nutrient adaptation strategy through respiratory metabolic regulation under non-trophic conditions, and provides actionable insights for optimizing gallnut production in controlled cultivation systems. Full article
Show Figures

Figure 1

21 pages, 3131 KB  
Article
Morphological, Molecular, and Alkaloid Gene Profiling of Epichloë Endophytes in Elymus cylindricus and Elymus tangutorum from China
by Taixiang Chen, Wencong Liu, Kai Huang, Gensheng Bao and Chunjie Li
Microorganisms 2025, 13(10), 2275; https://doi.org/10.3390/microorganisms13102275 - 28 Sep 2025
Viewed by 380
Abstract
Epichloë endophytes are mutualistic associates with grasses, conferring host plants with enhanced competitiveness, improved stress tolerance, and increased ecological dominance. Epichloë can produce any of several classes of bioactive alkaloids, of which indole-diterpenes and ergot alkaloids are toxic to invertebrate and mammalian herbivores; [...] Read more.
Epichloë endophytes are mutualistic associates with grasses, conferring host plants with enhanced competitiveness, improved stress tolerance, and increased ecological dominance. Epichloë can produce any of several classes of bioactive alkaloids, of which indole-diterpenes and ergot alkaloids are toxic to invertebrate and mammalian herbivores; peramine acts as an insect-feeding deterrent; and loline alkaloids possess potent insecticidal activity. Here, it was characterized as Epichloë endophytes inhibiting the Elymus species, El. cylindricus, and El. tangutorum from the Qinghai–Tibet Plateau, China. Based on the results of four types of alkaloid synthesis genes, the 30 isolates were divided into five types; they exhibited distinct alkaloid synthesis capabilities, highlighting intraspecific diversity within E. bromicola regarding its alkaloid-producing potential. Considering the toxicity of these isolates to the safety of herbivorous livestock, the above five types of isolates can be divided into two categories. Category I includes five animal-safe strains of type V, which do not produce alkaloids. Category II includes the remaining 25 strains, which could produce indole-diterpene (paspaline) and/or ergot alkaloids (chanoclavine I, D-lysergic acid, ergovaline) that are toxic to herbivorous livestock. Morphology and phylogenetic analysis confirmed all 30 isolates were Epichloë bromicola; mating type gene detection shows that all belonged to mating type A. Overall, this study has laid a solid foundation for the scientific and rational utilization of Epichloë endophyte resources. Furthermore, the presence of ergovaline in El. cylindricus and El. tangutorum poses a potential concern for livestock managers who conduct grazing. Full article
(This article belongs to the Section Plant Microbe Interactions)
Show Figures

Figure 1

22 pages, 988 KB  
Article
Origanum vulgare subsp. virens (Hoffmanns. & Link) Bonnier & Layens Essential Oils: Chemotypes and Bioactivity as Antifungal, Antifeeding and Enzyme Inhibitors
by Rui Ferreira, Mariana Martins, Vanessa Santos, Duarte Sardinha, Wilson R. Tavares, Samuel Sabina, Guacimara Espinel, Maria Carmo Barreto, Luísa Oliveira, Raimundo Cabrera and Paula Castilho
Plants 2025, 14(19), 3001; https://doi.org/10.3390/plants14193001 - 28 Sep 2025
Viewed by 232
Abstract
Essential oils (EOs) from the leaves of Origanum vulgare subsp. virens (Hoffmanns. & Link) Bonnier & Layens, representing three chemotypes—thymol-rich, carvacrol-rich, and a mixed thymol–carvacrol type—were chemically characterized and comparatively assessed for their antifungal, insecticidal, and enzyme-inhibitory activities. This integrated approach provides a [...] Read more.
Essential oils (EOs) from the leaves of Origanum vulgare subsp. virens (Hoffmanns. & Link) Bonnier & Layens, representing three chemotypes—thymol-rich, carvacrol-rich, and a mixed thymol–carvacrol type—were chemically characterized and comparatively assessed for their antifungal, insecticidal, and enzyme-inhibitory activities. This integrated approach provides a comparative assessment of all three chemotypes across multiple biological models, including phytopathogenic fungi, insect bioassays, and key enzyme targets. All EOs displayed antifungal activity for the tested phytopathogenic fungi (Alternaria alternata, Botrytis cinerea, and Fusarium oxysporum) at concentrations above 0.5 mg/mL, with the thymol-rich chemotype showing the highest activity. The minimum inhibition concentration for Oidium farinosum conidial growth was determined and found to be similar for thymol and carvacrol chemotypes and lower for the terpene mixture. Insect control activity was evaluated by an antifeeding assay, where carvacrol and especially thymol chemotypes can be classified as feeding deterrents. EOs and standards revealed a weak toxicity against Ceratitis capitata, with less than 20% mortality at a concentration of 50 mg/mL, and both chemotypes were found to be ineffective in preventing egg deposition. The acetylcholinesterase (AChE) inhibition assay revealed that carvacrol had the greatest inhibitory effect on AChE, followed by EOs, and, finally, thymol. Regarding the α- and β-glucosidase (α- and β-GLU) inhibitory assays, thymol had the strongest inhibitory effect on α-GLU, while plant β-GLU was not inhibited by the standards or OEs. Full article
Show Figures

Figure 1

21 pages, 3393 KB  
Article
Predicting the Potential Spread of Diabrotica virgifera virgifera in Europe Using Climate-Based Spatial Risk Modeling
by Ioana Grozea, Diana Maria Purice, Snejana Damianov, Levente Molnar, Adrian Grozea and Ana Maria Virteiu
Insects 2025, 16(10), 1005; https://doi.org/10.3390/insects16101005 - 27 Sep 2025
Viewed by 495
Abstract
Diabrotica virgifera virgifera Le Conte, 1868 (Coleoptera: Chrysomelidae), known as the western corn rootworm, is one of the most important alien insect pests affecting maize crops globally. It causes significant economic losses by feeding on the roots, which affects plant stability and nutrient [...] Read more.
Diabrotica virgifera virgifera Le Conte, 1868 (Coleoptera: Chrysomelidae), known as the western corn rootworm, is one of the most important alien insect pests affecting maize crops globally. It causes significant economic losses by feeding on the roots, which affects plant stability and nutrient absorption, as well as by attacking essential aerial organs (leaves, silk, pollen). Since its accidental introduction into Europe, the species has expanded its range across maize-growing regions, raising concerns about future distribution under climate change. This study aimed to estimate the risk of pest establishment across Europe over three future time frames (2034, 2054, 2074) based on geographic coordinates, climate data, and maize distribution. Spatial simulations were performed in QGIS using national centroid datasets, risk classification criteria, and temperature anomaly maps derived from Copernicus and ECA&D databases for 1992–2024. The results indicate consistently high risk in southern and southeastern regions, with projected expansion toward central and western areas by 2074. Risk zones showed clear spatial aggregation and directional spread correlated with warming trends and maize availability. The pest’s high reproductive potential, thermal tolerance, and capacity for human-assisted dispersal further support these predictions. The model emphasizes the need for expanded surveillance in at-risk zones and targeted policies in areas where D. v. virgifera has not yet established. Future work should refine spatial predictions using field validation, genetic monitoring, and dispersal modeling. The results contribute to anticipatory pest management planning and can support sustainable maize production across changing agroclimatic zones in Europe. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

17 pages, 1339 KB  
Article
Bioconversion of Deoxynivalenol by Mealworm (Tenebrio molitor) Larvae: Implications for Feed Safety and Nutritional Value
by Marcin Wróbel, Michał Dąbrowski, Michał Łuczyński, Krzysztof Waśkiewicz, Tadeusz Bakuła, Łukasz Nowicki and Łukasz Zielonka
Toxins 2025, 17(10), 478; https://doi.org/10.3390/toxins17100478 - 25 Sep 2025
Viewed by 287
Abstract
Deoxynivalenol (DON) is one of the most common trichothecene mycotoxins found in cereals, posing a significant hazard to food and feed safety. Insects, especially the yellow mealworm (Tenebrio molitor), offer promising alternative protein sources; however, their capacity to metabolise mycotoxins and [...] Read more.
Deoxynivalenol (DON) is one of the most common trichothecene mycotoxins found in cereals, posing a significant hazard to food and feed safety. Insects, especially the yellow mealworm (Tenebrio molitor), offer promising alternative protein sources; however, their capacity to metabolise mycotoxins and the nutritional implications are still not fully understood. In this study, T. molitor larvae were reared for two weeks on diets containing DON at 663 or 913 µg/kg, and their biomass was analysed using Liquid Chromatography–Quadrupole Time-of-Flight Mass Spectrometry (LC-QTOF) for DON metabolites and free amino acids, as well as Gas Chromatography–Flame Ionization Detector (GC-FID) for fatty acid profiles. Larvae metabolised DON via multiple pathways, including sulfonation, glucuronidation, sulfation, glucosylation, and de-epoxidation, with a time- and dose-dependent shift towards glucosylation and de-epoxidation. DON exposure significantly reduced the levels of essential amino acids such as methionine, lysine, phenylalanine, and isoleucine, and lowered metabolic intermediates like aspartic and glutamic acid. Conversely, prolonged DON exposure increased linoleic acid levels in larval fat, indicating altered lipid metabolism. These findings demonstrate that T. molitor larvae detoxify DON but incur measurable metabolic costs, leading to changes in amino acid and fatty acid profiles. The dual effect—reduction of toxin levels and nutritional shifts—highlights both the potential and the challenges of using insects for sustainable feed production. Full article
(This article belongs to the Section Mycotoxins)
Show Figures

Figure 1

14 pages, 969 KB  
Article
Overcoming Obstacles: Perspective on How Mediterranean Oaks Defend Their Acorns from Insect Seed Predators
by David A. Oropesa-Olmedo, Enrique Andivia, Michał Reut, Pablo Cisneros and Raúl Bonal
Insects 2025, 16(9), 990; https://doi.org/10.3390/insects16090990 - 22 Sep 2025
Viewed by 403
Abstract
Insect pre-dispersal seed predators attack a large proportion of the acorn crops in oak forests worldwide. Oaks (Quercus spp.) have evolved several strategies, including physical barriers, chemical defenses (e.g., tannins), and/or phenological predator avoidance, to reduce infestation rates. This study examines how [...] Read more.
Insect pre-dispersal seed predators attack a large proportion of the acorn crops in oak forests worldwide. Oaks (Quercus spp.) have evolved several strategies, including physical barriers, chemical defenses (e.g., tannins), and/or phenological predator avoidance, to reduce infestation rates. This study examines how four Mediterranean oak species cope with acorn-feeding insects. Nearly 4000 acorns were collected from five sites at two time points during the maturation period: in mid-September and mid-October. Infestation rates were higher in mid-September, when the pericarp is softer and easier to drill, but at that time, the cotyledon tannin content was higher. Q. coccifera acorns had the highest tannin concentration, which, we experimentally discovered, hampered weevil development (with longer development and a lower final larval mass). Infested acorn abscission was also more effective in Q. coccifera. Due to the smaller size and later maturation phenology of its acorns, insects depleted the cotyledons and suffered food shortages more frequently. In the end, Q. coccifera showed the lowest acorn infestation rates, although its strategy would have costs in further stages of the regeneration cycle. Tannins deter acorn dispersers, and their production is costly. Such trade-offs would favor the co-existence of different strategies evolved by Quercus spp. against pre-dispersal insect predators. Full article
(This article belongs to the Special Issue The Richness of the Forest Microcosmos)
Show Figures

Figure 1

12 pages, 230 KB  
Article
Effect of Supplementing Lysine and Isoleucine as Limiting Amino Acids on Growth Performance and Amino Acid Deposition of Tenebrio molitor Larvae Reared on a Cereal-Based Substrate
by Guillermo Fondevila, Habib Fatmi, Pilar Fernando, Carlos Dapoza and Manuel Fondevila
Insects 2025, 16(9), 989; https://doi.org/10.3390/insects16090989 - 22 Sep 2025
Viewed by 410
Abstract
The effects of Lys and Ile supplementation in a barley-based substrate on growth performance and nutrient deposition in Tenebrio molitor larvae were evaluated. Six trays per treatment containing sixty larvae were assigned to five treatments in two 21-day periods: barley (B); an 85% [...] Read more.
The effects of Lys and Ile supplementation in a barley-based substrate on growth performance and nutrient deposition in Tenebrio molitor larvae were evaluated. Six trays per treatment containing sixty larvae were assigned to five treatments in two 21-day periods: barley (B); an 85% barley and 15% soybean meal mixture (BS) and B supplemented with synthetic Lys (BL), Ile (BI) or a combination of both (BLI), as potential limiting amino acids (AA) for larval growth. Supplementing AAs was provided in agar cubes twice per week. Larval performance was measured, and larvae were analyzed for nutrient content and AA profile. Final larval weight increased (p = 0.042) in BS and BL compared to B, with intermediate values for BI and BLI. Larval contents (mg/larva) in total AAs and seven key AAs (sum of Lys, Met, Cys, Thr, Trp, Val and Ile) were higher in BS-fed larvae than in BL and BLI, with the lowest values for BI and B (p < 0.001). Barley supplementation with Lys improved larval AA content, although the levels remained lower than those observed with BS. Conversely, Ile supplementation had no apparent effect on overall AA deposition compared to Lys alone, suggesting the presence of additional limiting AAs for optimal larval growth. Full article
(This article belongs to the Section Insect Physiology, Reproduction and Development)
15 pages, 2137 KB  
Article
Modulation of Gene Expression in the Digestive Tract of the Tropical Gar (Atractosteus tropicus) in Response to Cricket Meal (Acheta domesticus)
by Fanny Janet De la Cruz-Alvarado, Bartolo Concha Frías, María Guadalupe López-Cerino, Carlos Alfonso Álvarez-González, Gabriela Gaxiola-Cortés, Joe Luis Arias-Moscoso, Jaime Bautista-Ortega, Sergio Hernández-García and David Julián Palma-Cancino
Fishes 2025, 10(9), 469; https://doi.org/10.3390/fishes10090469 - 22 Sep 2025
Viewed by 359
Abstract
The tropical gar (Atractosteus tropicus Gill, 1863) is a prehistoric fish of high nutritional value in southern Mexico and Central America. However, some aspects related to the effects caused by alternative protein sources, such as insect meal, as a substitute for fish [...] Read more.
The tropical gar (Atractosteus tropicus Gill, 1863) is a prehistoric fish of high nutritional value in southern Mexico and Central America. However, some aspects related to the effects caused by alternative protein sources, such as insect meal, as a substitute for fish meal on the growth and expression of digestive enzyme genes, are still unknown. A total of 225 juveniles of A. tropicus were used and fed five experimental diets, each in triplicate, with different levels of substitution of fishmeal (FM) protein with house cricket meal (HCM) protein. A control diet that contained no HCM (T1-0% HCM) was used, and substitutions ranged from 25 to 100% of FM protein by HCM (T2-25% HCM, T3-50% HCM, T4-75% HCM, and T5-100% HCM) for 45 days. The results of this study indicate that T4-75% HCM showed the best growth indices, such as feed efficiency (EF), feed conversion ratio (FCR), specific growth rate (SGR), as well as higher gene expression of pepsin and trypsin, while chymotrypsin showed higher expression in T3. The higher performance achieved in T4-75% HCM may be due to the fact that, in the early stages, insects are part of the natural diet of A. tropicus. The inclusion of cricket meal as a partial substitute for fish meal is not recommended in quantities greater than T4-75%. Full article
(This article belongs to the Section Nutrition and Feeding)
Show Figures

Graphical abstract

19 pages, 2947 KB  
Article
Mouthparts and Alimentary Tract of Flower-Visiting Monkey Beetles (Coleoptera: Scarabaeoidea: Hopliini): Insights into Feeding Preferences
by Michael Neulinger, Florian Karolyi, Jonathan F. Colville, Myriam E. Widmann, Jonas Kristl and Harald W. Krenn
Insects 2025, 16(9), 985; https://doi.org/10.3390/insects16090985 - 21 Sep 2025
Viewed by 498
Abstract
Monkey beetles (Hopliini, Scarabaeoidea) are a species-rich group of flower-visiting insects that are specialized to feed on floral tissue, pollen and/or nectar. We studied ten South African species, examining morphological features associated with their specific feeding preferences. This is the first attempt in [...] Read more.
Monkey beetles (Hopliini, Scarabaeoidea) are a species-rich group of flower-visiting insects that are specialized to feed on floral tissue, pollen and/or nectar. We studied ten South African species, examining morphological features associated with their specific feeding preferences. This is the first attempt in a limited number of beetle species to comparatively investigate both the mouthparts and the alimentary tract in relation to ingested food. Using light microscopy, we found cutting edges on the mandibles and galea teeth in flower tissue-feeding species. Pollen feeders have numerous bristles on the maxillae and a prominent mola on the mandibles that are likely used for gathering and grinding pollen. The elongate heads and mouthparts of the nectar feeders are considered an adaptation that enable these species to mop up nectar while probing flowers. Using µCT imaging and reconstructions of the entire alimentary tract, our morphometric results suggest that food preferences are not related to total relative gut length, although the ratio of foregut to body length was greater in pollen- and nectar-feeding monkey beetles than in floral tissue-feeders. The midgut of females tends to be longer relative to body size compared to males. Our work serves as a basis for generating hypotheses for future research that includes gut morphology in flower-visiting insects. Full article
(This article belongs to the Special Issue Beetles: Biology, Ecology, and Integrated Management)
Show Figures

Figure 1

22 pages, 4747 KB  
Article
The Compensatory Response of Photosystem II Photochemistry to Short-Term Insect Herbivory Is Suppressed Under Water Deficit
by Julietta Moustaka, Ilektra Sperdouli, Stefanos S. Andreadis, Nikoletta Stoikou, Kleoniki Giannousi, Catherine Dendrinou-Samara and Michael Moustakas
Insects 2025, 16(9), 984; https://doi.org/10.3390/insects16090984 - 21 Sep 2025
Viewed by 499
Abstract
Photosystem II (PSII) is very sensitive to both biotic and abiotic stress conditions, mirroring global climate changes. Crop production worldwide faces rising hazards from the increased duration, frequency, and intensity of drought stress episodes as a result of climate change, and its effects, [...] Read more.
Photosystem II (PSII) is very sensitive to both biotic and abiotic stress conditions, mirroring global climate changes. Crop production worldwide faces rising hazards from the increased duration, frequency, and intensity of drought stress episodes as a result of climate change, and its effects, when combined with biotic stress, are becoming more noticeable. In the present work, we examined PSII responses of well-watered (WW) tomato plants or mildly drought-stressed (MDS) plants to 20 min of Tuta absoluta larvae feeding. The effective quantum yield of PSII photochemistry (ΦPSII) of the whole leaf in WW plants, after 20 min of larvae feeding, compensated for the reduction in ΦPSII observed at the feeding area. In contrast, the reduced ΦPSII at the feeding areas of MDS plants, after 20 min of larvae feeding, was not compensated at the whole-leaf level because of the drought stress. The increased ΦPSII and electron transport rate (ETR) at the whole-leaf level in WW plants was attributed to the increased fraction of open PSII reaction centers (qp), since there was no difference in the efficiency of the open PSII reaction centers (Fv′/Fm′) before and after feeding. Therefore, the response of PSII photochemistry in WW plants to short-term biotic stress resulted in an overcompensation reaction, which developed a whole-leaf photosynthetic enhancement. However, short-term biotic stress in combination with mild abiotic stress resulted in decreased PSII photochemistry. It is concluded that increased crop damage is likely to occur due to the global climate-change-induced drought episodes, influencing insect herbivory. Full article
(This article belongs to the Collection Plant Responses to Insect Herbivores)
Show Figures

Figure 1

25 pages, 828 KB  
Review
From Gut to Fillet: Comprehensive Effects of Tenebrio molitor in Fish Nutrition
by Andrada Ihuț, Camelia Răducu, Paul Uiuiu and Camelia Munteanu
Fishes 2025, 10(9), 468; https://doi.org/10.3390/fishes10090468 - 20 Sep 2025
Viewed by 572
Abstract
As aquaculture expands, there is a growing demand for sustainable and environmentally friendly feed ingredients that can replace conventional fish meal while maintaining high biological value and digestibility. The use of fishmeal has contributed to overfishing, making it an increasingly limited and unsustainable [...] Read more.
As aquaculture expands, there is a growing demand for sustainable and environmentally friendly feed ingredients that can replace conventional fish meal while maintaining high biological value and digestibility. The use of fishmeal has contributed to overfishing, making it an increasingly limited and unsustainable resource. Tenebrio molitor (TM) is emerging as a sustainable alternative to fishmeal (FM) in aquaculture diets, gaining attention due to its balanced protein composition profile and low environmental footprint. This review critically analyses data from the literature on the use of TM meal as a substitute for fish feed ingredient, focusing on its effects on growth performance, physiological status, and histological changes in the digestive and muscular systems. The influence on the physicochemical and sensory quality of fish meat is also evaluated. The discussion highlights both the benefits and possible adverse effects, such as intestinal inflammation or changes that may occur, depending on the replacement level. The paper presents recommendations and strategies to mitigate these effects, including the use of dietary supplements or partial replacement schemes. Overall, this paper emphasises the promising potential of TM as a sustainable alternative to FM in aquaculture feed, while highlighting the need for further research into the long-term effects, involved metabolic pathways, and standardisation of insect meal production. This review provides valuable insight into the physiological changes that may occur, particularly at high inclusion levels. As TM is utilized in both human nutrition and aquaculture diets, monitoring its physiological effects in fish is essential, since any alterations may have implications for human food safety. Full article
(This article belongs to the Special Issue Dietary Supplementation in Aquaculture)
Show Figures

Graphical abstract

Back to TopTop