Effect of Supplementing Lysine and Isoleucine as Limiting Amino Acids on Growth Performance and Amino Acid Deposition of Tenebrio molitor Larvae Reared on a Cereal-Based Substrate
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Insect Rearing and Experimental Treatments
2.2. Measurements
2.3. Laboratory Analyses
2.4. Statistical Analyses
3. Results
3.1. Growth Performance
3.2. Nutrient and Amino Acid Deposition
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CP | Crude protein (N × 6.25) |
EE | Ether extract |
DM | Dry matter |
F:G | Feed to Gain ratio |
SEM | Standard error of means |
References
- Zielińska, E.; Baraniak, B.; Karaś, M.; Rybczyńska, K.; Jakubczyk, A. Selected species of edible insects as a source of nutrient composition. Food Res. Int. 2015, 77, 460–466. [Google Scholar] [CrossRef]
- Koutsos, L.; McComb, A.; Finke, M. Insect composition and uses in animal feeding applications: A brief review. Ann. Entomol. Soc. Amer. 2019, 112, 544–551. [Google Scholar] [CrossRef]
- Adámková, A.; Mlček, J.; Adámek, M.; Borkovcová, M.; Bednářová, M.; Hlobilová, V.; Knížková, I.; Juríková, T. Tenebrio molitor (Coleoptera: Tenebrionidae)—optimization of rearing conditions to obtain desired nutritional values. J. Insect Sci. 2020, 20, 24. [Google Scholar] [CrossRef] [PubMed]
- Kröncke, N.; Wittke, S.; Steinmann, N.; Benning, R. Analysis of the composition of different instars of Tenebrio molitor larvae using Near-Infrared Reflectance Spectroscopy for prediction of amino and fatty acid content. Insects 2023, 14, 310. [Google Scholar] [CrossRef]
- Khanal, P.; Pandey, D.; Naess, G.; Cabrita, A.R.J.; Fonseca, A.J.M.; Maia, M.R.G.; Timilsina, B.; Veldkamp, T.; Sapkota, R.; Overrein, H. Yellow mealworms (Tenebrio molitor) as an alternative animal feed source: A comprehensive characterization of nutritional values and the larval gut microbiome. J. Cleaner Prod. 2023, 389, 136104. [Google Scholar]
- Veldkamp, T.; van Duinkerken, G.; van Huis, A.; Lakemond, C.M.M.; Ottevanger, E.; Bosch, G.; van Boekel, M.A.J.S. Insects as a Sustainable Feed Ingredient in Pig and Poultry Diets—A Feasibility Study; Wageningen UR Livestock Research: Wageningen, The Netherlands, 2012; Report 638. [Google Scholar]
- Hong, H.; Han, T.; Kim, Y.Y. Mealworm (Tenebrio molitor larvae) as an alternative protein source for monogastric animal: A review. Animals 2020, 10, 2068. [Google Scholar] [CrossRef]
- Rumpold, B.A.; Schlüter, O.K. Potential and challenges of insects as an innovative source for food and feed production. Innov. Food Sci. Emerg. Technol. 2013, 17, 1–11. [Google Scholar] [CrossRef]
- Bordiean, A.; Krzyzaniak, M.; Aljewicz, M.; Stolarski, M.J. Influence of different diets on growth and nutritional composition of yellow mealworm. Foods 2022, 11, 3075. [Google Scholar] [CrossRef]
- Kröncke, N.; Benning, R. Influence of dietary protein content on the nutritional composition of mealworm larvae (Tenebrio molitor L.). Insects 2023, 14, 261. [Google Scholar] [CrossRef] [PubMed]
- Fondevila, G.; Fondevila, M. Productive performance of Tenebrio molitor larvae in response to the protein level in the substrate. J. Insects Food Feed 2023, 9, 205–211. [Google Scholar] [CrossRef]
- Mancini, S.; Fratini, F.; Turchi, B.; Mattioli, S.; Dal Bosco, A.; Tuccinardi, T.; Nozic, S.; Paci, G. Former foodstuff products in Tenebrio molitor rearing: Effects on growth, chemical composition, microbiological load, and antioxidant status. Animals 2019, 9, 484. [Google Scholar] [CrossRef] [PubMed]
- Davis, G.R.F. Essential dietary amino acids for growth of larvae of the yellow mealworm, Tenebrio molitor L. J. Nutr. 1975, 105, 1071–1075. [Google Scholar] [CrossRef] [PubMed]
- Davis, G.R.F.; Sosulski, F.W. Determination of useful barley selections in an improvement program for increased lysine content by larvae of Tenebrio molitor L. Arch. Int. Phys. Bioch. 1977, 85, 891–904. [Google Scholar]
- Spranghers, T.; Moradei, A.; Vynckier, K.; Boudrez, M.; Pinotti, L.; Ottoboni, M. Amino acid requirements of yellow mealworm and black soldier fly. J. Insects Food Feed 2024, 11, 1047–1058. [Google Scholar] [CrossRef]
- Plonquet, D.; Fondevila, G.; Fondevila, M. Rearing Tenebrio molitor larvae with wheat, barley or maize grains as main source of nutrients in unbalanced or balanced substrates. Animal 2025, 19, 101384. [Google Scholar] [CrossRef]
- John, A.M.; Davis, G.R.F.; Sosulski, F.W. Protein nutriton of Tenebrio molitor L. XX. Growth response of larvae to graded levels of amino acids. Arch. Int. Phys. Bioch. 1979, 87, 997–1004. [Google Scholar]
- Wu, G.; Li, P. The “ideal protein” concept is not ideal in animal nutrition. Exp. Biol. Med. 2022, 247, 1191–1201. [Google Scholar] [CrossRef]
- Makkar, H.P.S.; Tran, G.; Heuzé, V.; Ankers, P. State-of-the-art of use of insects as animal feed. Anim. Feed Sci. Technol. 2014, 197, 1–33. [Google Scholar] [CrossRef]
- Oonincx, D.G.A.B.; van Broekhoven, S.; van Huis, A.; van Loon, J.J.A. Feed conversion, survival and development, and composition of four insect species on diets composed of food by-products. PLoS ONE 2015, 10, e0144601. [Google Scholar] [CrossRef] [PubMed]
- van Broekhoven, S.; Oonincx, D.G.A.B.; van Huis, A.; van Loon, J.J.A. Growth performance and feed conversion efficiency of three edible mealworm species (Coleoptera: Tenebrionidae) on diets composed by organic by-products. J. Insect Physiol. 2015, 73, 1–10. [Google Scholar] [CrossRef]
- AOAC International. Official Methods of Analysis of AOAC International, 18th ed.; AOAC International: Gaithersburg, MD, USA, 2005; pp. 24–56. [Google Scholar]
- Mertens, D.R. Gravimetric determination of amylase-treated neutral detergent fiber in feeds with refluxing in beakers or crucibles: Collaborative study. J. AOAC Int. 2002, 85, 1217–1240. [Google Scholar] [CrossRef]
- SAS Institute. SAS/STAT 15.1 User’s Guide; SAS Institute Inc.: Cary, NC, USA, 2018. [Google Scholar]
- Rumbos, C.I.; Karapanagiotidis, I.T.; Mente, E.; Psofakis, P.; Christos, G.; Athanassiou, C.G. Evaluation of various commodities for the development of the yellow mealworm, Tenebrio molitor. Sci. Rep. 2020, 10, 11224. [Google Scholar] [CrossRef] [PubMed]
- Langston, K.; Selaledi, L.; Tanga, C.; Yusuf, A. The nutritional profile of the yellow mealworm larvae (Tenebrio molitor) reared on four different substrates. Future Foods 2024, 9, 100388. [Google Scholar] [CrossRef]
- Montalbán, A.; Sánchez, C.J.; Hernández, F.; Schiavone, A.; Madrid, J.; Martínez-Miró, S. Effects of agro-industrial byproduct-based diets on the growth performance, digestibility, nutritional and microbiota composition of mealworm (Tenebrio molitor L.). Insects 2022, 13, 323. [Google Scholar] [CrossRef]
- Jankauskiene, A.; Aleknavicius, D.; Andruleviciute, V.; Mockus, E.; Bartkiene, E.; Jukniene, I.; Kiselioviene, S.; Zavistanaviciute, P.; Zaborskiene, G.; Kabašinskiene, A. Nutritional composition and safety parameters of mealworms (Tenebrio molitor) reared on substrates derived from by-products. Appl. Sci. 2024, 14, 2744. [Google Scholar] [CrossRef]
- Zhang, X.; Tang, H.; Chen, G.; Qiao, L.; Li, J.; Liu, B.; Liu, Z.; Li, M.; Liu, X. Growth performance and nutritional profile of mealworm reared on corn stover, soybean meal and distillers’ grains. Eur. Food Res. Technol. 2019, 245, 2631–2640. [Google Scholar] [CrossRef]
- Bovera, F.; Piccolo, G.; Gasco, L.; Marono, S.; Loponte, R.; Vassalotti, G.; Mastellone, V.; Lombardi, P.; Attia, Y.A.; Nizza, A. Yellow mealworms larvae (Tenebrio molitor L.) as protein source for broilers: Effects on growth performance and blood profiles. Br. Poult. Sci. 2015, 56, 569–575. [Google Scholar]
- De Marco, M.; Martínez, S.; Hernandez, F.; Madrid, J.; Gai, F.; Rotolo, L.; Belforti, M.; Bergero, D.; Katz, H.; Dabbou, S.; et al. Nutritional value of two insect larval meals (Tenebrio molitor and Hermetia illucens) for broiler chickens: Apparent nutrient digestibility, apparent ileal amino acid digestibility and apparent metabolizable energy. Anim. Feed Sci. Technol. 2015, 209, 211–218. [Google Scholar] [CrossRef]
- Boulos, S.; Tännler, A.; Nyström, L. Nitrogen-to-Protein conversion factors for edible insects on the Swiss market: T. molitor, A. domesticus, and L. migratoria. Front. Nutr. 2020, 7, 89. [Google Scholar] [CrossRef]
- Feedipedia. Animal Feed Resources Information System, France. Mealworm (Tenebrio molitor). Available online: https://feedipedia.org/node/16401 (accessed on 20 May 2025).
- INRAE Institut National de Recherche pour l’Agriculture, l’Alimentation et l’ Environnement. INRAE-CIRAD-AFZ Feed Tables. Composition and Nnutritive Values of Feeds for Cattle, Sheep, Goats, Pigs, Poultry, Rabbits, Horses and Salmonids. Available online: https://feedtables.com/content/table-feed-profile (accessed on 20 May 2025).
- Jajic, I.; Krstovic, S.; Petrovic, M.; Urosevic, M.; Glamocic, D.; Samardzic, M.; Popovic, A.; Guljas, D. Changes in the chemical composition of the yellow mealworm (Tenebrio molitor L.) reared on different feedstuffs. J. Anim. Feed Sci. 2022, 32, 191–200. [Google Scholar] [CrossRef]
- Davis, G.R.F. Protein nutrition of Tenebrio molitor L: XVII.—Improved amino acid mixture and interaction with dietary carbohydrate. Arch. Int. Phys. Bioch. 1974, 82, 631–637. [Google Scholar]
- John, A.M.; Davis, G.R.F.; Sosulski, F.W. Protein Nutrition of Tenebrio molitor L. XIX. Growth response to levels of dietary protein and of an amino acid mixture. Arch. Int. Phys. Bioch. 1978, 86, 761–770. [Google Scholar]
- Harper, A.E.; Miller, R.H.; Block, K.P. Branched-chain amino acid metabolism. Annu. Rev. Nutr. 1984, 4, 409–454. [Google Scholar] [CrossRef] [PubMed]
- Wiltafsky, M.K.; Pfaffl, M.W.; Roth, F.X. The effects of branched-chain amino acid interactions on growth performance, blood metabolites, enzyme kinetics and transcriptomics in weaned pigs. Br. J. Nutr. 2010, 103, 964–976. [Google Scholar] [CrossRef] [PubMed]
Barley | Soybean Meal | |
---|---|---|
Dry matter | 890 | 887 |
Ash | 134 | 184 |
Crude protein | 104 | 461 |
Ether extract | 10 | 18 |
Neutral detergent fiber | 262 | 94 |
Starch | 533 | 11 |
Amino acids | ||
Alanine | 4.3 | 20.3 |
Arginine | 5.3 | 33.4 |
Aspartic acid | 6.5 | 51.9 |
Cystine | 2.4 | 6.4 |
Glutamic acid | 23.6 | 81.0 |
Glycine | 4.4 | 19.6 |
Histidine | 2.3 | 12.0 |
Isoleucine | 3.6 | 21.0 |
Leucine | 7.2 | 34.9 |
Lysine | 3.5 | 28.5 |
Methionine | 1.8 | 6.0 |
Phenylalanine | 5.2 | 23.4 |
Proline | 11.1 | 22.7 |
Serine | 4.4 | 23.4 |
Threonine | 3.6 | 18.3 |
Tryptophan | 1.4 | 6.0 |
Valine | 5.2 | 22.1 |
7 key amino acids 1 | 21.5 | 108.3 |
Total amino acids | 95.8 | 430.9 |
B | BS | BL | BI | BLI | SEM | p-Value | |
---|---|---|---|---|---|---|---|
Mortality (%) | 13.33 | 9.72 | 11.94 | 7.50 | 10.28 | 1.963 | 0.306 |
Initial weight (mg/larva) | 35.3 | 35.6 | 38.3 | 38.8 | 38.3 | 1.40 | 0.255 |
Final weight (mg/larva) | 116 b | 125 a | 125 a | 119 ab | 120 ab | 2.4 | 0.042 |
Larval growth (mg/d) | 3.82 b | 4.26 a | 4.11 a | 3.81 b | 3.87 b | 0.077 | <0.001 |
Larval mass (mg/tray) | 3882 b | 4623 a | 4253 ab | 4237 ab | 4128 b | 132.9 | 0.012 |
Feed intake (mg/tray) | 6098 | 6340 | 6378 | 6212 | 6238 | 103.4 | 0.358 |
F:G (mg/mg) | 1.578 a | 1.379 b | 1.505 a | 1.467 ab | 1.514 a | 0.0396 | 0.025 |
B | BS | BL | BI | BLI | |
---|---|---|---|---|---|
Dry matter (mg/g fresh matter) | 36.35 | 35.74 | 36.07 | 35.94 | 36.26 |
Ether extract | 42.50 | 36.74 | 41.64 | 41.89 | 41.31 |
Crude Protein 2 | 42.41 | 47.72 | 43.03 | 42.55 | 43.54 |
Amino acids (AAs) | |||||
Alanine | 2.834 | 2.974 | 2.867 | 2.807 | 2.848 |
Arginine | 2.026 | 2.342 | 2.073 | 2.068 | 2.105 |
Aspartic acid | 2.896 | 3.468 | 3.013 | 2.940 | 3.002 |
Cystine | 0.380 | 0.441 | 0.394 | 0.387 | 0.402 |
Glutamic acid | 4.204 | 5.072 | 4.365 | 4.283 | 4.397 |
Glycine | 1.989 | 2.208 | 2.051 | 2.000 | 2.036 |
Histidine | 1.129 | 1.291 | 1.140 | 1.143 | 1.143 |
Isoleucine | 1.622 | 1.884 | 1.666 | 1.661 | 1.711 |
Leucine | 2.687 | 3.120 | 2.767 | 2.695 | 2.781 |
Lysine | 2.006 | 2.421 | 2.134 | 2.070 | 2.154 |
Methionine | 0.477 | 0.551 | 0.493 | 0.491 | 0.497 |
Methionine + Cystine | 0.857 | 0.992 | 0.887 | 0.879 | 0.899 |
Phenylalanine | 1.214 | 1.471 | 1.240 | 1.230 | 1.254 |
Proline | 3.080 | 3.257 | 3.242 | 3.291 | 3.287 |
Serine | 1.691 | 1.901 | 1.741 | 1.690 | 1.724 |
Threonine | 1.440 | 1.660 | 1.488 | 1.454 | 1.481 |
Tryptophan | 0.481 | 0.586 | 0.491 | 0.473 | 0.494 |
Valine | 2.310 | 2.564 | 2.357 | 2.292 | 2.336 |
Σ 7 key AA 3 | 8.72 | 10.11 | 9.02 | 8.83 | 9.08 |
Total AA | 32.5 | 37.2 | 33.5 | 33.0 | 33.7 |
B | BS | BL | BI | BLI | SEM | p-Value | |
---|---|---|---|---|---|---|---|
Dry matter | 42.01 | 44.65 | 44.93 | 42.70 | 43.40 | 1.045 | 0.255 |
Ether extract | 17.85 a | 16.40 b | 18.71 a | 17.90 a | 17.93 a | 0.439 | 0.019 |
Crude protein | 17.82 c | 21.31 a | 19.33 b | 18.17 bc | 18.90 bc | 0.468 | <0.001 |
B | BS | BL | BI | BLI | SEM | p-Value | |
---|---|---|---|---|---|---|---|
Alanine | 1.190 c | 1.328 a | 1.288 ab | 1.199 bc | 1.236 ab | 0.0321 | 0.025 |
Arginine | 0.851 c | 1.045 a | 0.931 b | 0.885 bc | 0.914 bc | 0.0250 | <0.001 |
Aspartic acid | 1.216 c | 1.548 a | 1.353 b | 1.258 bc | 1.303 bc | 0.0042 | <0.001 |
Cysteine | 0.160 c | 0.197 a | 0.177 b | 0.166 bc | 0.175 b | 0.0042 | <0.001 |
Glutamic acid | 1.795 c | 2.264 a | 1.961 b | 1.832 bc | 1.909 bc | 0.0535 | <0.001 |
Glycine | 0.835 c | 0.986 a | 0.922 ab | 0.855 bc | 0.884 bc | 0.0231 | <0.001 |
Histidine | 0.474 b | 0.576 a | 0.512 b | 0.489 b | 0.496 b | 0.0135 | <0.001 |
Isoleucine | 0.681 c | 0.841 a | 0.748 b | 0.710 bc | 0.743 b | 0.0188 | <0.001 |
Leucine | 1.129 c | 1.939 a | 1.243 b | 1.151 c | 1.207 bc | 0.0313 | <0.001 |
Lysine | 0.842 c | 1.080 a | 0.958 b | 0.887 bc | 0.935 b | 0.0250 | <0.001 |
Methionine | 0.200 c | 0.246 a | 0.221 b | 0.210 bc | 0.216 bc | 0.0059 | 0.017 |
Methionine + Cystine | 0.360 c | 0.443 a | 0.398 b | 0.375 bc | 0.390 b | 0.0100 | <0.01 |
Phenylalanine | 0.510 c | 0.657 a | 0.557 b | 0.526 bc | 0.544 bc | 0.0148 | <0.001 |
Proline | 1.291 | 1.453 | 1.456 | 1.413 | 1.428 | 0.0412 | 0.053 |
Serine | 0.710 c | 0.849 a | 0.782 b | 0.722 c | 0.748 bc | 0.0176 | <0.001 |
Threonine | 0.605 c | 0.741 a | 0.668 b | 0.621 bc | 0.643 bc | 0.0168 | <0.001 |
Tryptophan | 0.202 c | 0.262 a | 0.221 b | 0.202 c | 0.215 bc | 0.0060 | <0.001 |
Valine | 0.970 c | 1.144 a | 1.059 b | 0.980 c | 1.123 bc | 0.0260 | <0.001 |
Σ 7 key AA 1 | 3.660 c | 4.511 a | 4.053 b | 3.776 bc | 3.940 bc | 0.1025 | <0.001 |
Total AA | 13.43 c | 16.35 a | 14.84 b | 13.90 bc | 14.40 bc | 0.384 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fondevila, G.; Fatmi, H.; Fernando, P.; Dapoza, C.; Fondevila, M. Effect of Supplementing Lysine and Isoleucine as Limiting Amino Acids on Growth Performance and Amino Acid Deposition of Tenebrio molitor Larvae Reared on a Cereal-Based Substrate. Insects 2025, 16, 989. https://doi.org/10.3390/insects16090989
Fondevila G, Fatmi H, Fernando P, Dapoza C, Fondevila M. Effect of Supplementing Lysine and Isoleucine as Limiting Amino Acids on Growth Performance and Amino Acid Deposition of Tenebrio molitor Larvae Reared on a Cereal-Based Substrate. Insects. 2025; 16(9):989. https://doi.org/10.3390/insects16090989
Chicago/Turabian StyleFondevila, Guillermo, Habib Fatmi, Pilar Fernando, Carlos Dapoza, and Manuel Fondevila. 2025. "Effect of Supplementing Lysine and Isoleucine as Limiting Amino Acids on Growth Performance and Amino Acid Deposition of Tenebrio molitor Larvae Reared on a Cereal-Based Substrate" Insects 16, no. 9: 989. https://doi.org/10.3390/insects16090989
APA StyleFondevila, G., Fatmi, H., Fernando, P., Dapoza, C., & Fondevila, M. (2025). Effect of Supplementing Lysine and Isoleucine as Limiting Amino Acids on Growth Performance and Amino Acid Deposition of Tenebrio molitor Larvae Reared on a Cereal-Based Substrate. Insects, 16(9), 989. https://doi.org/10.3390/insects16090989