Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,351)

Search Parameters:
Keywords = feed–heat

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1289 KiB  
Article
Live Yeast Supplementation Attenuates the Effects of Heat Stress in Dairy Cows
by Ana R. J. Cabrita, Júlio Carvalheira and António J. M. Fonseca
Vet. Sci. 2025, 12(9), 791; https://doi.org/10.3390/vetsci12090791 - 22 Aug 2025
Abstract
High temperature typically decreases feed intake, milk production, and efficiency and increases metabolic disorders and health problems, greatly impacting farm economics. Supplements based on Saccharomyces cerevisiae have been suggested to benefit cows under heat stress, but effects on dairy cow performance are contradictory. [...] Read more.
High temperature typically decreases feed intake, milk production, and efficiency and increases metabolic disorders and health problems, greatly impacting farm economics. Supplements based on Saccharomyces cerevisiae have been suggested to benefit cows under heat stress, but effects on dairy cow performance are contradictory. This study aimed to evaluate the influence of heat stress on the effects of live yeast supplementation on the performance of dairy cows. Environmental temperature parameters were compared to two thermal humidity indices (THI1 and THI2) using wet bulb or dew point temperatures, as explanatory variables of dairy cow performance during the hot season. The experiment followed a randomized complete block design with 12 Holstein cows blocked by lactation number, days in milk, and milk production (two cows per block) and within each block, each cow was randomly assigned to a maize silage-based TMR with a concentrate mixture containing no yeast culture (Control) or 1 g/kg concentrate dry matter of a live yeast culture based on S. cerevisiae (Yeast) for 35 days. The experiment lasted for 35 d. Dry matter intake (DMI) was significantly higher for Yeast than it was for Control for all classes of temperature and THIs studied with an average increase of 2 kg DM per day, except for mean THI1 (from 54 to 60), for which the DMI was similar between treatments. Yeast promoted significantly higher milk yield than Control for all classes of daily maximum and mean temperature, averaging an increase of 4 kg of milk per day. Results suggest a more marked effect of temperature and indicate that yeast supplementation improved lactation performance of dairy cows exposed to hot weather. Full article
Show Figures

Figure 1

16 pages, 1030 KiB  
Article
Lactic Acid Fermentation Inactivates Salmonella Typhimurium in Contaminated Cattle Manure at Moderate and Low Temperatures
by Hannah Halm, Sören Woelke, Ines Lehnert, Thorben Schilling, Thorsten Meissner, Charlotte Schröder, Ludwig E. Hoelzle and Hendrik A. Scheinemann
Appl. Microbiol. 2025, 5(3), 88; https://doi.org/10.3390/applmicrobiol5030088 - 22 Aug 2025
Abstract
In the case of a notifiable animal disease like salmonellosis, manure is contaminated and must be disinfected. This can be performed using heat measures, chemical disinfectants, or long-term storage. All these measures bring along severe economic, ecological, and logistical problems. The aim of [...] Read more.
In the case of a notifiable animal disease like salmonellosis, manure is contaminated and must be disinfected. This can be performed using heat measures, chemical disinfectants, or long-term storage. All these measures bring along severe economic, ecological, and logistical problems. The aim of this study was to evaluate lactic acid fermentation (LAF) as an alternative disinfection method. Fermentation was started by adding a carbohydrate source to the manure and creating anaerobic conditions. For testing, cattle manure was enriched with different carbohydrate (CHO) sources and spiked with Salmonella Typhimurium (S. Ty.). The samples were incubated at 10 °C and 21 °C for 111 days (Exp1) and at 21 °C for 50 days (Exp2). The microbial shift was determined using cultural methods and MALDI-TOF. Both the change in pH and Enterococcus spp. were tested as suitable indicators. The results showed the different suitability of the selected CHO for hygienization by LAF. Using squeezed oat as an additive, S. Ty was reduced to below the detection limit under both temperature conditions within 21 days and 14 days. Additional saccharose decreased the reduction time. This study showed that LAF is a valuable alternative for disinfecting cattle manure in the case of bovine salmonellosis. Using this method, both manure and feed residues can be treated in one approach and afterwards be used as fertilizer. Full article
Show Figures

Figure 1

26 pages, 1795 KiB  
Article
Effects of Mannan Oligosaccharides on Growth, Antioxidant and Immune Performance, and mTOR Signaling Pathway in Juvenile Tilapia (Oreochromis niloticus)
by Qin Zhang, Luoqing Li, Ziyi Ma, Wenyan He, Enhao Huang, Liuqing Meng, Lan Li, Tong Tong, Huizan Yang, Yongqiang Liu and Haijuan Liu
Animals 2025, 15(16), 2459; https://doi.org/10.3390/ani15162459 - 21 Aug 2025
Abstract
Mannan oligosaccharide (MOS), a prebiotic derived from yeast cell walls, has been shown to enhance growth performance and health status in various aquatic species. As an exogenous antigen adjuvant, MOS modulates T-cell-mediated immune responses, thereby improving immune function and suppressing excessive inflammatory reactions. [...] Read more.
Mannan oligosaccharide (MOS), a prebiotic derived from yeast cell walls, has been shown to enhance growth performance and health status in various aquatic species. As an exogenous antigen adjuvant, MOS modulates T-cell-mediated immune responses, thereby improving immune function and suppressing excessive inflammatory reactions. This study aimed to evaluate the effects of dietary MOS supplementation on growth performance, serum biochemical parameters, muscle composition, digestive enzyme activity, antioxidant and immune status, and the mTOR signaling pathway in juvenile GIFT tilapia (Oreochromis niloticus). Juveniles (initial body weight: 16.17 ± 1.32 g) were randomly assigned to six treatment groups (three replicate tanks per group) and fed diets supplemented with MOS at 0, 0.2%, 0.4%, 0.6%, 0.8%, and 1% (equivalent to 0, 2, 4, 6, 8, and 10 g/kg of diet, respectively) for 60 days. Compared with the control group, fish fed MOS-supplemented diets exhibited significantly higher (p < 0.05) weight gain rates, specific growth rates, and protein efficiency ratios, along with a significantly lower (p < 0.05) feed conversion ratio. Serum albumin, high-density lipoprotein, and lysozyme levels were significantly increased (p < 0.05), whereas triglycerides, low-density lipoprotein, aspartate aminotransferase, and alanine aminotransferase levels were significantly decreased (p < 0.05). In the liver, head kidney, and spleen, the expression of pro-inflammatory genes (tumor necrosis factor α, interleukin 1β, interleukin 6, interleukin 8, and interferon γ) was significantly downregulated (p < 0.05), while the expression of antioxidant and protective genes (superoxide dismutase, catalase, glutathione peroxidase, glutathione S-transferase, nuclear factor erythroid 2-related factor 2, lysozyme, alkaline phosphatase, interleukin-10, transforming growth factor β, and heat shock protein 70) as well as mTOR signaling pathway-related genes (mammalian target of rapamycin, akt protein kinase B, phosphatidylinositol 3 kinase, and ribosomal protein S6 kinase polypeptide 1) was significantly upregulated (p < 0.05). Overall, MOS positively affects tilapia’s growth, health, and immunity, with 0.60% identified as the optimal dietary level based on growth performance. Full article
Show Figures

Figure 1

20 pages, 3997 KiB  
Article
A Novel Weizmannia coagulans Strain WC412 with Superior Environmental Resilience Improves Growth Performance of Mice by Regulating the Intestinal Microbiota
by Xue Xiao, Hao Huang, Wendi Yu, Jun Liu, Yuanliang Hu, Xiang Yu and Xicai Zhang
Animals 2025, 15(16), 2446; https://doi.org/10.3390/ani15162446 - 20 Aug 2025
Viewed by 76
Abstract
The growing demand for sustainable and antibiotic-free animal production has intensified interest in probiotics as functional feed additives. In this study, novel strains of Weizmannia coagulans (WC412 and WC413) were isolated from pickle water—a previously unexplored source for probiotic screening. These isolates, along [...] Read more.
The growing demand for sustainable and antibiotic-free animal production has intensified interest in probiotics as functional feed additives. In this study, novel strains of Weizmannia coagulans (WC412 and WC413) were isolated from pickle water—a previously unexplored source for probiotic screening. These isolates, along with three reference strains (W. coagulans S8, S15, and S17), were evaluated for their tolerance to heat, acid, and bile salts. Strain WC412 exhibited superior environmental resilience, as validated by principal component analysis (PCA) for comprehensive stress-tolerance assessment, and was selected for further investigations. A murine model was employed to assess the physiological and microbiological impacts of WC412 supplementation at varying doses. Medium-dose (1 × 107 CFU·mL−1) administration significantly improved body weight gain by 13% (p < 0.05), modulated serum lipid profiles, and increased antioxidant enzyme activity and IgG/IL-2 levels (p < 0.05). Notably, WC412 uniquely enriched beneficial genera (e.g., Fructilactobacillus and Limosilactobacillus) and promoted metabolic pathways linked to short-chain fatty acid production, as revealed by 16S rDNA sequencing and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. These findings highlight WC412 as a robust probiotic candidate for enhancing animal growth performance and gut health through novel microbiota-mediated mechanisms. Full article
(This article belongs to the Section Animal Nutrition)
Show Figures

Figure 1

20 pages, 10593 KiB  
Article
Optimising WC-25Co Feedstock and Parameters for Laser-Directed Energy Deposition
by Helder Nunes, José Nhanga, Luís Regueiras, Ana Reis, Manuel F. Vieira, Bruno Guimarães, Daniel Figueiredo, Cristina Fernandes and Omid Emadinia
J. Manuf. Mater. Process. 2025, 9(8), 279; https://doi.org/10.3390/jmmp9080279 - 14 Aug 2025
Viewed by 197
Abstract
Laser-Directed Energy Deposition (L-DED) is an additive manufacturing technique used for producing and repairing components, mainly for coating applications, depositing metal matrix composites such as cemented carbides, composed of hard metal carbides and a metallic binder. In this sense, this study evaluated the [...] Read more.
Laser-Directed Energy Deposition (L-DED) is an additive manufacturing technique used for producing and repairing components, mainly for coating applications, depositing metal matrix composites such as cemented carbides, composed of hard metal carbides and a metallic binder. In this sense, this study evaluated the preparation of a ready-to-press WC-25Co powder as a reliable feedstock for L-DED process. This powder required pre-heat treatment studies to prevent fragmentation during powder feeding, due to the absence of metallurgical bonding between WC and Co particles. In the current study, the Taguchi methodology was used, varying laser power, powder feed rate, and scanning speed to reach an optimised deposition window. The best bead morphology resulted from 2400 W laser power, 11 mm/s scanning speed, and 9 g/min feed rate. Moreover, defects such as porosity and cracking were mitigated by applying a remelting strategy of 2400 W and 9 mm/s. Therefore, a perfect deposition is obtained using the optimised processing parameters. Microstructural analysis of the optimised deposited line revealed a fine structure, comprising columnar and equiaxed dendrites of complex carbides. The average hardness of the deposited WC-25Co powder on a AISI 1045 steel was 854 ± 37 HV0.2. These results demonstrate the potential of L-DED for processing high-performance cemented carbide coatings. Full article
Show Figures

Figure 1

19 pages, 1610 KiB  
Article
Utilization of Iron Foam as Structured Catalyst for Fischer–Tropsch Synthesis
by Yira Victoria Hurtado, Ghazal Azadi, Eduardo Lins de Barros Neto and Jean-Michel Lavoie
Fuels 2025, 6(3), 60; https://doi.org/10.3390/fuels6030060 - 14 Aug 2025
Viewed by 340
Abstract
This work focuses on the fabrication, characterization, and performance of a structured iron catalyst to produce hydrocarbons by the Fischer–Tropsch synthesis (FTS). The structured catalyst enhances the heat and mass transfer and provides a larger surface area and lower pressure drop. Iron-based structured [...] Read more.
This work focuses on the fabrication, characterization, and performance of a structured iron catalyst to produce hydrocarbons by the Fischer–Tropsch synthesis (FTS). The structured catalyst enhances the heat and mass transfer and provides a larger surface area and lower pressure drop. Iron-based structured catalysts indicate more activity in lower H2/CO ratios and improve carbon conversion as compared to other metals. These catalysts were manufactured using the sponge replication method (powder metallurgy). The performance of the structured iron catalyst was assessed in a fixed-bed reactor under industrially relevant conditions (250 °C and 20 bar). The feed gas was a synthetic syngas with a H2/CO ratio of 1.2, simulating a bio-syngas derived from lignocellulosic biomass gasification. Notably, the best result was reached under these conditions, obtaining a CO conversion of 84.8% and a CH4 selectivity of 10.4%, where the catalyst exhibited a superior catalytic activity and selectivity toward desired hydrocarbon products, including light olefins and long-chain paraffins. The resulting structured catalyst reached a one-pass CO conversion of 84.8% with a 10.4% selectivity to CH4 compared to a traditionally produced catalyst, for which the conversion was 18% and the selectivity was 19%, respectively. The results indicate that the developed structured iron catalyst holds considerable potential for efficient and sustainable hydrocarbon production, mainly C10–C20 (diesel-range hydrocarbons), via Fischer–Tropsch synthesis. The catalyst’s excellent performance and improved stability and selectivity offer promising prospects for its application in commercial-scale hydrocarbon synthesis processes. Full article
Show Figures

Figure 1

18 pages, 914 KiB  
Article
Effects of Low-Protein Amino Acid-Balanced Diets and Astragalus Polysaccharides on Production Performance, Antioxidants, Immunity, and Lipid Metabolism in Heat-Stressed Laying Hens
by Wenfeng Liu, Xiaoli Wan, Zhiyue Wang and Haiming Yang
Animals 2025, 15(16), 2385; https://doi.org/10.3390/ani15162385 - 14 Aug 2025
Viewed by 263
Abstract
The objective of the study was to investigate the effects of low-protein amino acid-balanced (LPAB) diets supplemented with Astragalus polysaccharides (APSs) on the production performance, antioxidants, immunity, and biochemical index of laying hens in an elevated-temperature environment. Fifty-two-week-old Hy-Line Brown chickens (n [...] Read more.
The objective of the study was to investigate the effects of low-protein amino acid-balanced (LPAB) diets supplemented with Astragalus polysaccharides (APSs) on the production performance, antioxidants, immunity, and biochemical index of laying hens in an elevated-temperature environment. Fifty-two-week-old Hy-Line Brown chickens (n = 768) were randomly divided into four groups, with eight replicates of 24 hens each. The control group was kept at 24 °C with a basal diet (CON), while the treatment groups were exposed to 32 °C and given the following diets: basal (HB), LPAB (HL), and LPAB with 0.5% APSs (HLA). Under heat stress, APSs increased the egg production rate and number of small white follicles, improved the yolk color, and lowered the feed conversion ratio. LPAB diets increased follicle-stimulating hormone, antioxidant enzyme activities, and anti-inflammatory cytokine activity and up-regulated related genes, whereas they reduced stress-related hormones, malondialdehyde concentrations, and triglyceride concentrations and down-regulated related genes. The addition of APSs enhanced immunoglobulin concentrations and cholesterol recovery and altered the expression of related genes. The study found that the adverse effects of high temperatures are directly related to oxidative stress. LAPB diets and APSs relatively alleviate these adverse effects. Therefore, the importance of feeding strategies such as LPAB diets and APSs for laying hens under heat stress conditions has been identified. Full article
Show Figures

Figure 1

31 pages, 6204 KiB  
Article
Optimization and Validation of CO2 Laser-Machining Parameters for Wood–Plastic Composites (WPCs)
by Sharizal Ahmad Sobri, Teoh Ping Chow, Tan Koon Tatt, Mohd Hisham Nordin, Andi Hermawan, Mohd Hazim Mohamad Amini, Mohd Natashah Norizan, Norshah Afizi Shuaib and Wan Omar Ali Saifuddin Wan Ismail
Polymers 2025, 17(16), 2216; https://doi.org/10.3390/polym17162216 - 13 Aug 2025
Viewed by 418
Abstract
Wood–plastic composites (WPCs) offer a sustainable alternative to solid wood, yet their heterogeneous structure presents challenges in laser machining due to thermal sensitivity and inconsistent material behaviour. This study investigates the optimization of CO2 laser-cutting parameters for WPCs, focusing on feed rate [...] Read more.
Wood–plastic composites (WPCs) offer a sustainable alternative to solid wood, yet their heterogeneous structure presents challenges in laser machining due to thermal sensitivity and inconsistent material behaviour. This study investigates the optimization of CO2 laser-cutting parameters for WPCs, focusing on feed rate and assist-gas pressure. Using a 1500 W CO2 laser, a full factorial experimental design was employed to cut 18 mm thick WPC panels at varying feed rates (1000–3000 mm/min) and gas pressures (1–3 bar). Statistical analyses including MANOVA and linear regression were conducted to evaluate their effects on key machining responses: cutting depth, heat-affected zone (HAZ) width, cut-edge quality, and surface finish. Results indicated that feed rate significantly influences both cutting depth and thermal damage, while gas pressure plays a major role in improving surface quality and reducing HAZ. Optimal combinations were identified for various performance goals, and validation trials at the selected parameters confirmed alignment with predicted outcomes. The optimized settings yielded high-quality cuts with reduced HAZ and enhanced surface characteristics. This study demonstrates the effectiveness of a statistical optimization approach in refining CO2 laser-cutting conditions for WPCs, offering insights for improved process control and sustainable manufacturing applications. This study also introduces a multi-objective optimization approach that verifies the interaction effects of feed rate and assist-gas pressure, enabling precise and efficient CO2 laser cutting of 18 mm thick WPCs. Full article
Show Figures

Graphical abstract

14 pages, 12121 KiB  
Article
Influence of Cold Metal Transfer Parameters on Weld Bead Geometry, Mechanical Properties, and Corrosion Performance of Dissimilar Aluminium Alloys
by Balram Yelamasetti, Mohammed Zubairuddin, Sri Phani Sushma I, Mohammad Faseeulla Khan, Syed Quadir Moinuddin and Hussain Altammar
Crystals 2025, 15(8), 722; https://doi.org/10.3390/cryst15080722 - 13 Aug 2025
Viewed by 304
Abstract
Aluminium alloys are known for their high strength-to-weight-ratio offering a wide range of applications in the aerospace and automotive industries. However, challenges exist like porosity, oxidation, solidification shrinkage, hot cracking, etc., in joining aluminium alloys. To address these challenges, there is a necessity [...] Read more.
Aluminium alloys are known for their high strength-to-weight-ratio offering a wide range of applications in the aerospace and automotive industries. However, challenges exist like porosity, oxidation, solidification shrinkage, hot cracking, etc., in joining aluminium alloys. To address these challenges, there is a necessity to understand the process parameters for the welding/joining of aluminium alloys. The present study aims to investigate the effect of cold metal transfer (CMT) welding process parameters (i.e., welding speed and wire feed rate) on mechanical properties for dissimilar AA6061-AA6082 alloys weld joints. Two different welding conditions viz. CMT1 (speed: 0.5 m/min with feed: 5 m/min) and CMT2 (speed: 0.3 m/min with feed: 3 m/min), were considered. The weldments were deployed for testing different mechanical properties such as tensile, impact, hardness, corrosion tests and bead profile geometries. The results reveal that CMT1 has better mechanical properties (tensile_233 MPa; impact_8 J; corrosion rate_0.01368 mm/year) than CMT2, showing the welding speed and wire feed rate play a significant role in the joint performance. The heat affected zone and fusion zone are narrow for CMT1 when compared with CMT2. The present study provides insights into the CMT process and dissimilar joining of aluminium alloys that might be helpful for additive manufacturing of dissimilar aluminium alloys as future research directions. Full article
(This article belongs to the Special Issue Advanced Welding and Additive Manufacturing)
Show Figures

Figure 1

32 pages, 1814 KiB  
Review
Candidate Genes, Markers, Signatures of Selection, and Quantitative Trait Loci (QTLs) and Their Association with Economic Traits in Livestock: Genomic Insights and Selection
by Nada N. A. M. Hassanine, Ahmed A. Saleh, Mohamed Osman Abdalrahem Essa, Saber Y. Adam, Raza Mohai Ud Din, Shahab Ur Rehman, Rahmat Ali, Hosameldeen Mohamed Husien and Mengzhi Wang
Int. J. Mol. Sci. 2025, 26(16), 7688; https://doi.org/10.3390/ijms26167688 - 8 Aug 2025
Viewed by 230
Abstract
This review synthesizes advances in livestock genomics by examining the interplay between candidate genes, molecular markers (MMs), signatures of selection (SSs), and quantitative trait loci (QTLs) in shaping economically vital traits across livestock species. By integrating advances in genomics, bioinformatics, and precision breeding, [...] Read more.
This review synthesizes advances in livestock genomics by examining the interplay between candidate genes, molecular markers (MMs), signatures of selection (SSs), and quantitative trait loci (QTLs) in shaping economically vital traits across livestock species. By integrating advances in genomics, bioinformatics, and precision breeding, the study elucidates genetic mechanisms underlying productivity, reproduction, meat quality, milk yield, fibre characteristics, disease resistance, and climate resilience traits pivotal to meeting the projected 70% surge in global animal product demand by 2050. A critical synthesis of 1455 peer-reviewed studies reveals that targeted genetic markers (e.g., SNPs, Indels) and QTL regions (e.g., IGF2 for muscle development, DGAT1 for milk composition) enable precise selection for superior phenotypes. SSs, identified through genome-wide scans and haplotype-based analyses, provide insights into domestication history, adaptive evolution, and breed-specific traits, such as heat tolerance in tropical cattle or parasite resistance in sheep. Functional candidate genes, including leptin (LEP) for feed efficiency and myostatin (MSTN) for double-muscling, are highlighted as drivers of genetic gain in breeding programs. The review underscores the transformative role of high-throughput sequencing, genome-wide association studies (GWASs), and CRISPR-based editing in accelerating trait discovery and validation. However, challenges persist, such as gene interactions, genotype–environment interactions, and ethical concerns over genetic diversity loss. By advocating for a multidisciplinary framework that merges genomic data with phenomics, metabolomics, and advanced biostatistics, this work serves as a guide for researchers, breeders, and policymakers. For example, incorporating DGAT1 markers into dairy cattle programs could elevate milk fat content by 15-20%, directly improving farm profitability. The current analysis underscores the need to harmonize high-yield breeding with ethical practices, such as conserving heat-tolerant cattle breeds, like Sahiwal. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

22 pages, 5293 KiB  
Article
Membrane Distillation for Water Desalination: Assessing the Influence of Operating Conditions on the Performance of Serial and Parallel Connection Configurations
by Lebea N. Nthunya and Bhekie B. Mamba
Membranes 2025, 15(8), 235; https://doi.org/10.3390/membranes15080235 - 4 Aug 2025
Viewed by 738
Abstract
Though the pursuit of sustainable desalination processes with high water recovery has intensified the research interest in membrane distillation (MD), the influence of module connection configuration on performance stability remains poorly explored. The current study provided a comprehensive multiparameter assessment of hollow fibre [...] Read more.
Though the pursuit of sustainable desalination processes with high water recovery has intensified the research interest in membrane distillation (MD), the influence of module connection configuration on performance stability remains poorly explored. The current study provided a comprehensive multiparameter assessment of hollow fibre membrane modules connected in parallel and series in direct contact membrane distillation (DCMD) for the first time. The configurations were evaluated under varying process parameters such as temperature (50–70 °C), flow rates (22.1–32.3 mL·s−1), magnesium concentration as scalant (1.0–4.0 g·L−1), and flow direction (co-current and counter-current), assessing their influence on temperature gradients (∆T), flux and pH stability, salt rejection, and crystallisation. Interestingly, the parallel module configuration maintained high operational stability with uniform flux and temperature differences (∆T) even at high recovery factors (>75%). On one hand, the serial configuration experienced fluctuating ∆T caused by thermal and concentration polarisation, causing an early crystallisation (abrupt drop in feed conductivity). Intensified polarisation effects with accelerated crystallisation increased the membrane risk of wetting, particularly at high recovery factors. Despite these changes, the salt rejection remained relatively high (99.9%) for both configurations across all tested conditions. The findings revealed that acidification trends caused by MgSO4 were configuration-dependent, where the parallel setup-controlled rate of pH collapse. This study presented a novel framework connecting membrane module architecture to mass and heat transfer phenomena, providing a transformative DCMD module configuration design in water desalination. These findings not only provide the critical knowledge gaps in DCMD module configurations but also inform optimisation of MD water desalination to achieve high recovery and stable operation conditions under realistic brine composition. Full article
(This article belongs to the Special Issue Membrane Distillation: Module Design and Application Performance)
Show Figures

Figure 1

23 pages, 1517 KiB  
Article
Physics-Informed Neural Network Enhanced CFD Simulation of Two-Dimensional Green Ammonia Synthesis Reactor
by Ran Xu, Shibin Zhang, Fengwei Rong, Wei Fan, Xiaomeng Zhang, Yunlong Wang, Liang Zan, Xu Ji and Ge He
Processes 2025, 13(8), 2457; https://doi.org/10.3390/pr13082457 - 3 Aug 2025
Viewed by 415
Abstract
The synthesis of “green ammonia” from “green hydrogen” represents a critical pathway for renewable energy integration and industrial decarbonization. This study investigates the green ammonia synthesis process using an axial–radial fixed-bed reactor equipped with three catalyst layers. A simplified two-dimensional physical model was [...] Read more.
The synthesis of “green ammonia” from “green hydrogen” represents a critical pathway for renewable energy integration and industrial decarbonization. This study investigates the green ammonia synthesis process using an axial–radial fixed-bed reactor equipped with three catalyst layers. A simplified two-dimensional physical model was developed, and a multiscale simulation approach combining computational fluid dynamics (CFD) with physics-informed neural networks (PINNs) employed. The simulation results demonstrate that the majority of fluid flows axially through the catalyst beds, leading to significantly higher temperatures in the upper bed regions. The reactor exhibits excellent heat exchange performance, ensuring effective preheating of the feed gas. High-pressure zones are concentrated near the top and bottom gas outlets, while the ammonia mole fraction approaches 100% near the bottom outlet, confirming superior conversion efficiency. By integrating PINNs, the prediction accuracy was substantially improved, with flow field errors in the catalyst beds below 4.5% and ammonia concentration prediction accuracy above 97.2%. Key reaction kinetic parameters (pre-exponential factor k0 and activation energy Ea) were successfully inverted with errors within 7%, while computational efficiency increased by 200 times compared to traditional CFD. The proposed CFD–PINN integrated framework provides a high-fidelity and computationally efficient simulation tool for green ammonia reactor design, particularly suitable for scenarios with fluctuating hydrogen supply. The reactor design reduces energy per unit ammonia and improves conversion efficiency. Its radial flow configuration enhances operational stability by damping feed fluctuations, thereby accelerating green hydrogen adoption. By reducing fossil fuel dependence, it promotes industrial decarbonization. Full article
(This article belongs to the Section AI-Enabled Process Engineering)
Show Figures

Figure 1

21 pages, 5706 KiB  
Article
The Impact of Drilling Parameters on Drilling Temperature in High-Strength Steel Thin-Walled Parts
by Yupu Zhang, Ruyu Li, Yihan Liu, Chengwei Liu, Shutao Huang, Lifu Xu and Haicheng Shi
Appl. Sci. 2025, 15(15), 8568; https://doi.org/10.3390/app15158568 - 1 Aug 2025
Viewed by 215
Abstract
High-strength steel has high strength and low thermal conductivity, and its thin-walled parts are very susceptible to residual stress and deformation caused by cutting heat during the drilling process, which affects the machining accuracy and quality. High-strength steel thin-walled components are widely used [...] Read more.
High-strength steel has high strength and low thermal conductivity, and its thin-walled parts are very susceptible to residual stress and deformation caused by cutting heat during the drilling process, which affects the machining accuracy and quality. High-strength steel thin-walled components are widely used in aerospace and other high-end sectors; however, systematic investigations into their temperature fields during drilling remain scarce, particularly regarding the evolution characteristics of the temperature field in thin-wall drilling and the quantitative relationship between drilling parameters and these temperature variations. This paper takes the thin-walled parts of AF1410 high-strength steel as the research object, designs a special fixture, and applies infrared thermography to measure the bottom surface temperature in the thin-walled drilling process in real time; this is carried out in order to study the characteristics of the temperature field during the thin-walled drilling process of high-strength steel, as well as the influence of the drilling dosage on the temperature field of the bottom surface. The experimental findings are as follows: in the process of thin-wall drilling of high-strength steel, the temperature field of the bottom surface of the workpiece shows an obvious temperature gradient distribution; before the formation of the drill cap, the highest temperature of the bottom surface of the workpiece is distributed in the central circular area corresponding to the extrusion of the transverse edge during the drilling process, and the highest temperature of the bottom surface can be approximated as the temperature of the extrusion friction zone between the top edge of the drill and the workpiece when the top edge of the drill bit drills to a position close to the bottom surface of the workpiece and increases with the increase in the drilling speed and the feed volume; during the process of drilling, the highest temperature of the bottom surface of the workpiece is approximated as the temperature of the top edge of the drill bit and the workpiece. The maximum temperature of the bottom surface of the workpiece in the drilling process increases nearly linearly with the drilling of the drill, and the slope of the maximum temperature increases nearly linearly with the increase in the drilling speed and feed, in which the influence of the feed on the slope of the maximum temperature increases is larger than that of the drilling speed. Full article
(This article belongs to the Special Issue Machine Automation: System Design, Analysis and Control)
Show Figures

Figure 1

24 pages, 3366 KiB  
Article
Real-Time Integrative Mapping of the Phenology and Climatic Suitability for the Spotted Lanternfly, Lycorma delicatula
by Brittany S. Barker, Jules Beyer and Leonard Coop
Insects 2025, 16(8), 790; https://doi.org/10.3390/insects16080790 - 31 Jul 2025
Viewed by 742
Abstract
We present a model that integrates the mapping of the phenology and climatic suitability for the spotted lanternfly (SLF), Lycorma delicatula (White, 1845) (Hemiptera: Fulgoridae), to provide guidance on when and where to conduct surveillance and management of this highly invasive pest. The [...] Read more.
We present a model that integrates the mapping of the phenology and climatic suitability for the spotted lanternfly (SLF), Lycorma delicatula (White, 1845) (Hemiptera: Fulgoridae), to provide guidance on when and where to conduct surveillance and management of this highly invasive pest. The model was designed for use in the Degree-Day, Establishment Risk, and Phenological Event Maps (DDRP) platform, which is an open-source decision support tool to help to detect, monitor, and manage invasive threats. We validated the model using presence records and phenological observations derived from monitoring studies and the iNaturalist database. The model performed well, with more than >99.9% of the presence records included in the potential distribution for North America, a large proportion of the iNaturalist observations correctly predicted, and a low error rate for dates of the first appearance of adults. Cold and heat stresses were insufficient to exclude the SLF from most areas of the conterminous United States (CONUS), but an inability for the pest to complete its life cycle in cold areas may hinder establishment. The appearance of adults occurred several months earlier in warmer regions of North America and Europe, which suggests that host plants in these areas may experience stronger feeding pressure. The near-real-time forecasts produced by the model are available at USPest.org and the USA National Phenology Network to support decision making for the CONUS. Forecasts of egg hatch and the appearance of adults are particularly relevant for surveillance to prevent new establishments and for managing existing populations. Full article
(This article belongs to the Special Issue Insect Dynamics: Modeling in Insect Pest Management)
Show Figures

Figure 1

19 pages, 8513 KiB  
Article
Multicriterial Heuristic Optimization of Cogeneration Supercritical Steam Cycles
by Victor-Eduard Cenușă and Ioana Opriș
Sustainability 2025, 17(15), 6927; https://doi.org/10.3390/su17156927 - 30 Jul 2025
Cited by 1 | Viewed by 352
Abstract
Heuristic optimization is used to find sustainable cogeneration steam power plants with steam reheat and supercritical main steam parameters. Design solutions are analyzed for steam consumer (SC) pressures of 3.6 and 40 bar and a heat flow rate of 40% of the fuel [...] Read more.
Heuristic optimization is used to find sustainable cogeneration steam power plants with steam reheat and supercritical main steam parameters. Design solutions are analyzed for steam consumer (SC) pressures of 3.6 and 40 bar and a heat flow rate of 40% of the fuel heat flow rate. The objective functions consisted in simultaneous maximization of global and exergetic efficiencies, power-to-heat ratio in full cogeneration mode, and specific investment minimization. For 3.6 bar, the indicators improve with the increase in the ratio between reheating and main steam pressure. The increase in SC pressure worsens the performance indicators. For an SC steam pressure of 40 bar and 9 feed water preheaters, the ratio between reheating and main steam pressure should be over 0.186 for maximum exergetic efficiency and between 0.10 and 0.16 for maximizing both global efficiency and power-to-heat ratio in full cogeneration mode. The average global efficiency for an SC requiring steam at 3.6 bar is 4.4 percentage points higher than in the case with 40 bar, the average specific investment being 10% lower. The Pareto solutions found in this study are useful in the design of sustainable cogeneration supercritical power plants. Full article
(This article belongs to the Section Energy Sustainability)
Show Figures

Figure 1

Back to TopTop