Lactic Acid Fermentation Inactivates Salmonella Typhimurium in Contaminated Cattle Manure at Moderate and Low Temperatures
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Source and Preparation
2.2. Experimental Design
2.3. pH Measurement
2.4. Salmonella Enrichment
2.5. MALDI-TOF
3. Results
3.1. Temperature Experiment
3.2. Saccharose Experiment
4. Discussion
4.1. The Role of the C Source
4.2. Temperature Dependence of Salmonella Degradation During LAF
4.3. Lactobacillus and pH
4.4. Enterococci as Indicator Organisms
4.5. Sporulating Organisms
4.6. LAF as Alternative
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
C | Carbon |
CATC agar | Citrate–azide–Tween®–carbonate agar |
CFU | Colony-forming unit |
CHO-A | Approach without carbohydrates |
CM | Cattle manure |
DRCM | Differential reinforced clostridial broth |
HA | Hay cob approach |
HCs | Hay cobs |
LA | Lactic acid |
LAB | Lactic acid bacteria |
LAF | Lactic acid fermentation |
N | Nitrogen |
NSA | Non-spiked sample |
OA | Squeezed oat approach |
OSA | Squeezed oat and saccharose approach |
SA | Saccharose approach |
Sac | Saccharose |
Sal | Salmonella enterica subsp. enterica ser. Typhimurium |
SS agar | Salmonella Shigella agar |
S. Thy | Salmonella enterica subsp. enterica ser. Typhimurium |
SO | Squeezed oat |
TCID50 | Tissue culture infection dose 50 |
VFA | Volatile fatty acid |
XLD agar | Xylose–lysine–deoxycholate agar |
References
- Anzeigepflichtige Tierseuchen. Available online: https://www.bmel.de/DE/themen/tiere/tiergesundheit/tierseuchen/anzeigepflichtige-tierseuchen.html (accessed on 28 March 2025).
- Düngemittelverordnung Anlage 9. Available online: https://www.gesetze-im-internet.de/d_v_2017/anlage_9.html (accessed on 28 February 2025).
- Scheinemann, H.A.; Dittmar, K.; Stöckel, F.S.; Müller, H.; Krüger, M.E. Hygienisation and Nutrient Conservation of Sewage Sludge or Cattle Manure by Lactic Acid Fermentation. PLoS ONE 2015, 10, e0118230. [Google Scholar] [CrossRef]
- Mindžáková, I.; Gregová, G.; Szabóová, T.; Sasáková, N.; Venglovský, J. Devitalization of Bacteria in Composted Cattle Manure with Natural Additives and Risk for Environment. Life 2024, 14, 490. [Google Scholar] [CrossRef] [PubMed]
- Blaiotta, G.; Di Cerbo, A.; Murru, N.; Coppola, R.; Aponte, M. Persistence of bacterial indicators and zoonotic pathogens in contaminated cattle wastes. BMC Microbiol. 2016, 16, 87. [Google Scholar] [CrossRef] [PubMed]
- Ravva, S.; Sarreal, C. Survival of Salmonella enterica in Aerated and Nonaerated Wastewaters from Dairy Lagoons. Int. J. Environ. Res. Public Health 2014, 11, 11249–11260. [Google Scholar] [CrossRef] [PubMed]
- Igue, P. Survival of Salmonella Typhimurium in Simulated Intestinal Fluids. Master’s Thesis, McGill University, Montreal, QC, Canada, 2001. [Google Scholar]
- Animal Disease Situation. Available online: https://www.fli.de/en/news/animal-disease-situation/ (accessed on 28 February 2025).
- Jung, K.-S.; Heu, S.-G.; Roh, E.-J.; Kim, M.-H.; Gil, H.-J.; Choi, N.-Y.; Lee, D.-H.; Lim, J.-A.; Ryu, J.-G.; Kim, K.-H. Survival of Salmonella enterica and Listeria monocytogenes in Chicken and Pig Manure Compost. Korean J. Soil Sci. Fertil. 2013, 46, 469–473. [Google Scholar] [CrossRef]
- Ravva, S.V.; Sarreal, C.Z.; Mandrell, R.E. Identification of Protozoa in Dairy Lagoon Wastewater that Consume Escherichia coli O157:H7 Preferentially. PLoS ONE 2010, 5, e15671. [Google Scholar] [CrossRef]
- Mejri, S.; Boukef Ben Omrane, I.; Mraouna, R.; Amara, A.; Got, P.; Boudabous, A.; El Bour, M. Effect of Environmental Factors on Salmonella thyphimurium in Marine Water Microcosms. Rapp. Comm. Int. Mer Médit. 2013, 40, 405. [Google Scholar]
- Aljarallah, K.M. Physiological Responses of Salmonella Typhimurium Under Combined Osmotic and Heat Stress. Ph.D. Thesis, University of Surrey, Guildford, UK, 2006. [Google Scholar]
- Szejniuk, B.; Budzińska, K.; Jurek, A.; Traczykowski, A.; Berleć, K.; Michalska, M.; Piątkowski, J.K. Przeżywalność bakterii Salmonella Enteritidis w wodach powierzchniowych. Annu. Set Environ. Prot. 2013, 15, 2738–2749. [Google Scholar]
- Semenov, A.V.; Van Overbeek, L.; Van Bruggen, A.H.C. Percolation and Survival of Escherichia coli O157:H7 and Salmonella enterica Serovar Typhimurium in Soil Amended with Contaminated Dairy Manure or Slurry. Appl. Environ. Microbiol. 2009, 75, 3206–3215. [Google Scholar] [CrossRef]
- Methner, U. Salmonellose der Rinder—Empfehlungen zur Vorgehensweise nach Feststellung eines Ausbruchs. Amtstierärztlicher Dienst Leb. 2012, 19, 4. [Google Scholar]
- Richtlinie über Mittel und Verfahren Für die Durchführung der Desinfektion Bei Bestimmten Tierseuchen. Available online: https://desinfektions-rl.fli.de/de/home (accessed on 25 March 2025).
- Zapaśnik, A.; Sokołowska, B.; Bryła, M. Role of Lactic Acid Bacteria in Food Preservation and Safety. Foods 2022, 11, 1283. [Google Scholar] [CrossRef]
- Narayanan, N.; Roychoudhury, P.K.; Srivastava, A. L (+) lactic acid fermentation and its product polymerization. Electron. J. Biotechnol. 2004, 7, 168–179. [Google Scholar]
- Castillo Martinez, F.A.; Balciunas, E.M.; Salgado, J.M.; Domínguez González, J.M.; Converti, A.; Oliveira, R.P.D.S. Lactic acid properties, applications and production: A review. Trends Food Sci. Technol. 2013, 30, 70–83. [Google Scholar] [CrossRef]
- Garrido, R.; Cabeza, L.F.; Falguera, V.; Pérez Navarro, O. Potential Use of Cow Manure for Poly(Lactic Acid) Production. Sustainability 2022, 14, 16753. [Google Scholar] [CrossRef]
- Castro-Ramos, J.J.; Solís-Oba, A.; Solís-Oba, M.; Calderón-Vázquez, C.L.; Higuera-Rubio, J.M.; Castro-Rivera, R. Effect of the initial pH on the anaerobic digestion process of dairy cattle manure. AMB Express 2022, 12, 162. [Google Scholar] [CrossRef]
- Sun, Z.H.; Liu, S.M.; Tayo, G.O.; Tang, S.X.; Tan, Z.L.; Lin, B.; He, Z.X.; Hang, X.F.; Zhou, Z.S.; Wang, M. Effects of cellulase or lactic acid bacteria on silage fermentation and in vitro gas production of several morphological fractions of maize stover. Anim. Feed Sci. Technol. 2009, 152, 219–231. [Google Scholar] [CrossRef]
- Levine, A.S.; Fellers, C.R. Action of Acetic Acid on Food Spoilage Microörganisms. J. Bacteriol. 1940, 39, 499–515. [Google Scholar] [CrossRef]
- Goepfert, J.M.; Hicks, R. Effect of Volantile Fatty Acids on Salmonella thyphimurium. J. Bacteriol. 1969, 97, 956–958. [Google Scholar] [CrossRef]
- Knarreborg, A.; Miquel, N.; Granli, T.; Jensen, B.B. Establishment and application of an in vitro methodology to study the effects of organic acids on coliform and lactic acid bacteria in the proximal part of the gastrointestinal tract of piglets. Anim. Feed Sci. Technol. 2002, 99, 131–140. [Google Scholar] [CrossRef]
- Hammes, W.P.; Hertel, C. The Genera Lactobacillus and Carnobacterium. In The Prokaryotes; Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.H., Stackebrandt, E., Eds.; Springer: New York, NY, USA, 2006; pp. 320–403. [Google Scholar]
- Desinfektion in der Veterinärmedizin- DVG-Prüfrichtlinien Tierhaltung (Kapitel V), Bakterizidie; Stand 26.12.2024. Available online: https://www.desinfektion-dvg.de/infos-fuer-hersteller-und-gutachter/pruefrichtlinien (accessed on 28 February 2025).
- Taylor, W.I.; Harris, B. Isolation of Shigellae. II. Comparison of Plating Media and Enrichment Broths. Am. J. Clin. Pathol. 1965, 44, 476–479. [Google Scholar] [CrossRef]
- Leifson, E. New culture media based on sodium desoxycholate for the isolation of intestinal pathogens and for the enumeration of colon bacilli in milk and water. J. Pathol. Bacteriol. 1935, 40, 581–599. [Google Scholar] [CrossRef]
- Gassner, G. Ein neuer Dreifarbnährboden zur Typhus-Ruhr Diagnose. Zentralbl. Bakteriol. Parasitenkd. Infektionskr. Hyg. Abt. 1 Orig. Reihe A 1918, 80, 219–222. [Google Scholar]
- Taylor, W.I.; Schelhart, D. Isolation of Shigellae: VIII. Comparison of Xylose Lysine Deoxycholate Agar, Hektoen Enteric Agar, Salmonella-Shigella Agar, and Eosin Methylene Blue Agar with Stool Specimens. Appl. Microbiol. 1971, 21, 32–37. [Google Scholar]
- OXOID GmbH, W. Oxoid Handbuch, 6th edDruckerei und Verlag VVA Vereinigte Verlagsanstalten: Düsseldorf, Germany, 2003; Available online: https://www.analisisavanzados.com/modules/mod_tecdata/manuales/oxoid-manual-9th-edition.pdf (accessed on 25 March 2025).
- Burkwall, M.K.; Hartman, P.A. Comparison of Direct Plating Media for the Isolation and Enumeration of Enterococci in Certain Frozen Foods. Appl. Microbiol. 1964, 12, 18–23. [Google Scholar] [CrossRef]
- Devriese, L.A.; Pot, B.; Collins, M.D. Phenotypic identification of the genus Enterococcus and differentiation of phylogenetically distinct enterococcal species and species groups. J. Appl. Bacteriol. 1993, 75, 399–408. [Google Scholar] [CrossRef]
- Briggs, M. 497. An improved medium for lactobacilli. J. Dairy Res. 1953, 20, 36–40. [Google Scholar] [CrossRef]
- Reuter, G. Elective and selective media for lactic acid bacteria. Int. J. Food Microbiol. 1985, 2, 55–68. [Google Scholar] [CrossRef]
- Gibbs, B.M.; Freame, B. Methods for the Recovery of Clostridia from Foods. J. Appl. Bacteriol. 1965, 28, 95–111. [Google Scholar] [CrossRef]
- Gibbs, P.A. The Detection of Clostridium welchii in the Differential Reinforced Clostridial Medium Technique. J. Appl. Bacteriol. 1973, 36, 23–33. [Google Scholar] [CrossRef]
- Verordnung über die Verwertung von Bioabfällen auf Böden1,2, (Bioabfallverordnung—BioAbfV). 1998. Available online: https://www.gesetze-im-internet.de/bioabfv/ (accessed on 2 January 2025).
- Harvey, R.W.S.; Price, T.H. Comparison of selenite F, Muller-Kauffmann tetrathionate and Rappaport’s medium for salmonella isolation from chicken giblets after pre-enrichment in buffered peptone water. J. Hyg. 1981, 87, 219–224. [Google Scholar] [CrossRef]
- Schothorst, M.V.; Renaud, A.M. Dynamics of salmonella isolation with modified Rappaport’s medium (R10). J. Appl. Bacteriol. 1983, 54, 209–215. [Google Scholar] [CrossRef]
- Alizadeh, M.; Yousefi, L.; Pakdel, F.; Ghotaslou, R.; Rezaee, M.A.; Khodadadi, E.; Oskouei, M.A.; Soroush Barhaghi, M.H.; Kafil, H.S. MALDI-TOF Mass Spectroscopy Applications in Clinical Microbiology. Adv. Pharmacol. Pharm. Sci. 2021, 2021, 9928238. [Google Scholar] [CrossRef]
- Nicholson, F.A.; Groves, S.J.; Chambers, B.J. Pathogen survival during livestock manure storage and following land application. Bioresour. Technol. 2005, 96, 135–143. [Google Scholar] [CrossRef]
- Pradhan, N.; d’Ippolito, G.; Dipasquale, L.; Esposito, G.; Panico, A.; Lens, P.N.L.; Fontana, A. Simultaneous synthesis of lactic acid and hydrogen from sugars via capnophilic lactic fermentation by Thermotoga neapolitana cf capnolactica. Biomass Bioenergy 2019, 125, 17–22. [Google Scholar] [CrossRef]
- Harlow, B.E.; Lawrence, L.M.; Harris, P.A.; Aiken, G.E.; Flythe, M.D. Exogenous lactobacilli mitigate microbial changes associated with grain fermentation (corn, oats, and wheat) by equine fecal microflora ex vivo. PLoS ONE 2017, 12, e0174059. [Google Scholar] [CrossRef]
- Olszewska, H.; Skowron, K. Effect of storage temperature and type of slurry on survivability of Salmonella. J. Cent. Eur. Agric. 2013, 14, 369–375. [Google Scholar] [CrossRef]
- Yaziz, M.I. The Effect of Temperature on the Destruction of Salmonellas in Activated Sludge. Pertanika 1985, 8, 343–346. [Google Scholar]
- Akila, G.; Chandra, T.S. A novel cold-tolerant Clostridium strain PXYL1 isolated from a psychrophilic cattle manure digester that secretes thermolabile xylanase and cellulase. FEMS Microbiol. Lett. 2003, 219, 63–67. [Google Scholar] [CrossRef]
- Ismajli, I.; Fetoshi, O.; Abazi Shala, A.; Bytyçi, P.; Hyseni, A.; Ramshaj, Q. Bacterial, Fungal, and Protozoal Microflora of Hay. Int. J. Adv. Study Res. Work. 2019, 2, 22–26. [Google Scholar]
- Wouters, J.A.; Kamphuis, H.H.; Hugenholtz, J.; Kuipers, O.P.; De Vos, W.M.; Abee, T. Changes in Glycolytic Activity of Lactococcus lactis Induced by Low Temperature. Appl. Environ. Microbiol. 2000, 66, 3686–3691. [Google Scholar] [CrossRef]
- McLeod, A.; Mosleth, E.F.; Rud, I.; Branco Dos Santos, F.; Snipen, L.; Liland, K.H.; Axelsson, L. Effects of glucose availability in Lactobacillus sakei; metabolic change and regulation of the proteome and transcriptome. PLoS ONE 2017, 12, e0187542. [Google Scholar] [CrossRef]
- Hrubant, G.R. Changes in Microbial Population During Fermentation of Feedlot Waste with Corn. Appl. Microbiol. 1975, 30, 113–119. [Google Scholar] [CrossRef]
- Foster, J.W. Low pH Adaptation and the Acid Tolerance Response of Salmonella typhimurium. Crit. Rev. Microbiol. 2008, 21, 215–237. [Google Scholar] [CrossRef]
- Niku-Paavola, M.-L.; Laitila, A.; Mattila-Sandholm, T.; Haikara, A. New types of antimicrobial compounds produced by Lactobacillus plantarum. J. Appl. Microbiol. 1999, 86, 29–35. [Google Scholar] [CrossRef]
- Van Winsen, R.L.; Lipman, L.J.A.; Biesterveld, S.; Urlings, B.A.P.; Snijders, J.M.A.; Van Knapen, F. Mechanism of Salmonella reduction in fermented pig feed. J. Sci. Food Agric. 2001, 81, 342–346. [Google Scholar] [CrossRef]
- Bachrach, H.L.; Breese, S.S.; Callis, J.J.; Hess, W.R.; Patty, R.E. Inactivation of Foot-and-Mouth Disease Virus by pH and Temperature Changes and by Formaldehyde. Exp. Biol. Med. 1957, 95, 147–152. [Google Scholar] [CrossRef]
- Caridi, F.; Vázquez-Calvo, A.; Sobrino, F.; Martín-Acebes, M.A. The pH Stability of Foot-and-Mouth Disease Virus Particles Is Modulated by Residues Located at the Pentameric Interface and in the N Terminus of VP1. J. Virol. 2015, 89, 5633–5642. [Google Scholar] [CrossRef]
- Min, K.H.; Yin, F.H.; Amin, Z.; Mansa, R.F.; Ling, C.M.W.V. An Overview of the Role of Lactic Acid Bacteria in Fermented Foods and Their Potential Probiotic Properties. Borneo Int. J. Biotechnol. 2023, 2, 65–83. [Google Scholar]
- Graham, K.; Stack, H.; Rea, R. Safety, beneficial and technological properties of enterococci for use in functional food applications—A review. Crit. Rev. Food Sci. Nutr. 2020, 60, 3836–3861. [Google Scholar] [CrossRef]
- Rivera-Chávez, F.; Zhang, L.F.; Faber, F.; Lopez, C.A.; Byndloss, M.X.; Olsan, E.E.; Xu, G.; Velazquez, E.M.; Lebrilla, C.B.; Winter, S.E.; et al. Depletion of Butyrate-Producing Clostridia from the Gut Microbiota Drives an Aerobic Luminal Expansion of Salmonella. Cell Host Microbe 2016, 19, 443–454. [Google Scholar] [CrossRef]
- Fontana, A.; Soldano, M.; Bellassi, P.; Fabbri, C.; Gallucci, F.; Morelli, L.; Cappa, F. Dynamics of Clostridium genus and hard-cheese spoiling Clostridium species in anaerobic digesters treating agricultural biomass. AMB Express 2020, 10, 102. [Google Scholar] [CrossRef]
- Machnicka, A.; Grübel, K. The effect of pre-treatment and anaerobic digestion for pathogens reduction in agricultural utilization of sewage sludge. Environ. Sci. Pollut. Res. 2022, 30, 13801–13810. [Google Scholar] [CrossRef]
- Carraturo, F.; Panico, A.; Giordano, A.; Libralato, G.; Aliberti, F.; Galdiero, E.; Guida, M. Hygienic assessment of digestate from a high solids anaerobic co-digestion of sewage sludge with biowaste by testing Salmonella Typhimurium, Escherichia coli and SARS-CoV-2. Environ. Res. 2022, 206, 112585. [Google Scholar] [CrossRef]
Approach | Abrv. | Replicates Per Approach | Liquid Manure | |||
---|---|---|---|---|---|---|
Exp1 a | Exp1 b | Exp2 | pH 1 | |||
Incubation temperature | 21 °C | 10 °C | 21 °C | 21 °C | ||
CM | CHO-A | 7× | 7× | 14× 2 | 3× | 100% |
CM + 6.2% HCs | HA | 7× | 7× | 93.8% | ||
CM + 10% SO | OA | 7× | 3× | 90% | ||
CM + 18.75% SO | OA | 7× | 7× | 81.25% | ||
CM + 10% Sac | SA | 7× | 3× | 90% | ||
CM + 10% SO + 10% Sac | OSA | 7× | 3× | 80% |
Temperature Experiment (EXP1) | Saccharose Experiment (EXP2) | ||||
---|---|---|---|---|---|
Incubation temperature | 10 °C | 10 °C | 21 °C | 21 °C | 21 °C |
day of sampling | 80 d | 110 d | 80 d | 50 d | 75 d |
CM + Sal | + | + | + | + | + |
CM + HCs + Sal | + | ||||
CM + SO + Sal | − | − | − | + | − |
CM + Sac + Sal | − | ||||
CM + OA + Sac + Sal | − |
Temp. | Next Organism | CM | CM + HCs | CM + SO | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
day | 0 | 3 | 7 | 14 | 21 | 30 | 50 | 63 | 100 | 0 | 3 | 7 | 14 | 21 | 30 | 50 | 63 | 100 | 0 | 3 | 7 | 14 | 21 | 30 | 50 | 63 | 100 | |
10 °C | Acinetobacter sp. (2) | 3 | ||||||||||||||||||||||||||
10 °C | Aerococcus viridans | 1 | 1 | 1 | 1 | 3 | 2 | 2 | 1 | 1 | ||||||||||||||||||
10 °C | Bacillus sp.(7) | 2 | 2 | 2 | 1 | 1 | 3 | 1 | 1 | 4 | 1 | 2 | 1 | 1 | 2 | 3 | 3 | 2 | 1 | 1 | 1 | 2 | ||||||
10 °C | Clostridium sp.(3) | 2 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 3 | 2 | 1 | 2 | ||||||||||||
10 °C | Enterococcus sp.(9) | 2 | 4 | 1 | 1 | 4 | 4 | 4 | 3 | 2 | 4 | 7 | 4 | 4 | 4 | 1 | 3 | 2 | 1 | 4 | 4 | 5 | 3 | |||||
10 °C | Escherichia coli | 1 | 1 | |||||||||||||||||||||||||
10 °C | Lactobacillus sp.(5) | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 1 | 4 | 4 | 3 | 3 | 2 | 2 | ||||||||||||
10 °C | Pseudomonas sp.(2) | 2 | 1 | 1 | 1 | |||||||||||||||||||||||
10 °C | Staphylococcus sp.(3) | 1 | 1 | 1 | ||||||||||||||||||||||||
10 °C | Others (5) | 1 | 2 | 1 | 4 | 1 | 1 | 1 | ||||||||||||||||||||
10 °C | Total sample number | 18 | 15 | 10 | 8 | 10 | 11 | 10 | 9 | 12 | 17 | 17 | 12 | 11 | 13 | 10 | 7 | 7 | 8 | 9 | 15 | 17 | 15 | 10 | 7 | 8 | 7 | 10 |
21 °C | Acinetobacter sp.(3) | 1 | 2 | 2 | 1 | |||||||||||||||||||||||
21 °C | Aerococcus viridans | 1 | ||||||||||||||||||||||||||
21 °C | Bacillus sp.(11) | 6 | 3 | 3 | 1 | 3 | 1 | 5 | 3 | 1 | 4 | 1 | 1 | 1 | 3 | 3 | 2 | 2 | 3 | 7 | 1 | 2 | 1 | 3 | 2 | 2 | 4 | 5 |
21 °C | Clostridium sp.(3) | 2 | 1 | 1 | 2 | 1 | 2 | 1 | 1 | 3 | 1 | 1 | 1 | 1 | ||||||||||||||
21 °C | Enterococcus sp.(8) | 2 | 7 | 5 | 3 | 2 | 3 | 4 | 1 | 1 | 2 | 1 | 2 | 3 | 1 | 1 | 4 | 4 | 1 | 1 | 1 | 3 | 1 | |||||
21 °C | Escherichia coli | 4 | 3 | 1 | 5 | 3 | 2 | 1 | 1 | 1 | 1 | |||||||||||||||||
21 °C | Lactobacillus (6) | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 4 | 6 | 4 | 1 | 1 | 1 | 1 | 1 | ||||||||||||
21 °C | Others (7) | 2 | 1 | 2 | 1 | 1 | 1 | 1 | ||||||||||||||||||||
21 °C | Total sample number | 14 | 28 | 16 | 10 | 14 | 13 | 15 | 7 | 8 | 12 | 9 | 13 | 9 | 10 | 9 | 12 | 10 | 6 | 9 | 8 | 12 | 9 | 8 | 4 | 6 | 8 | 8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Halm, H.; Woelke, S.; Lehnert, I.; Schilling, T.; Meissner, T.; Schröder, C.; Hoelzle, L.E.; Scheinemann, H.A. Lactic Acid Fermentation Inactivates Salmonella Typhimurium in Contaminated Cattle Manure at Moderate and Low Temperatures. Appl. Microbiol. 2025, 5, 88. https://doi.org/10.3390/applmicrobiol5030088
Halm H, Woelke S, Lehnert I, Schilling T, Meissner T, Schröder C, Hoelzle LE, Scheinemann HA. Lactic Acid Fermentation Inactivates Salmonella Typhimurium in Contaminated Cattle Manure at Moderate and Low Temperatures. Applied Microbiology. 2025; 5(3):88. https://doi.org/10.3390/applmicrobiol5030088
Chicago/Turabian StyleHalm, Hannah, Sören Woelke, Ines Lehnert, Thorben Schilling, Thorsten Meissner, Charlotte Schröder, Ludwig E. Hoelzle, and Hendrik A. Scheinemann. 2025. "Lactic Acid Fermentation Inactivates Salmonella Typhimurium in Contaminated Cattle Manure at Moderate and Low Temperatures" Applied Microbiology 5, no. 3: 88. https://doi.org/10.3390/applmicrobiol5030088
APA StyleHalm, H., Woelke, S., Lehnert, I., Schilling, T., Meissner, T., Schröder, C., Hoelzle, L. E., & Scheinemann, H. A. (2025). Lactic Acid Fermentation Inactivates Salmonella Typhimurium in Contaminated Cattle Manure at Moderate and Low Temperatures. Applied Microbiology, 5(3), 88. https://doi.org/10.3390/applmicrobiol5030088