Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (19)

Search Parameters:
Keywords = fast protein and metabolite liquid chromatography

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 4583 KB  
Article
Apolipoprotein B48 Knockout Ameliorates High-Fat-Diet-Induced Metabolic Impairment in Mice
by Yale Tang, Chao Wang, Luxuan Li, Xiaoyu Wang, Linquan Yang, Xing Wang, Luping Ren and Guangyao Song
Biomolecules 2025, 15(10), 1454; https://doi.org/10.3390/biom15101454 - 15 Oct 2025
Viewed by 725
Abstract
This study aimed to investigate whether knockout of the ApoB48 gene improves lipid metabolism disorders induced by a high-fat diet (HFD) in mice. Clustered regularly interspaced short palindromic repeats–Cas9 gene editing technology was used to knock out the ApoB48 gene in C57BL/6J mice, [...] Read more.
This study aimed to investigate whether knockout of the ApoB48 gene improves lipid metabolism disorders induced by a high-fat diet (HFD) in mice. Clustered regularly interspaced short palindromic repeats–Cas9 gene editing technology was used to knock out the ApoB48 gene in C57BL/6J mice, and genotype identification showed heterozygosity (HE, ApoB48 +/−). Subsequently, eight HE and eight wild-type (WT) mice were fed a HFD for 12 weeks. Fasting blood glucose, and insulin levels were decreased in ApoB48 +/− mice. The intraperitoneal glucose tolerance test and intraperitoneal insulin tolerance test showed mild insulin resistance. Moreover, it delayed the development of atherosclerosis and intestinal tissue damage. Differential metabolites such as ceramide, sphingosine, and sphingosine-1-phosphate were identified using liquid chromatography–mass spectrometry, and differentially expressed proteins, including ceramide synthase 6 (CerS6), protein phosphatase 2A (PP2A), and protein kinase B (AKT), were indicated by the Kyoto Encyclopaedia of Genes and Genomes. Therefore, decreased expression of ApoB48 can ameliorate lipid metabolism disorders induced by an HFD, which may be related to the CerS6/PP2A/AKT pathway. This might represent a new approach for exploring methods to treat hyperlipidaemia. Full article
(This article belongs to the Collection Feature Papers in Lipids)
Show Figures

Figure 1

6 pages, 1042 KB  
Proceeding Paper
Rapid Assessment of Canned Fish Quality via Fast Protein and Metabolite Liquid Chromatography
by Oksana V. Stepanova, Daniil Lyalin, Oksana S. Stepanova, Georgii Konoplev, Artur I. Kuznetsov, Liubov Abramova, Andrey Kozin and Aleksandr Frorip
Eng. Proc. 2024, 67(1), 85; https://doi.org/10.3390/engproc2024067085 - 10 Mar 2025
Viewed by 898
Abstract
The consumption of canned fish as an affordable and shelf-stable food product having high nutritional value is steadily growing in many parts of the world. An important and often overlooked factor that influences the quality of canned fish is the freshness of raw [...] Read more.
The consumption of canned fish as an affordable and shelf-stable food product having high nutritional value is steadily growing in many parts of the world. An important and often overlooked factor that influences the quality of canned fish is the freshness of raw materials used in the production process. It has been shown previously that the freshness status of fish can be assessed using fast proteins and metabolite liquid chromatography (FPMLC) detecting the relative content of post-mortem adenosine triphosphate (ATP) metabolites. The aim of this study is to evaluate the applicability of FPMLC to evaluate the quality of canned fish. Eighteen samples of various canned fish from different manufacturers were acquired from local supermarkets. FPMLC chromatograms of the samples were processed with the compact optoelectronic chromatographic sensor using PD-10 gel columns as a separation medium. The sensor has a photometric detector based on a deep UV LED emitting at 255–265 nm. All chromatograms showed two combined peaks: the first one was related to proteins and the second one was formed by adenosine ATP metabolites. The delay time between the peaks (the Time index) varied in a range from 138 s to 193 s. It was suggested that the higher the Time index, the fewer fresh raw fish materials were used for production. For additional verification of the FPMLC technique, four samples chosen as the most representative were analyzed by high-performance liquid chromatography (HPLC) and nuclear magnetic resonance (NMR) spectroscopy. The Time index was in good correlation with the well-established nucleotide-based K and KI indices (quality factors) estimated from the HPLC chromatograms and NMR spectra, which confirms the fact that FPMLC can be used to assess the freshness of raw materials in thermally processed fish products. The correct interpretation of the Time index and other nucleotide-based indicators applied to canned food requires taking into account the effects of nutritional nucleotide thermal degradation that occur during high-temperature sterilization. Full article
(This article belongs to the Proceedings of The 3rd International Electronic Conference on Processes)
Show Figures

Figure 1

30 pages, 6408 KB  
Article
Metabolomic Insights into Smoking-Induced Metabolic Dysfunctions: A Comprehensive Analysis of Lipid and Amino Acid Metabolomes
by Muhammad Amtiaz Aslam, Hajra Iqbal, Kainat Ilyas, Kanwal Rehman, Amjad Hussain, Muhammad Sajid Hamid Akash, Mudassar Shahid and Shuqing Chen
Metabolites 2025, 15(2), 96; https://doi.org/10.3390/metabo15020096 - 4 Feb 2025
Cited by 6 | Viewed by 2233
Abstract
Background: Cigarette smoking is a leading cause of preventable mortality, largely due to the absence of effective, non-invasive biomarkers for early disease detection. Profiling serum metabolomics to identify metabolic changes holds the potential to accelerate the detection process and identify individuals at risk [...] Read more.
Background: Cigarette smoking is a leading cause of preventable mortality, largely due to the absence of effective, non-invasive biomarkers for early disease detection. Profiling serum metabolomics to identify metabolic changes holds the potential to accelerate the detection process and identify individuals at risk of developing smoking-related diseases. Objectives: This study investigated the biochemical and metabolomic changes induced by nicotine exposure, with a focus on disruptions in amino acid, lipid, and carbohydrate metabolism. Methods: Liquid chromatography–tandem mass spectrometry (LC-MS/MS) was employed to observe significant disruptions in lipid and amino acid metabolism, along with alterations in key metabolic pathways. A total of 400 smokers and 100 non-smokers were included to evaluate the biomarkers related to insulin resistance, blood lipid profile, inflammation, and kidney and liver function. Results: The results demonstrated significantly elevated (p < 0.05) levels of glycemic markers in smokers, including fasting blood glucose; glycated hemoglobin (HbA1c); and inflammatory markers such as interleukin-6 (IL-6) and C-reactive protein (CRP). Smokers also exhibited dyslipidemia, with increased total cholesterol (154.888 ± 35.565) and LDL levels (117.545 ± 24.138). Impaired liver and kidney function was evident, with significantly higher levels (p < 0.05) of AST, ALP, ALT, blood urea nitrogen, and creatinine in smokers. A total of 930 metabolites were identified, of which 343 exhibited significant alterations (p < 0.05) in smokers compared to non-smokers. Among these, 116 metabolites were upregulated, and 127 were downregulated. Metabolomic pathway analysis revealed eight significant pathways. The study also identified three lipid metabolites specific to smokers and seven unique to non-smokers. Through LC-MS/MS, fragments of phenylalanine, tryptophan, valine, histidine, carnitine, and sphinganine were detected. Several lipidomic changes associated with insulin resistance and cardiovascular complications were observed. Cadmium (Cd) levels were higher in smokers than non-smokers (1.264 ppb vs. 0.624 ppb) and showed a strong negative correlation (R2 = 0.8061, p-value = 0.015) with serum zinc (Zn), likely due to Cd displacing Zn in proteins and causing nephrotoxicity through accumulation. Conclusions: This study highlights the distinct metabolic disruptions caused by smoking that could serve as potential biomarkers for the early detection of metabolic diseases. It emphasizes the importance of metabolomics in identifying systemic indicators of smoking-related health issues, providing new opportunities for preventive and therapeutic interventions. Full article
(This article belongs to the Section Endocrinology and Clinical Metabolic Research)
Show Figures

Graphical abstract

16 pages, 2226 KB  
Article
Modulation of Serum Metabolic Profiles by Bifidobacterium breve BBr60 in Obesity: A Randomized Controlled Trial
by Ying Wu, Dejiao Gao, Yujia Pan, Yao Dong, Zhouya Bai and Shaobin Gu
Foods 2024, 13(22), 3655; https://doi.org/10.3390/foods13223655 - 17 Nov 2024
Cited by 2 | Viewed by 2469
Abstract
Obesity, a prevalent metabolic disorder in youth, leads to complications and economic strain. Gut dysbiosis significantly contributes to obesity and metabolic issues. Bifidobacterium breve, a probiotic strain, may help regulate gut dysbiosis and benefit obese individuals. However, more research is needed on [...] Read more.
Obesity, a prevalent metabolic disorder in youth, leads to complications and economic strain. Gut dysbiosis significantly contributes to obesity and metabolic issues. Bifidobacterium breve, a probiotic strain, may help regulate gut dysbiosis and benefit obese individuals. However, more research is needed on its effect on serum metabolism. A total of 75 overweight or obese young adults (aged 19–45) participated in the current study, and were randomly divided into probiotic and placebo groups using a random number table. Both groups received dietary guidance and underwent twelve weeks of intervention with either oral Bifidobacterium breve BBr60 (BBr60) or a placebo. After the intervention, collection and analysis of fasting serum samples were conducted using mass spectrometry coupled with liquid chromatography. Analyses of associations were conducted in order to determine the correlations between key serum metabolites and clinical obesity indicators, aiming to understand the influence of BBr60. Due to 10 participants dropping out for personal reasons, the study included 32 and 33 participants in the placebo and the BBr60 groups, respectively. The BBr60 intervention significantly regulated 134 serum metabolites and influenced crucial metabolic pathways in obesity management (p < 0.05), including ascorbate and aldarate metabolism for oxidative stress reduction, cholesterol metabolism for lipid regulation, parathyroid hormone synthesis, secretion and action for the endocrine system, oxidative phosphorylation for enhanced energy efficiency, and glycolysis/gluconeogenesis for glucose metabolism. Analysis showed a positive relationship between fasting blood glucose (FBG), aspartate aminotransferase (AST), total protein (TP), and the content of 5-Methyl DL-glutamate (p < 0.05). Similarly, body mass index (BMI), weight, and body fat percentage (BFP) were positively linked to serum metabolites (1-Hydroxycyclohexyl) acetic acid, and 5-Oxooctanoic acid (p < 0.05). Significant associations of AST levels with key serum metabolites in cholesterol metabolism pathways further suggest BBr60’s potential to improve liver function and overall metabolic health in overweight or obese individuals. These findings support BBr60’s effectiveness in modulating serum metabolic profiles and suggest it may improve liver function and BMI in overweight or obese individuals by regulating key serum metabolites. Full article
Show Figures

Figure 1

8 pages, 1907 KB  
Proceeding Paper
An In-Depth Analysis of Peritoneal Dialysate Effluent Composition with a Deep-UV-LED-Based Affordable Optical Chromatographic Sensor
by Nikolay Ovsyannikov, Georgii Konoplev, Artur Kuznetsov, Alar Sünter, Vadim Korsakov, Oksana Stepanova, Milana Mikhailis, Roman Gerasimchuk, Alina Isachkina, Zarina Rustamova and Aleksandr Frorip
Eng. Proc. 2024, 73(1), 8; https://doi.org/10.3390/engproc2024073008 - 7 Nov 2024
Cited by 1 | Viewed by 1433
Abstract
It was shown earlier that the use of fast protein and metabolites liquid chromatography (FPMLC) and low-cost deep UV–LED-based optical chromatographic sensors with PD-10 desalting columns as a separation element can facilitate the monitoring of patients on chronic peritoneal dialysis (PD). Previously, we [...] Read more.
It was shown earlier that the use of fast protein and metabolites liquid chromatography (FPMLC) and low-cost deep UV–LED-based optical chromatographic sensors with PD-10 desalting columns as a separation element can facilitate the monitoring of patients on chronic peritoneal dialysis (PD). Previously, we established that the first peak in the FPMLC chromatograms of effluent dialysate is mainly responsible for proteins and could be used for the assessment of peritoneal protein loss in patients on PD, while the origin and clinical significance of the other two peaks still remain unclear. Optical absorption and fluorescence spectroscopy in the UV and visible regions of 240…720 nm were used for the analysis of PD effluent chromatographic fractions collected from a drainpipe of the sensor with photometric detection at 280 nm; chromatograms of twenty dialysate samples were processed. The absorption and fluorescence spectra of the first fraction demonstrated peaks at 270 nm and 330 nm, respectively, which is typical for proteins. The absorption spectra of the third fraction revealed the characteristic maxima of creatinine and uric acid, while the fluorescence spectra showed the characteristic peak of indoxyl sulfate 375 nm at 270 nm excitation. The second fraction had a single, extremely wide absorption band, strong fluorescence was observed at 440–450 nm while excited at 370 nm. Such spectral characteristics are typical for advanced glycation end products (AGE). Thus, it was demonstrated that deep UV–LED-based affordable chromatographic sensors could provide significantly more information about the composition of PD effluent dialysate than just the total protein concentration, including the contents of clinically significant metabolites, e.g., indoxyl sulfate and AGE. Moreover, the introduction of optical fluorescence detection could significantly improve the capabilities of such devices. Full article
(This article belongs to the Proceedings of The 4th International Electronic Conference on Biosensors)
Show Figures

Figure 1

16 pages, 2063 KB  
Article
Simultaneous Determination of One-Carbon Folate Metabolites and One-Carbon-Related Amino Acids in Biological Samples Using a UHPLC–MS/MS Method
by Yi Ling, Mei Tan, Xiaoyun Wang, Ziyi Meng, Xiaodong Quan, Hosahalli Ramaswamy and Chao Wang
Int. J. Mol. Sci. 2024, 25(6), 3458; https://doi.org/10.3390/ijms25063458 - 19 Mar 2024
Cited by 2 | Viewed by 2703
Abstract
One-carbon folate metabolites and one-carbon-related amino acids play an important role in human physiology, and their detection in biological samples is essential. However, poor stability as well as low concentrations and occurrence in different species in various biological samples make their quantification very [...] Read more.
One-carbon folate metabolites and one-carbon-related amino acids play an important role in human physiology, and their detection in biological samples is essential. However, poor stability as well as low concentrations and occurrence in different species in various biological samples make their quantification very challenging. The aim of this study was to develop a simple, fast, and sensitive ultra-high-performance liquid chromatography MS/MS (UHPLC–MS/MS) method for the simultaneous quantification of various one-carbon folate metabolites (folic acid (FA), tetrahydrofolic acid (THF), p-aminobenzoyl-L-glutamic acid (pABG), 5-formyltetrahydrofolic acid (5-CHOTHF), 5-methyltetrahydrofolic acid (5-CH3THF), 10-formylfolic acid (10-CHOFA), 5,10-methenyl-5,6,7,8-tetrahydrofolic acid (5,10-CH+-THF), and 4-α-hydroxy-5-methyltetrahydrofolate (hmTHF)) and one-carbon-related amino acids (homocysteine (Hcy), methionine (Met), S-ade-L-homocysteine (SAH), and S-ade-L-methionine (SAM)). The method was standardized and validated by determining the selectivity, carryover, limits of detection, limits of quantitation, linearity, precision, accuracy, recovery, and matrix effects. The extraction methods were optimized with respect to several factors: protease–amylase treatment on embryos, deconjugation time, methanol precipitation, and proteins’ isoelectric point precipitation on the folate recovery. Ten one-carbon folate metabolites and four one-carbon-related amino acids were detected using the UHPLC–MS/MS technique in various biological samples. The measured values of folate in human plasma, serum, and whole blood (WB) lay within the concentration range for normal donors. The contents of each analyte in mouse plasma were as follows: pABG (864.0 nmol/L), 5-CH3THF (202.2 nmol/L), hmTHF (122.2 nmol/L), Met (8.63 μmol/L), and SAH (0.06 μmol/L). The concentration of each analyte in mouse embryos were as follows: SAM (1.09 μg/g), SAH (0.13 μg/g), Met (16.5 μg/g), 5,10-CH+THF (74.3 ng/g), pABG (20.6 ng/g), and 5-CH3THF (185.4 ng/g). A simple and rapid sample preparation and UHPLC–MS/MS method was developed and validated for the simultaneous determination of the one-carbon-related folate metabolites and one-carbon-related amino acids in different biological samples. Full article
(This article belongs to the Special Issue Liquid Chromatography-Mass Spectrometry in Metabolomics)
Show Figures

Figure 1

19 pages, 4864 KB  
Article
Applicable Pharmacokinetic Study: Development and Validation of Bioanalytical LC-MS/MS Method for Simultaneous Determination of Tipiracil, Trifluridine and Its Two Metabolites 5-Trifluoromethyluracil, 5-Carboxy 2′-Deoxyuridine in Rat Plasma
by Manal El-Gendy, Mohamed Hefnawy, Adeeba Alzamil, Adel El-Azab, Alaa Abdel-Aziz and Ali El Gamal
Separations 2024, 11(1), 10; https://doi.org/10.3390/separations11010010 - 26 Dec 2023
Cited by 3 | Viewed by 3179
Abstract
A novel liquid chromatography-tandem mass spectrometry (LC-MS/MS) method has been developed and validated for the simultaneous determination of tipiracil (TIP), trifluridine (FTD), and their metabolites, 5-trifluoromethyluracil (FTY) and 5-carboxy-2′-deoxyuridine (5CDU), in rat plasma. This method is highly sensitive, specific, and fast. Paracetamol (PAR) [...] Read more.
A novel liquid chromatography-tandem mass spectrometry (LC-MS/MS) method has been developed and validated for the simultaneous determination of tipiracil (TIP), trifluridine (FTD), and their metabolites, 5-trifluoromethyluracil (FTY) and 5-carboxy-2′-deoxyuridine (5CDU), in rat plasma. This method is highly sensitive, specific, and fast. Paracetamol (PAR) is used as an internal standard (IS). Using acetonitrile-induced protein precipitation, the analytes were extracted from a plasma sample and separated on a Waters BEH C18 (1.7 μm particle size, 50 mm × 2.1 mm ID) column protected by a security guard cartridge (C18, 4 × 2.0 mm). The isocratic mobile phase was made up of methanol and water containing 0.1% formic acid (80:20, v/v) at a flow rate of 0.5 mL/min for 4 min. The quantification was performed using a positive electrospray ionization (ESI) interface and a multiple-reaction monitoring (MRM) mode. The MRM transitions employed were m/z 242.96 → 182.88 for TIP, 296.96 → 116.86 for FTD, 180.98 → 139.85 for FTY, 272.96 → 156.86 for 5CDU, and 151.97 → 92.68 for IS. The validated method complied with the guidelines set by the US-FDA over on a linear concentration range of 5–4000 ng/mL for FTD, FTY, and 5CDU, and 5–1000 ng/mL for TIP. The coefficient of determination (r2) was equal to or greater than 0.997. The corresponding lower limits of detection (LLOD) were 1.5 ng/mL for FTD, FTY, and 5CDU and 1.0 ng/mL for TIP. The recoveries of all analytes from rat plasma ranged from 88.67% to 112.18%, and the mean relative standard deviation (RSD) of accuracy and precision result was less than or equal to 6.84%. FTD, FTY, 5CDU, and TIP demonstrated adequate stability throughout the various circumstances examined. Additionally, no matrix effects were identified for any of the analytes. The assay was effectively utilized to conduct a pharmacokinetic study in rats following the oral administration of FTD and TIP at a dosage of 5.6 mg/kg, with a ratio of 1:0.5 for FTD and TIP, respectively. This indicates that the suggested approach is suitable for future clinical research. The pharmacokinetic parameters Cmax (maximum concentration), Tmax (time to reach maximum concentration), t1/2 (half-life), AUC0-24 (area under the concentration–time curve from 0 to 24 h), AUC total (total area under the concentration–time curve), Ke (elimination rate constant), Vd (volume of distribution), and CL (clearance) of all analytes were assessed. The assay developed exhibits significant advancements compared to earlier bioanalytical methods documented in the literature. These improvements include high sensitivity, specificity, and efficacy in high throughput analysis of complex matrices. Additionally, the assay offers a shorter run time and smaller sample volume (50 μL). Full article
Show Figures

Figure 1

27 pages, 3655 KB  
Review
Advancements in Preprocessing and Analysis of Nitrite and Nitrate since 2010 in Biological Samples: A Review
by Guojie Liu, Honghui Guo, Wanlin Zhao, Hongmu Yan, Enze Zhang and Lina Gao
Molecules 2023, 28(20), 7122; https://doi.org/10.3390/molecules28207122 - 17 Oct 2023
Cited by 15 | Viewed by 4911
Abstract
As a substance present in organisms, nitrite is a metabolite of nitric oxide and can also be ingested. Nitrate is the metabolite of nitrite. Therefore, it is necessary to measure it quickly, easily and accurately to evaluate the health status of humans. Although [...] Read more.
As a substance present in organisms, nitrite is a metabolite of nitric oxide and can also be ingested. Nitrate is the metabolite of nitrite. Therefore, it is necessary to measure it quickly, easily and accurately to evaluate the health status of humans. Although there have been several reviews on analytical methods for non-biological samples, there have been no reviews focused on both sample preparation and analytical methods for biological samples. First, rapid and accurate nitrite measurement has significant effects on human health. Second, the detection of nitrite in biological samples is problematic due to its very low concentration and matrix interferences. Therefore, the pretreatment plus measuring methods for nitrite and nitrate obtained from biological samples since 2010 are summarized in the present review, and their prospects for the future are proposed. The treatment methods include liquid–liquid microextraction, various derivatization reactions, liquid–liquid extraction, protein precipitation, solid phase extraction, and cloud point extraction. Analytical methods include spectroscopic methods, paper-based analytical devices, ion chromatography, liquid chromatography, gas chromatography–mass spectrometry, electrochemical methods, liquid chromatography–mass spectrometry and capillary electrophoresis. Derivatization reagents with rapid quantitative reactions and advanced extraction methods with high enrichment efficiency are also included. Nitrate and nitrate should be determined at the same time by the same analytical method. In addition, much exploration has been performed on formulating fast testing through microfluidic technology. In this review, the newest developments in nitrite and nitrate processing are a focus in addition to novel techniques employed in such analyses. Full article
Show Figures

Figure 1

16 pages, 2078 KB  
Article
Manifestation of Heat-Induced Valuable Dietary Nucleotide Salvage in Food Prepared from Aged Fish in Fast Protein and Metabolites Liquid Chromatography, ATP-Bioluminescence Assay, and NMR Spectra
by Alar Sünter, Artur Kuznetsov, Piret Raudsepp, Tõnu Püssa, Lauri Toom, Georgii Konoplev, Oksana S. Stepanova, Oksana V. Stepanova, Daniil Lyalin, Aleksandr Frorip and Mati Roasto
AppliedChem 2023, 3(2), 334-349; https://doi.org/10.3390/appliedchem3020021 - 20 Jun 2023
Cited by 4 | Viewed by 3099
Abstract
Dietary nucleotides and nucleosides, primarily inosine monophosphate (IMP) and the adenine nucleotide pool (ANP), are widely considered as essential nutrients responsible for multiple biological functions. Food prepared from meat and fish is the main source of these substances in the human diet, and [...] Read more.
Dietary nucleotides and nucleosides, primarily inosine monophosphate (IMP) and the adenine nucleotide pool (ANP), are widely considered as essential nutrients responsible for multiple biological functions. Food prepared from meat and fish is the main source of these substances in the human diet, and it is extremely important to implement storage and processing techniques ensuring their maximum preservation and even accumulation during maturation or conditioning. In experiments with freshly refrigerated grass carp and defrosted Alaska pollock fillets it was discovered, initially using Fast Protein and Metabolites Liquid Chromatography and the ATP-bioluminescence test, and afterwards validated by NMR spectroscopy, that heat treatment identical to conventional culinary processing in aqueous or wet media at temperatures above 62 °C leads to nucleotide salvage (recovery) in aged fish. A significant increase in the concentration of IMP, and even an emergence of ANP substances, were reliably demonstrated in fish samples which had already partially or fully lost these components during prolonged storage due to the ATP breakdown metabolic reactions. Owing to this recovery, the nutritive value of ready-to-eat food can be higher than was initially evaluated in raw products before heat treatment: an effect that should certainly be considered in practical nutrition. Moreover, it is necessary to reconsider the widely acknowledged system of indices of freshness based on nucleotides and nucleosides elaborated a long time ago for raw meat and fish products. Full article
(This article belongs to the Special Issue Spectroscopy in Food Science and Engineering)
Show Figures

Figure 1

8 pages, 1321 KB  
Proceeding Paper
Simple Chromatographic Sensor with UV LED Optical Detection for Monitoring Patients Treated with Continuous Ambulatory Peritoneal Dialysis
by Georgii Konoplev, Artur Kuznetsov, Aleksandr Frorip, Alar Sünter, Vadim Korsakov, Oksana Stepanova, Natalia Roschina, Nikolay Ovsyannikov, Roman Gerasimchuk, Alina Isachkina, Zarina Rustamova and Alena Pavshukova
Eng. Proc. 2023, 35(1), 25; https://doi.org/10.3390/IECB2023-14595 - 9 Jun 2023
Cited by 3 | Viewed by 1572
Abstract
A novel simple optical sensor based on fast protein liquid chromatography was developed and tested for monitoring end stage renal disease (ESRD) patients treated with continuous ambulatory peritoneal dialysis (CAPD). The device provides direct determination of proteins and lower molecular weight metabolites in [...] Read more.
A novel simple optical sensor based on fast protein liquid chromatography was developed and tested for monitoring end stage renal disease (ESRD) patients treated with continuous ambulatory peritoneal dialysis (CAPD). The device provides direct determination of proteins and lower molecular weight metabolites in effluent peritoneal dialysate using ultraviolet (UV) photometric detection at the wavelengths 285 nm or 260 nm with deep ultraviolet light-emitting diodes. The sensor was calibrated with bovine serum albumin and nucleotides standard solutions. Chromatograms of peritoneal dialysate samples taken from a group of 28 ESRD patients were processed and approximated by a set of split-Gaussian functions. All chromatograms show three overlapping peaks: the first one represents proteins; the other two peaks probably correspond to mid- and low molecular weight metabolites. Strong correlation was reveled between the area of the first peak and total protein concentration determined by a standard biochemical assay, this makes possible estimation of peritoneal protein loss with a reasonable precision less than 15%. The area of the second peak correlated with dialysate optical density at a wavelength 355–365 nm, associated with the UV absorption of advanced glycation end (AGE) products. The third peak correlated with the optical density of the eluate at a wavelength 255–265 nm, associated with the UV absorption of purines and pyrimidines. Thus, we demonstrated the possibility of estimation of proteins and lower molecular weight metabolites in effluent peritoneal dialysate with the compact and affordable chromatographic optical sensor. Full article
(This article belongs to the Proceedings of The 3rd International Electronic Conference on Biosensors)
Show Figures

Figure 1

16 pages, 740 KB  
Article
Monitoring of Levosimendan Administration in Patients with Pulmonary Hypertension Undergoing Cardiac Surgery and Effect of Two Different Dosing Schemes on Hemodynamic and Echocardiographic Parameters
by Panagiotis Ftikos, Areti Falara, Panagiota Rellia, Evangelos Leontiadis, George Samanidis, Natalia Kamperi, Artemios Piperakis, Constantin Tamvakopoulos, Theofani Antoniou and Kassiani Theodoraki
Pharmaceuticals 2023, 16(6), 815; https://doi.org/10.3390/ph16060815 - 30 May 2023
Cited by 3 | Viewed by 2316
Abstract
Introduction: The perioperative management of patients with pulmonary hypertension (PH) undergoing cardiac surgery represents one of the most challenging clinical scenarios. This fact mainly depends on the relationship existing between PH and right ventricular failure (RVF). Levosimendan (LS) is an inodilator that might [...] Read more.
Introduction: The perioperative management of patients with pulmonary hypertension (PH) undergoing cardiac surgery represents one of the most challenging clinical scenarios. This fact mainly depends on the relationship existing between PH and right ventricular failure (RVF). Levosimendan (LS) is an inodilator that might be an effective agent in the treatment of PH and RVF. The aim of this study was to examine the impact of the duration of cardiopulmonary bypass (CPB) on the therapeutic drug monitoring of LS and to evaluate the effect of preemptive administration of LS on perioperative hemodynamic and echocardiographic parameters in cardiac surgical patients with preexisting PH. Materials and Methods: In this study, LS was administered in adult patients undergoing cardiac surgery before CPB in order to prevent exacerbation of preexisting PH and subsequent right ventricular dysfunction. Thirty cardiac surgical patients with preoperatively confirmed PH were randomized to receive either 6 μg/kg or 12 μg/kg of LS after the induction of anesthesia. The plasma concentration of LS was measured after CPB. In this study, a low sample volume was used combined with a simple sample preparation protocol. The plasma sample was extracted by protein precipitation and evaporated; then, the analyte was reconstituted and detected using specific and sensitive bioanalytical liquid chromatography with mass spectrometry (LC-MS/MS) methodology. The clinical, hemodynamic, and echocardiographic parameters were registered and evaluated before and after the administration of the drug. Results: A fast bioanalytical LC-MS/MS methodology (a run time of 5.5 min) was developed for the simultaneous determination of LS and OR-1896, its main metabolite in human plasma. The LC-MS/MS method was linear over a range of 0.1–50 ng/mL for LS and 1–50 ng/mL for its metabolite OR-1896. Measured plasma concentrations of LS were inversely related to the duration of CPB. LS administration before CPB during cardiac surgery was effective in reducing pulmonary artery pressure and improving hemodynamic parameters after CPB, with a more pronounced and durable effect of the drug at the dose of 12 μg/kg. Additionally, administration of LS at a dose of 12 μg/kg in cardiac surgical patients with PH before CPB improved right ventricular function. Conclusion: LS administration decreases pulmonary artery pressure and may improve right ventricular function in patients with PH undergoing cardiac surgery. Full article
(This article belongs to the Special Issue Recent Advances in Pharmacology of Pulmonary Hypertension)
Show Figures

Figure 1

8 pages, 1691 KB  
Proceeding Paper
Assessment of the Freshness of Fish and Poultry Meat by Fast Protein and Metabolite Liquid Chromatography Using a New Optical Sensor
by Georgii Konoplev, Alar Sünter, Artur Kuznetsov, Aleksandr Frorip, Vadim Korsakov, Oksana S. Stepanova, Daniil Lyalin and Oksana V. Stepanova
Eng. Proc. 2023, 35(1), 3; https://doi.org/10.3390/IECB2023-14565 - 8 May 2023
Cited by 3 | Viewed by 2468
Abstract
Fresh fish and poultry meat are in high demand on the market: poultry, mainly chicken, is the second most consumed and the most affordable meat product in the world. Fish consumption varies greatly across regions but, in some countries, seafood is the main [...] Read more.
Fresh fish and poultry meat are in high demand on the market: poultry, mainly chicken, is the second most consumed and the most affordable meat product in the world. Fish consumption varies greatly across regions but, in some countries, seafood is the main source of abundant and affordable macro- and micronutrients. Meat and, especially, fish are highly perishable products; methods and equipment for rapid, objective, and reliable assessing the freshness of fish and meat are crucial for the food industry. Generally recognized reference techniques such as total volatile basic nitrogen (TVB-N), volatile fatty acids (VFA), high pressure liquid chromatography (HPLC), mass spectrometry, or nuclear magnetic resonance (NMR) spectroscopy are time-consuming and require expensive and complex equipment. We developed a novel chromatographic optical sensor with a deep UV LED photometric detection (255–265 nm) for rapid assessment of meat and fish freshness based on determination of the relative content of adenosine triphosphate (ATP) metabolites. The sensor has a simple and compact design, and relatively low cost; sample preparation and processing of a chromatogram takes less than 30 min. The sensor was tested on Amur (farmed freshwater fish) and rooster meat, obtained from a local farmer. The samples were kept refrigerated at +4 °C, measurements were taken daily during a 14 day period. All chromatograms show two peaks: proteins are responsible for the first one; the second broad post-protein band is formed due to the overlapping of individual peaks of ATP and its metabolites. As fish and poultry meat are stored, ATP is converted into metabolites with lower molecular weight, which is reflected in the chromatograms—the elution time for the second peak increases. It was shown that this time can be directly associated with the freshness status of a product. As expected, poultry meat showed better storage stability and freshness retention compared to Amur fish. Full article
(This article belongs to the Proceedings of The 3rd International Electronic Conference on Biosensors)
Show Figures

Figure 1

15 pages, 1485 KB  
Article
Diet Quality and Liver Health in People Living with HIV in the MASH Cohort: A Multi-Omic Analysis of the Fecal Microbiome and Metabolome
by Haley R. Martin, Sabrina Sales Martinez, Vitalii Stebliankin, Javier A. Tamargo, Adriana Campa, Giri Narasimhan, Jacqueline Hernandez, Jose A. Bastida Rodriguez, Colby Teeman, Angelique Johnson, Kenneth E. Sherman and Marianna K. Baum
Metabolites 2023, 13(2), 271; https://doi.org/10.3390/metabo13020271 - 14 Feb 2023
Cited by 6 | Viewed by 3168
Abstract
The gut–liver axis has been recognized as a potential pathway in which dietary factors may contribute to liver disease in people living with HIV (PLWH). The objective of this study was to explore associations between dietary quality, the fecal microbiome, the metabolome, and [...] Read more.
The gut–liver axis has been recognized as a potential pathway in which dietary factors may contribute to liver disease in people living with HIV (PLWH). The objective of this study was to explore associations between dietary quality, the fecal microbiome, the metabolome, and liver health in PLWH from the Miami Adult Studies on HIV (MASH) cohort. We performed a cross-sectional analysis of 50 PLWH from the MASH cohort and utilized the USDA Healthy Eating Index (HEI)–2015 to measure diet quality. A Fibrosis-4 Index (FIB-4) score < 1.45 was used as a strong indication that advanced liver fibrosis was not present. Stool samples and fasting blood plasma samples were collected. Bacterial composition was characterized using 16S rRNA sequencing. Metabolomics in plasma were determined using gas and liquid chromatography/mass spectrometry. Statistical analyses included biomarker identification using linear discriminant analysis effect size. Compared to participants with FIB-4 ≥ 1.45, participants with FIB-4 < 1.45 had higher intake of dairy (p = 0.006). Fibrosis-4 Index score was inversely correlated with seafood and plant protein HEI component score (r = −0.320, p = 0.022). The relative abundances of butyrate-producing taxa Ruminococcaceae, Roseburia, and Lachnospiraceae were higher in participants with FIB-4 < 1.45. Participants with FIB-4 < 1.45 also had higher levels of caffeine (p = 0.045) and related metabolites such as trigonelline (p = 0.008) and 1-methylurate (p = 0.023). Dietary components appear to be associated with the fecal microbiome and metabolome, and liver health in PLWH. Future studies should investigate whether targeting specific dietary components may reduce liver-related morbidity and mortality in PLWH. Full article
(This article belongs to the Special Issue Metabolic Profiles and Fibrosis of Nonalcoholic Fatty Liver Disease)
Show Figures

Figure 1

12 pages, 1255 KB  
Article
A Liquid Chromatography Tandem Mass Spectrometry Method for the Simultaneous Estimation of the Dopamine Receptor Antagonist LE300 and Its N-methyl Metabolite in Plasma: Application to a Pharmacokinetic Study
by Mohamed M. Hefnawy, Mohamed W. Attwa, Adeeba A. Alzamil, Manal A. El-Gendy, Adel S. El-Azab, Yousef A. Bin Jardan and Ali A. El-Gamal
Molecules 2023, 28(4), 1553; https://doi.org/10.3390/molecules28041553 - 6 Feb 2023
Cited by 4 | Viewed by 2143
Abstract
LE300 is a novel dopamine receptor antagonist used to treat cocaine addiction. In the current study, a sensitive and fast liquid chromatography–tandem mass spectrometry (LC-MS/MS) has been established and validated for the simultaneous analysis of LE300 and its N-methyl metabolite, MLE300, in [...] Read more.
LE300 is a novel dopamine receptor antagonist used to treat cocaine addiction. In the current study, a sensitive and fast liquid chromatography–tandem mass spectrometry (LC-MS/MS) has been established and validated for the simultaneous analysis of LE300 and its N-methyl metabolite, MLE300, in rat plasma with an application in a pharmacokinetic study. The chromatographic elution of LE300, MLE300, and Ponatinib (IS, internal standard), was carried out on a 50 mm C18 analytical column (ID: 2.1 mm and particle size: 1.8 μm) maintained at 22 ± 2 °C. The run time was 5 min at a flow rate of 0.3 mL/min. The mobile phase consisted of 42% aqueous solvent (10 mM ammonium formate, pH: 4.2 with formic acid) and 58% organic solvent (acetonitrile). Plasma samples were pretreated using protein precipitation with acetonitrile. The electrospray ionization (ESI) source was used to generate an ion-utilizing positive mode. A multiple reaction monitoring mass analyzer mode was utilized for the quantification of analytes. The linearity of the calibration curves in rat plasma ranged from 1 to 200 ng/mL (r2 = 0.9997) and from 2 to 200 ng/mL (r2 = 0.9984) for LE300 and MLE300, respectively. The lower limits of detection (LLOD) were 0.3 ng/mL and 0.7 ng/mL in rat plasma for LE300 and MLE300, respectively. Accuracy (RE%) ranged from −1.71% to −0.07% and −4.18% to −1.48% (inter-day), and from −3.3% to −1.47% and −4.89% to −2.15% (intra-day) for LE300 and MLE300, respectively. The precision (RSD%) was less than 2.43% and 1.77% for the inter-day, and 2.77% and 1.73% for intra-day of LE300 and MLE300, respectively. These results are in agreement with FDA guidelines. The developed LC-MS/MS method was applied in a pharmacokinetic study in Wistar rats. Tmax and Cmax were 2 h and 151.12 ± 12.5 ng/mL for LE300, and 3 h and 170.4 ± 23.3 ng/mL for MLE300. Full article
(This article belongs to the Special Issue Mass Spectrometry Analysis II)
Show Figures

Figure 1

20 pages, 3683 KB  
Article
Fast Protein and Metabolites (Nucleotides and Nucleosides) Liquid Chromatography Technique and Chemical Sensor for the Assessment of Fish and Meat Freshness
by Artur Kuznetsov, Aleksandr Frorip, Alar Sünter, Nensi Kasvand, Vadim Korsakov, Georgii Konoplev, Oksana Stepanova, Linda Rusalepp, Dea Anton, Tõnu Püssa, Mati Roasto, Liubov Abramova, Andrey Kozin, Lauri Toom, Soeren Hirsch and Nikolay Mukhin
Chemosensors 2023, 11(1), 69; https://doi.org/10.3390/chemosensors11010069 - 14 Jan 2023
Cited by 15 | Viewed by 4511
Abstract
Fast protein and metabolite liquid chromatography (FPLMC) was introduced years ago to enable the easy separation of high-molecular compounds such as proteins from small molecules and the identification of the low-molecular substances. In this paper, the method is applied for the rapid evaluation [...] Read more.
Fast protein and metabolite liquid chromatography (FPLMC) was introduced years ago to enable the easy separation of high-molecular compounds such as proteins from small molecules and the identification of the low-molecular substances. In this paper, the method is applied for the rapid evaluation of freshness and monitoring the aging of animal meat and fish. A novel chromatographic sensor was developed with a deep UV LED-based photometric detection unit (255–265 nm), an original flow cuvette and registration scheme; the processing of a chromatogram with the sensor takes approximately 15 min. Strict isochronism between the elution of ATP metabolites, mainly hypoxanthine (Hx) and inosine monophosphate (IMP), and the time of maturation of meat or fish, was discovered. A new freshness index H* = [Hx]/[IMP] was introduced, which is proportional to the instrumental delay time in the FPMLC chromatograms: the H* index < 0.5 indicates the presence of inosine monophosphate (IMP) and the high quality of the meat or fish. Reasonably strong correlations were revealed between data obtained by FPMLC and total volatile basic nitrogen TVB-N (for fish) or volatile fatty acids VFA (for meat) content. Moreover, putative nucleotide salvage and an increase in the concentration of IMP were observed in fish after heat treatment using the FPMLC sensor and NMR technique. Full article
(This article belongs to the Special Issue Advanced Techniques for the Analysis of Protein and RNA)
Show Figures

Figure 1

Back to TopTop