Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,031)

Search Parameters:
Keywords = farm machines

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 10604 KiB  
Article
Fast Detection of Plants in Soybean Fields Using UAVs, YOLOv8x Framework, and Image Segmentation
by Ravil I. Mukhamediev, Valentin Smurygin, Adilkhan Symagulov, Yan Kuchin, Yelena Popova, Farida Abdoldina, Laila Tabynbayeva, Viktors Gopejenko and Alexey Oxenenko
Drones 2025, 9(8), 547; https://doi.org/10.3390/drones9080547 - 1 Aug 2025
Viewed by 196
Abstract
The accuracy of classification and localization of plants on images obtained from the board of an unmanned aerial vehicle (UAV) is of great importance when implementing precision farming technologies. It allows for the effective application of variable rate technologies, which not only saves [...] Read more.
The accuracy of classification and localization of plants on images obtained from the board of an unmanned aerial vehicle (UAV) is of great importance when implementing precision farming technologies. It allows for the effective application of variable rate technologies, which not only saves chemicals but also reduces the environmental load on cultivated fields. Machine learning algorithms are widely used for plant classification. Research on the application of the YOLO algorithm is conducted for simultaneous identification, localization, and classification of plants. However, the quality of the algorithm significantly depends on the training set. The aim of this study is not only the detection of a cultivated plant (soybean) but also weeds growing in the field. The dataset developed in the course of the research allows for solving this issue by detecting not only soybean but also seven weed species common in the fields of Kazakhstan. The article describes an approach to the preparation of a training set of images for soybean fields using preliminary thresholding and bound box (Bbox) segmentation of marked images, which allows for improving the quality of plant classification and localization. The conducted research and computational experiments determined that Bbox segmentation shows the best results. The quality of classification and localization with the application of Bbox segmentation significantly increased (f1 score increased from 0.64 to 0.959, mAP50 from 0.72 to 0.979); for a cultivated plant (soybean), the best classification results known to date were achieved with the application of YOLOv8x on images obtained from the UAV, with an f1 score = 0.984. At the same time, the plant detection rate increased by 13 times compared to the model proposed earlier in the literature. Full article
Show Figures

Figure 1

21 pages, 5734 KiB  
Article
Analytical Inertia Identification of Doubly Fed Wind Farm with Limited Control Information Based on Symbolic Regression
by Mengxuan Shi, Yang Li, Xingyu Shi, Dejun Shao, Mujie Zhang, Duange Guo and Yijia Cao
Appl. Sci. 2025, 15(15), 8578; https://doi.org/10.3390/app15158578 (registering DOI) - 1 Aug 2025
Viewed by 109
Abstract
The integration of large-scale wind power clusters significantly reduces the inertia level of the power system, increasing the risk of frequency instability. Accurately assessing the equivalent virtual inertia of wind farms is critical for grid stability. Addressing the dual bottlenecks in existing inertia [...] Read more.
The integration of large-scale wind power clusters significantly reduces the inertia level of the power system, increasing the risk of frequency instability. Accurately assessing the equivalent virtual inertia of wind farms is critical for grid stability. Addressing the dual bottlenecks in existing inertia assessment methods, where physics-based modeling requires full control transparency and data-driven approaches lack interpretability for inertia response analysis, thus failing to reconcile commercial confidentiality constraints with analytical needs, this paper proposes a symbolic regression framework for inertia evaluation in doubly fed wind farms with limited control information constraints. First, a dynamic model for the inertia response of DFIG wind farms is established, and a mathematical expression for the equivalent virtual inertia time constant under different control strategies is derived. Based on this, a nonlinear function library reflecting frequency-active power dynamic is constructed, and a symbolic regression model representing the system’s inertia response characteristics is established by correlating operational data. Then, sparse relaxation optimization is applied to identify unknown parameters, allowing for the quantification of the wind farm’s equivalent virtual inertia. Finally, the effectiveness of the proposed method is validated in an IEEE three-machine nine-bus system containing a doubly fed wind power cluster. Case studies show that the proposed method can fully utilize prior model knowledge and operational data to accurately assess the system’s inertia level with low computational complexity. Full article
Show Figures

Figure 1

27 pages, 2978 KiB  
Article
Dynamic Monitoring and Precision Fertilization Decision System for Agricultural Soil Nutrients Using UAV Remote Sensing and GIS
by Xiaolong Chen, Hongfeng Zhang and Cora Un In Wong
Agriculture 2025, 15(15), 1627; https://doi.org/10.3390/agriculture15151627 - 27 Jul 2025
Viewed by 382
Abstract
We propose a dynamic monitoring and precision fertilization decision system for agricultural soil nutrients, integrating UAV remote sensing and GIS technologies to address the limitations of traditional soil nutrient assessment methods. The proposed method combines multi-source data fusion, including hyperspectral and multispectral UAV [...] Read more.
We propose a dynamic monitoring and precision fertilization decision system for agricultural soil nutrients, integrating UAV remote sensing and GIS technologies to address the limitations of traditional soil nutrient assessment methods. The proposed method combines multi-source data fusion, including hyperspectral and multispectral UAV imagery with ground sensor data, to achieve high-resolution spatial and spectral analysis of soil nutrients. Real-time data processing algorithms enable rapid updates of soil nutrient status, while a time-series dynamic model captures seasonal variations and crop growth stage influences, improving prediction accuracy (RMSE reductions of 43–70% for nitrogen, phosphorus, and potassium compared to conventional laboratory-based methods and satellite NDVI approaches). The experimental validation compared the proposed system against two conventional approaches: (1) laboratory soil testing with standardized fertilization recommendations and (2) satellite NDVI-based fertilization. Field trials across three distinct agroecological zones demonstrated that the proposed system reduced fertilizer inputs by 18–27% while increasing crop yields by 4–11%, outperforming both conventional methods. Furthermore, an intelligent fertilization decision model generates tailored fertilization plans by analyzing real-time soil conditions, crop demands, and climate factors, with continuous learning enhancing its precision over time. The system also incorporates GIS-based visualization tools, providing intuitive spatial representations of nutrient distributions and interactive functionalities for detailed insights. Our approach significantly advances precision agriculture by automating the entire workflow from data collection to decision-making, reducing resource waste and optimizing crop yields. The integration of UAV remote sensing, dynamic modeling, and machine learning distinguishes this work from conventional static systems, offering a scalable and adaptive framework for sustainable farming practices. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

27 pages, 4093 KiB  
Article
Antimicrobial Resistance in Commensal Bacteria from Large-Scale Chicken Flocks in the Dél-Alföld Region of Hungary
by Ádám Kerek, Ábel Szabó, Franciska Barnácz, Bence Csirmaz, László Kovács and Ákos Jerzsele
Vet. Sci. 2025, 12(8), 691; https://doi.org/10.3390/vetsci12080691 - 24 Jul 2025
Viewed by 538
Abstract
Background: Antimicrobial resistance (AMR) is increasingly acknowledged as a critical global challenge, posing serious risks to human and animal health and potentially disrupting poultry production systems. Commensal bacteria such as Staphylococcus spp., Enterococcus spp., and Escherichia coli may serve as important reservoirs [...] Read more.
Background: Antimicrobial resistance (AMR) is increasingly acknowledged as a critical global challenge, posing serious risks to human and animal health and potentially disrupting poultry production systems. Commensal bacteria such as Staphylococcus spp., Enterococcus spp., and Escherichia coli may serve as important reservoirs and vectors of resistance genes. Objectives: This study aimed to assess the AMR profiles of bacterial strains isolated from industrial chicken farms in the Dél-Alföld region of Hungary, providing region-specific insights into resistance dynamics. Methods: A total of 145 isolates, including Staphylococcus spp., Enterococcus spp., and E. coli isolates, were subjected to minimum inhibitory concentration (MIC) testing against 15 antimicrobial agents, following Clinical and Laboratory Standards Institute (CLSI) guidelines. Advanced multivariate statistics, machine learning algorithms, and network-based approaches were employed to analyze resistance patterns and co-resistance associations. Results Multidrug resistance (MDR) was identified in 43.9% of Staphylococcus spp. isolates, 28.8% of Enterococcus spp. isolates, and 75.6% of E. coli isolates. High levels of resistance to florfenicol, enrofloxacin, and potentiated sulfonamides were observed, whereas susceptibility to critical antimicrobials such as imipenem and vancomycin remained largely preserved. Discussion: Our findings underscore the necessity of implementing region-specific AMR monitoring programs and strengthening multidisciplinary collaboration within the “One Health” framework with proper animal hygiene and biosecurity measures to limit the spread of antimicrobial resistance and protect both animal and human health. Full article
Show Figures

Graphical abstract

30 pages, 2049 KiB  
Review
Wearable Sensors-Based Intelligent Sensing and Application of Animal Behaviors: A Comprehensive Review
by Luyu Ding, Chongxian Zhang, Yuxiao Yue, Chunxia Yao, Zhuo Li, Yating Hu, Baozhu Yang, Weihong Ma, Ligen Yu, Ronghua Gao and Qifeng Li
Sensors 2025, 25(14), 4515; https://doi.org/10.3390/s25144515 - 21 Jul 2025
Viewed by 599
Abstract
Accurate monitoring of animal behaviors enables improved management in precision livestock farming (PLF), supporting critical applications including health assessment, estrus detection, parturition monitoring, and feed intake estimation. Although both contact and non-contact sensing modalities are utilized, wearable devices with embedded sensors (e.g., accelerometers, [...] Read more.
Accurate monitoring of animal behaviors enables improved management in precision livestock farming (PLF), supporting critical applications including health assessment, estrus detection, parturition monitoring, and feed intake estimation. Although both contact and non-contact sensing modalities are utilized, wearable devices with embedded sensors (e.g., accelerometers, pressure sensors) offer unique advantages through continuous data streams that enhance behavioral traceability. Focusing specifically on contact sensing techniques, this review examines sensor characteristics and data acquisition challenges, methodologies for processing behavioral data and implementing identification algorithms, industrial applications enabled by recognition outcomes, and prevailing challenges with emerging research opportunities. Current behavior classification relies predominantly on traditional machine learning or deep learning approaches with high-frequency data acquisition. The fundamental limitation restricting advancement in this field is the difficulty in maintaining high-fidelity recognition performance at reduced acquisition rates, particularly for integrated multi-behavior identification. Considering that the computational demands and limited adaptability to complex field environments remain significant constraints, Tiny Machine Learning (Tiny ML) could present opportunities to guide future research toward practical, scalable behavioral monitoring solutions. In addition, algorithm development for functional applications post behavior recognition may represent a critical future research direction. Full article
(This article belongs to the Section Wearables)
Show Figures

Figure 1

14 pages, 784 KiB  
Article
Development of Machine Learning-Based Sub-Models for Predicting Net Protein Requirements in Lactating Dairy Cows
by Mingyung Lee, Dong Hyeon Kim, Seongwon Seo and Luis O. Tedeschi
Animals 2025, 15(14), 2127; https://doi.org/10.3390/ani15142127 - 18 Jul 2025
Viewed by 243
Abstract
A reliable estimation of protein requirements in lactating dairy cows is necessary for formulating nutritionally adequate diets, improving feed efficiency, and minimizing nitrogen excretion. This study aimed to develop machine learning-based models to predict net protein requirements for maintenance (NPm) and lactation (NPl) [...] Read more.
A reliable estimation of protein requirements in lactating dairy cows is necessary for formulating nutritionally adequate diets, improving feed efficiency, and minimizing nitrogen excretion. This study aimed to develop machine learning-based models to predict net protein requirements for maintenance (NPm) and lactation (NPl) using random forest regression (RFR) and support vector regression (SVR). A total of 1779 observations were assembled from 436 peer-reviewed publications and open-access databases. Predictor variables included farm-ready variables such as milk yield, dry matter intake, days in milk, body weight, and dietary crude protein content. NPm was estimated based on the National Academies of Sciences, Engineering, and Medicine (NASEM, 2021) equations, while NPl was derived from milk true protein yield. The model adequacy was evaluated using 10-fold cross-validation. The RFR model demonstrated higher predictive performance than SVR for both NPm (R2 = 0.82, RMSEP = 22.38 g/d, CCC = 0.89) and NPl (R2 = 0.82, RMSEP = 95.17 g/d, CCC = 0.89), reflecting its capacity to model the rule-based nature of the NASEM equations. These findings suggest that RFR may provide a valuable approach for estimating protein requirements with fewer input variables. Further research should focus on validating these models under field conditions and exploring hybrid modeling frameworks that integrate mechanistic and machine learning approaches. Full article
(This article belongs to the Section Animal Nutrition)
Show Figures

Figure 1

19 pages, 1661 KiB  
Article
Evaluation of the Field Performance and Economic Feasibility of Mechanized Onion Production in the Republic of Korea
by Jae-Seo Hwang and Wan-Soo Kim
Agronomy 2025, 15(7), 1721; https://doi.org/10.3390/agronomy15071721 - 17 Jul 2025
Viewed by 303
Abstract
Onion cultivation in the Republic of Korea is increasingly threatened by labor shortages and an aging rural population, underscoring the growing importance of mechanization. This study evaluated the combined and individual performances and economic feasibility of mechanized transplanting, stem cutting, harvesting, and collecting [...] Read more.
Onion cultivation in the Republic of Korea is increasingly threatened by labor shortages and an aging rural population, underscoring the growing importance of mechanization. This study evaluated the combined and individual performances and economic feasibility of mechanized transplanting, stem cutting, harvesting, and collecting operations using work efficiency; the missing plant, stem cutting, damage, and dropout rates; and foreign matter content as indicators. Mechanized operations achieved up to 358-fold higher work efficiencies than manual labor operations. However, in terms of marketability, performance was inferior due to missing plants, improperly cut stems, damaged bulbs, dropped onions, and foreign matter contamination. The economic analysis indicated that the use of individual machines is advantageous for farms larger than 10.2 ha for transplanting, 1.14 ha for stem cutting, 0 ha for harvesting (i.e., profitable regardless of farm size), and 6.95 ha for collecting. For fully mechanized operations, using machines for all four processes, the break-even area was found to be 3.63 ha, with a payback period of 2.1 years. These findings are expected to serve as a foundational reference for onion growers considering the adoption of mechanization. Full article
Show Figures

Figure 1

18 pages, 871 KiB  
Review
Artificial Intelligence-Assisted Selection Strategies in Sheep: Linking Reproductive Traits with Behavioral Indicators
by Ebru Emsen, Muzeyyen Kutluca Korkmaz and Bahadir Baran Odevci
Animals 2025, 15(14), 2110; https://doi.org/10.3390/ani15142110 - 17 Jul 2025
Viewed by 396
Abstract
Reproductive efficiency is a critical determinant of productivity and profitability in sheep farming. Traditional selection methods have largely relied on phenotypic traits and historical reproductive records, which are often limited by subjectivity and delayed feedback. Recent advancements in artificial intelligence (AI), including video [...] Read more.
Reproductive efficiency is a critical determinant of productivity and profitability in sheep farming. Traditional selection methods have largely relied on phenotypic traits and historical reproductive records, which are often limited by subjectivity and delayed feedback. Recent advancements in artificial intelligence (AI), including video tracking, wearable sensors, and machine learning (ML) algorithms, offer new opportunities to identify behavior-based indicators linked to key reproductive traits such as estrus, lambing, and maternal behavior. This review synthesizes the current research on AI-powered behavioral monitoring tools and proposes a conceptual model, ReproBehaviorNet, that maps age- and sex-specific behaviors to biological processes and AI applications, supporting real-time decision-making in both intensive and semi-intensive systems. The integration of accelerometers, GPS systems, and computer vision models enables continuous, non-invasive monitoring, leading to earlier detection of reproductive events and greater breeding precision. However, the implementation of such technologies also presents challenges, including the need for high-quality data, a costly infrastructure, and technical expertise that may limit access for small-scale producers. Despite these barriers, AI-assisted behavioral phenotyping has the potential to improve genetic progress, animal welfare, and sustainability. Interdisciplinary collaboration and responsible innovation are essential to ensure the equitable and effective adoption of these technologies in diverse farming contexts. Full article
Show Figures

Figure 1

35 pages, 1123 KiB  
Article
AI-Based Bankruptcy Prediction for Agricultural Firms in Central and Eastern Europe
by Dominika Gajdosikova, Jakub Michulek and Irina Tulyakova
Int. J. Financial Stud. 2025, 13(3), 133; https://doi.org/10.3390/ijfs13030133 - 16 Jul 2025
Viewed by 449
Abstract
The agriculture sector is increasingly challenged to maintain productivity and sustainability amidst environmental, marketplace, and geopolitical pressures. While precision agriculture enhances physical production, the financial resilience of agricultural firms has been understudied. In this study, machine learning (ML) methods, including logistic regression (LR), [...] Read more.
The agriculture sector is increasingly challenged to maintain productivity and sustainability amidst environmental, marketplace, and geopolitical pressures. While precision agriculture enhances physical production, the financial resilience of agricultural firms has been understudied. In this study, machine learning (ML) methods, including logistic regression (LR), decision trees (DTs), and artificial neural networks (ANNs), are employed to predict the bankruptcy risk for Central and Eastern European (CEE) farming firms. All models consistently showed high performance, with AUC values exceeding 0.95. DTs had the highest overall accuracy (95.72%) and F1 score (0.9768), LR had the highest recall (0.9923), and ANNs had the highest discrimination power (AUC = 0.960). Visegrad, Balkan, Baltic, and Eastern Europe subregional models featured economic and structural heterogeneity, reflecting the need for local financial risk surveillance. The results support the development of AI-based early warning systems for agricultural finance, enabling smarter decision-making, regional adaptation, and enhanced sustainability in the sector. Full article
Show Figures

Figure 1

13 pages, 1585 KiB  
Communication
An Inexpensive AI-Powered IoT Sensor for Continuous Farm-to-Factory Milk Quality Monitoring
by Kaneez Fizza, Abhik Banerjee, Dimitrios Georgakopoulos, Prem Prakash Jayaraman, Ali Yavari and Anas Dawod
Sensors 2025, 25(14), 4439; https://doi.org/10.3390/s25144439 - 16 Jul 2025
Viewed by 492
Abstract
The amount of protein and fat in raw milk determines its quality, value in the marketplace, and related payment to suppliers. Technicians use expensive specialized laboratory equipment to measure milk quality in specialized laboratories. The continuous quality monitoring of the milk supply in [...] Read more.
The amount of protein and fat in raw milk determines its quality, value in the marketplace, and related payment to suppliers. Technicians use expensive specialized laboratory equipment to measure milk quality in specialized laboratories. The continuous quality monitoring of the milk supply in the supplier’s tanks enables the production of higher quality products, better milk supply chain optimization, and reduced milk waste. This paper presents an inexpensive AI-powered IoT sensor that continuously measures the protein and fat in the raw milk in the tanks of dairy farms, pickup trucks, and intermediate storage depots across any milk supply chain. The proposed sensor consists of an in-tank IoT device and related software components that run on any IoT platform. The in-tank IoT device quality incorporates a low-cost spectrometer and a microcontroller that can send milk supply measurements to any IoT platform via NB-IoT. The in-tank IoT device of the milk quality sensor is housed in a food-safe polypropylene container that allows its deployment in any milk tank. The IoT software component of the milk quality sensors uses a specialized machine learning (ML) algorithm to translate the spectrometry measurements into milk fat and protein measurements. The paper presents the design of an in-tank IoT sensor and the corresponding IoT software translation of the spectrometry measurements to protein and fat measurements. Moreover, it includes an experimental milk quality sensor evaluation that shows that sensor accuracy is ±0.14% for fat and ±0.07% for protein. Full article
(This article belongs to the Special Issue Advances in Physical, Chemical, and Biosensors)
Show Figures

Figure 1

26 pages, 6624 KiB  
Article
Data-Efficient Sowing Position Estimation for Agricultural Robots Combining Image Analysis and Expert Knowledge
by Shuntaro Aotake, Takuya Otani, Masatoshi Funabashi and Atsuo Takanishi
Agriculture 2025, 15(14), 1536; https://doi.org/10.3390/agriculture15141536 - 16 Jul 2025
Viewed by 492
Abstract
We propose a data-efficient framework for automating sowing operations by agricultural robots in densely mixed polyculture environments. This study addresses the challenge of enabling robots to identify suitable sowing positions with minimal labeled data by integrating image-based field sensing with expert agricultural knowledge. [...] Read more.
We propose a data-efficient framework for automating sowing operations by agricultural robots in densely mixed polyculture environments. This study addresses the challenge of enabling robots to identify suitable sowing positions with minimal labeled data by integrating image-based field sensing with expert agricultural knowledge. We collected 84 RGB-depth images from seven field sites, labeled by synecological farming practitioners of varying proficiency levels, and trained a regression model to estimate optimal sowing positions and seeding quantities. The model’s predictions were comparable to those of intermediate-to-advanced practitioners across diverse field conditions. To implement this estimation in practice, we mounted a Kinect v2 sensor on a robot arm and integrated its 3D spatial data with axis-specific movement control. We then applied a trajectory optimization algorithm based on the traveling salesman problem to generate efficient sowing paths. Simulated trials incorporating both computation and robotic control times showed that our method reduced sowing operation time by 51% compared to random planning. These findings highlight the potential of interpretable, low-data machine learning models for rapid adaptation to complex agroecological systems and demonstrate a practical approach to combining structured human expertise with sensor-based automation in biodiverse farming environments. Full article
Show Figures

Figure 1

23 pages, 963 KiB  
Article
A Methodology for Turbine-Level Possible Power Prediction and Uncertainty Estimations Using Farm-Wide Autoregressive Information on High-Frequency Data
by Francisco Javier Jara Ávila, Timothy Verstraeten, Pieter Jan Daems, Ann Nowé and Jan Helsen
Energies 2025, 18(14), 3764; https://doi.org/10.3390/en18143764 - 16 Jul 2025
Viewed by 258
Abstract
Wind farm performance monitoring has traditionally relied on deterministic models, such as power curves or machine learning approaches, which often fail to account for farm-wide behavior and the uncertainty quantification necessary for the reliable detection of underperformance. To overcome these limitations, we propose [...] Read more.
Wind farm performance monitoring has traditionally relied on deterministic models, such as power curves or machine learning approaches, which often fail to account for farm-wide behavior and the uncertainty quantification necessary for the reliable detection of underperformance. To overcome these limitations, we propose a probabilistic methodology for turbine-level active power prediction and uncertainty estimation using high-frequency SCADA data and farm-wide autoregressive information. The method leverages a Stochastic Variational Gaussian Process with a Linear Model of Coregionalization, incorporating physical models like manufacturer power curves as mean functions and enabling flexible modeling of active power and its associated variance. The approach was validated on a wind farm in the Belgian North Sea comprising over 40 turbines, using only 15 days of data for training. The results demonstrate that the proposed method improves predictive accuracy over the manufacturer’s power curve, achieving a reduction in error measurements of around 1%. Improvements of around 5% were seen in dominant wind directions (200°–300°) using 2 and 3 Latent GPs, with similar improvements observed on the test set. The model also successfully reconstructs wake effects, with Energy Ratio estimates closely matching SCADA-derived values, and provides meaningful uncertainty estimates and posterior turbine correlations. These results demonstrate that the methodology enables interpretable, data-efficient, and uncertainty-aware turbine-level power predictions, suitable for advanced wind farm monitoring and control applications, enabling a more sensitive underperformance detection. Full article
Show Figures

Figure 1

23 pages, 11087 KiB  
Article
UAV-Based Automatic Detection of Missing Rice Seedlings Using the PCERT-DETR Model
by Jiaxin Gao, Feng Tan, Zhaolong Hou, Xiaohui Li, Ailin Feng, Jiaxin Li and Feiyu Bi
Plants 2025, 14(14), 2156; https://doi.org/10.3390/plants14142156 - 13 Jul 2025
Viewed by 259
Abstract
Due to the limitations of the sowing machine performance and rice seed germination rates, missing seedlings inevitably occur after rice is sown in large fields. This phenomenon has a direct impact on the rice yield. In the field environment, the existing methods for [...] Read more.
Due to the limitations of the sowing machine performance and rice seed germination rates, missing seedlings inevitably occur after rice is sown in large fields. This phenomenon has a direct impact on the rice yield. In the field environment, the existing methods for detecting missing seedlings based on unmanned aerial vehicle (UAV) remote sensing images often have unsatisfactory effects. Therefore, to enable the fast and accurate detection of missing rice seedlings and facilitate subsequent reseeding, this study proposes a UAV remote-sensing-based method for detecting missing rice seedlings in large fields. The proposed method uses an improved PCERT-DETR model to detect rice seedlings and missing seedlings in UAV remote sensing images of large fields. The experimental results show that PCERT-DETR achieves an optimal performance on the self-constructed dataset, with an mean average precision (mAP) of 81.2%, precision (P) of 82.8%, recall (R) of 78.3%, and F1-score (F1) of 80.5%. The model’s parameter count is only 21.4 M and its FLOPs reach 66.6 G, meeting real-time detection requirements. Compared to the baseline network models, PCERT-DETR improves the P, R, F1, and mAP by 15.0, 1.2, 8.5, and 6.8 percentage points, respectively. Furthermore, the performance evaluation experiments were carried out through ablation experiments, comparative detection model experiments and heat map visualization analysis, indicating that the model has a strong detection performance on the test set. The results confirm that the proposed model can accurately detect the number of missing rice seedlings. This study provides accurate information on the number of missing seedlings for subsequent reseeding operations, thus contributing to the improvement of precision farming practices. Full article
(This article belongs to the Section Plant Modeling)
Show Figures

Figure 1

21 pages, 2742 KiB  
Article
Origin Traceability of Chinese Mitten Crab (Eriocheir sinensis) Using Multi-Stable Isotopes and Explainable Machine Learning
by Danhe Wang, Chunxia Yao, Yangyang Lu, Di Huang, Yameng Li, Xugan Wu, Weiguo Song and Qinxiong Rao
Foods 2025, 14(14), 2458; https://doi.org/10.3390/foods14142458 - 13 Jul 2025
Viewed by 347
Abstract
The Chinese mitten crab (Eriocheir sinensis) industry is currently facing the challenges of origin fraud, as well as a lack of precision and interpretability of existing traceability methods. Here, we propose a high-precision origin traceability method based on a combination of [...] Read more.
The Chinese mitten crab (Eriocheir sinensis) industry is currently facing the challenges of origin fraud, as well as a lack of precision and interpretability of existing traceability methods. Here, we propose a high-precision origin traceability method based on a combination of stable isotope analysis and interpretable machine learning. We sampled Chinese mitten crabs from six origins representing diverse aquatic environments and farming practices, and analyzed their δ13C, δ15N, δ2H, and δ18O stable isotope compositions in different sexes and tissues (hepatopancreas, muscle, and gonad). By comparing the classification performance of Random Forest, XGBoost, and Logistic Regression models, we found that the Random Forest model outperformed the others, achieving high accuracy (91.3%) in distinguishing samples from different origins. Interpretation of the optimal Random Forest model, using SHAP (SHapley Additive exPlanations) analysis, identified δ2H in male muscle, δ15N in female hepatopancreas, and δ13C in female hepatopancreas as the most influential features for discriminating geographic origin. This analysis highlighted the crucial role of environmental factors, such as water source, diet, and trophic level, in origin discrimination and demonstrated that isotopic characteristics of different tissues provide unique discriminatory information. This study offers a novel paradigm for stable isotope traceability based on explainable machine learning, significantly enhancing the identification capability and reliability of Chinese mitten crab origin traceability, and holds significant implications for food safety assurance. Full article
(This article belongs to the Section Food Analytical Methods)
Show Figures

Figure 1

23 pages, 3747 KiB  
Article
Design Optimization and Performance Evaluation of an Automated Pelleted Feed Trough for Sheep Feeding Management
by Xinyu Gao, Chuanzhong Xuan, Jianxin Zhao, Yanhua Ma, Tao Zhang and Suhui Liu
Agriculture 2025, 15(14), 1487; https://doi.org/10.3390/agriculture15141487 - 10 Jul 2025
Viewed by 316
Abstract
The automatic feeding device is crucial in grassland livestock farming, enhancing feeding efficiency, ensuring regular and accurate feed delivery, minimizing waste, and reducing costs. The shape and size of pellet feed render it particularly suitable for the delivery mechanism of automated feeding troughs. [...] Read more.
The automatic feeding device is crucial in grassland livestock farming, enhancing feeding efficiency, ensuring regular and accurate feed delivery, minimizing waste, and reducing costs. The shape and size of pellet feed render it particularly suitable for the delivery mechanism of automated feeding troughs. The uniformity of pellet flow is a critical factor in the study of automatic feeding troughs, and optimizing the movement characteristics of the pellets contributes to enhanced operational efficiency of the equipment. However, existing research often lacks a systematic analysis of the pellet size characteristics (such as diameter and length) and flow behavior differences in pellet feed, which limits the practical application of feed troughs. This study optimized the angle of repose and structural parameters of the feeding trough using Matlab simulations and discrete element modeling. It explored how the stock bin slope and baffle opening height influence pellet feed flow characteristics. A programmable logic controller (PLC) and human–machine interface (HMI) were used for precise timing and quantitative feeding, validating the design’s practicality. The results indicated that the Matlab method could calibrate the Johnson–Kendall–Roberts (JKR) model’s surface energy. The optimal slope was found to be 63°, with optimal baffle heights of 28 mm for fine and medium pellets and 30 mm for coarse pellets. The experimental metrics showed relative errors of 3.5%, 2.8%, and 4.2% (for average feed rate) and 8.2%, 7.3%, and 1.2% (for flow time). The automatic feeding trough showed a feeding error of 0.3% with PLC-HMI. This study’s optimization of the automatic feeding trough offers a strong foundation and guidance for efficient, accurate pellet feed distribution. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

Back to TopTop