Origin Traceability of Chinese Mitten Crab (Eriocheir sinensis) Using Multi-Stable Isotopes and Explainable Machine Learning
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.2. Isotope Analysis
2.2.1. δ13C and δ15N Analysis
2.2.2. δ2H and δ18O Analysis
2.2.3. Assumption Testing and Comparative Statistical Analysis
2.3. Chinese Mitten Crab Origin Classification Models
2.3.1. Machine Learning Approach
2.3.2. Classification Features
2.3.3. Model Evaluation
2.3.4. Model Interpretation Using SHAP
3. Results and Discussion
3.1. Stable Isotope Values of Chinese Mitten Crabs from Different Origins
3.2. Stable Isotope Differences of Chinese Mitten Crabs Across Water Body Types
3.3. Stable Isotope Differences Across Tissues in Chinese Mitten Crabs
3.4. Classification Models
3.4.1. Model Selection
3.4.2. Classification Performance of the Random Forest Model for Different Origins
3.4.3. Feature Interpretation of the Random Forest Model
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Leal, M.C.; Pimentel, T.; Ricardo, F.; Rosa, R.; Calado, R. Seafood Traceability: Current Needs, Available Tools, and Biotechnological Challenges for Origin Certification. Trends Biotechnol. 2015, 33, 331–336. [Google Scholar] [CrossRef] [PubMed]
- Goulding, I. Manual on Traceability Systems for Fish and Fishery Products; CRFM Special Publication; CRFM: Belize City, Belize, 2016. [Google Scholar]
- Blaha, F.; Vincent, A.; Piedrahita, Y. Guidance Document: Advancing End-to-End Traceability; Food and Agriculture Organization: Rome, Italy, 2023. [Google Scholar]
- Bergleiter, S.; Meisch, S. Certification Standards for Aquaculture Products: Bringing Together the Values of Producers and Consumers in Globalised Organic Food Markets. J. Agric. Environ. Ethics 2015, 28, 553–569. [Google Scholar] [CrossRef]
- Saha, C.K. Emergence and Evolution of Aquaculture Sustainability Certification Schemes. Mar. Policy 2022, 143, 105196. [Google Scholar] [CrossRef]
- Sui, L.; Wille, M.; Cheng, Y.; Wu, X.; Sorgeloos, P. Larviculture Techniques of Chinese Mitten Crab Eriocheir sinensis. Aquaculture 2011, 315, 16–19. [Google Scholar] [CrossRef]
- Zuo, R.; Wen, B.; Jiang, Y.; Huang, S.; Yi, Q. Growth, Biochemical Indices and Transcriptomic Profile of Chinese Mitten Crab (Eriocheir sinensis) Respond to Different Ratios of Dietary Carbohydrates to Lipids. Front. Mar. Sci. 2023, 10, 1176976. [Google Scholar] [CrossRef]
- Cheng, Y.; Wu, X.; Li, J. Chinese Mitten Crab Culture: Current Status and Recent Progress Towards Sustainable Development. Aquac. China Success Stories Mod. Trends 2018, 197–217. [Google Scholar]
- Qin, J. Eriocheir sinensis (Chinese Mitten Crab). CABI Compend. 2023, 120, 1–27. [Google Scholar]
- Mai, Z.; Lai, B.; Sun, M.; Shao, J.; Guo, L. Food Adulteration and Traceability Tests Using Stable Carbon Isotope Technologies. Trop. J. Pharm. Res. 2019, 18, 1771–1784. [Google Scholar]
- Xu, Y.; Xue, J.; Liu, H.; Jiang, T.; Chen, X.; Yang, J. Identification of “Bathed” Chinese Mitten Crabs (Eriocheir sinensis) Using Geometric Morphological Analysis of the Carapace. Fishes 2023, 9, 6. [Google Scholar] [CrossRef]
- Xue, J.; Jiang, T.; Chen, X.; Liu, H.; Yang, J. Stable Isotopic Fingerprints of Genuine and “Bathing” Cultured Chinese Mitten Crabs (Eriocheir sinensis) in Yangcheng Lake, China. Microchem. J. 2024, 199, 110045. [Google Scholar] [CrossRef]
- Gephart, J.A.; Henriksson, P.J.; Parker, R.W.; Shepon, A.; Gorospe, K.D.; Bergman, K.; Eshel, G.; Golden, C.D.; Halpern, B.S.; Hornborg, S. Environmental Performance of Blue Foods. Nature 2021, 597, 360–365. [Google Scholar] [CrossRef] [PubMed]
- Fang, L.; Chen, X.; Fan, L.; Hu, G.; Qiu, L.; Song, C.; Xie, Y.; Giesy, J.P.; Wang, C.; Meng, S. Environment Consistently Impact on Aquaculture: The Predominant Source of Residual Pollutants in Cultured Chinese Mitten Crab (Eriocheir sinensis) across China. Heliyon 2024, 10, e32418. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, H.; Zhao, L.; Zhou, B.; Li, P.; Liu, B.; Wang, Y.; Yang, C.; Huang, K.; Zhang, C. Ecosystem Impact and Dietary Exposure of Polychlorinated Biphenyls (Pcbs) and Heavy Metals in Chinese Mitten Crabs (Eriocheir sinensis) and Their Farming Areas in Jiangsu, China. Ecotoxicol. Environ. Saf. 2021, 227, 112936. [Google Scholar] [CrossRef]
- Xue, J.; Jiang, T.; Chen, X.; Liu, H.; Yang, J. Multi-Mineral Fingerprinting Analysis of the Chinese Mitten Crab (Eriocheir sinensis) in Yangcheng Lake During the Year-Round Culture Period. Food Chem. 2022, 390, 133167. [Google Scholar] [CrossRef]
- Xu, Y.; Xue, J.; Liu, H.; Jiang, T.; Chen, X.; Yang, J. Elemental and Stable Isotopic Signatures for Dynamic Traceability of Genuine and" Bathing" Cultured Yangcheng Eriocheir sinensis Crabs. J. Food Compos. Anal. 2024, 135, 106697. [Google Scholar] [CrossRef]
- Luo, R.; Jiang, T.; Chen, X.; Zheng, C.; Liu, H.; Yang, J. Determination of Geographic Origin of Chinese Mitten Crab (Eriocheir sinensis) Using Integrated Stable Isotope and Multi-Element Analyses. Food Chem. 2019, 274, 1–7. [Google Scholar] [CrossRef]
- Yin, Y.; Gao, M.; Cao, X.; Wei, J.; Zhong, X.; Li, S.; Peng, K.; Gao, J.; Gong, Z.; Cai, Y. Restore Polder and Aquaculture Enclosure to the Lake: Balancing Environmental Protection and Economic Growth for Sustainable Development. Sci. Total Environ. 2024, 933, 173036. [Google Scholar] [CrossRef] [PubMed]
- Mali, M.; Meghalatha, K.; Anuradha, K.; Kumar, V.; Lakshmi, P.; Karmakar, S.; Lakra, D.; Rudraboyina, S.; Chandrakar, G. The Future of Rice Farming: A Review of Natural and Eco-Friendly Practices. Int. J. Environ. Clim. Change 2023, 13, 4240–4249. [Google Scholar] [CrossRef]
- Rudnick, D.; Resh, V. Stable Isotopes, Mesocosms and Gut Content Analysis Demonstrate Trophic Differences in Two Invasive Decapod Crustacea. Freshw. Biol. 2005, 50, 1323–1336. [Google Scholar] [CrossRef]
- Rocque, D.A.; Ben-David, M.; Barry, R.P.; Winker, K. Assigning Birds to Wintering and Breeding Grounds Using Stable Isotopes: Lessons from Two Feather Generations among Three Intercontinental Migrants. J. Ornithol. 2006, 147, 395–404. [Google Scholar] [CrossRef]
- Pouilly, M.; Point, D.; Sondag, F.; Henry, M.; Santos, R.V. Geographical Origin of Amazonian Freshwater Fishes Fingerprinted by 87sr/86sr Ratios on Fish Otoliths and Scales. Environ. Sci. Technol. 2014, 48, 8980–8987. [Google Scholar] [CrossRef]
- Fry, B. Stable Isotope Ecology; Springer: New York, NY, USA, 2006; Volume 521. [Google Scholar]
- Chary, K.; Brigolin, D.; Callier, M.D. Farm-Scale Models in Fish Aquaculture–an Overview of Methods and Applications. Rev. Aquac. 2022, 14, 2122–2157. [Google Scholar] [CrossRef]
- Dee, S.; Bailey, A.; Conroy, J.L.; Atwood, A.; Stevenson, S.; Nusbaumer, J.; Noone, D. Water Isotopes, Climate Variability, and the Hydrological Cycle: Recent Advances and New Frontiers. Environ. Res. Clim. 2023, 2, 022002. [Google Scholar] [CrossRef]
- Willis, T.J.; Sweeting, C.J.; Bury, S.J.; Handley, S.J.; Brown, J.C.; Freeman, D.J.; Cairney, D.G.; Page, M.J. Matching and Mismatching Stable Isotope (Δ13 C and Δ15 N) Ratios in Fin and Muscle Tissue among Fish Species: A Critical Review. Mar. Biol. 2013, 160, 1633–1644. [Google Scholar] [CrossRef]
- Xu, Y.; Peng, K.; Jiang, F.; Cui, Y.; Han, D.; Liu, H.; Hong, H.; Tian, X. Geographical Discrimination of Swimming Crabs (Portunus trituberculatus) Using Stable Isotope and Multi-Element Analyses. J. Food Compos. Anal. 2022, 105, 104251. [Google Scholar] [CrossRef]
- Bhattacharya, A. Applied Machine Learning Explainability Techniques: Make Ml Models Explainable and Trustworthy for Practical Applications Using Lime, Shap, and More; Packt Publishing Ltd: Mumbai, India, 2022. [Google Scholar]
- Ingram, T.; Matthews, B.; Harrod, C.; Stephens, T.; Grey, J.; Markel, R.; Mazumder, A. Lipid Extraction Has Little Effect on the Δ15n of Aquatic Consumers. Limnol. Oceanogr. 2007, 5, 338–342. [Google Scholar] [CrossRef]
- Bligh, E.G.; Dyer, W.J. A Rapid Method of Total Lipid Extraction and Purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef]
- Kang, X.; Zhao, Y.; Tan, Z. An Explainable Machine Learning for Geographical Origin Traceability of Mussels Mytilus Edulis Based on Stable Isotope Ratio and Compositions of C, N, O and H. J. Food Compos. Anal. 2023, 123, 105508. [Google Scholar] [CrossRef]
- Magozzi, S.; Vander Zanden, H.B.; Wunder, M.B.; Bowen, G.J. Mechanistic Model Predicts Tissue–Environment Relationships and Trophic Shifts in Animal Hydrogen and Oxygen Isotope Ratios. Oecologia 2019, 191, 777–789. [Google Scholar] [CrossRef]
- Haubrock, P.J.; Balzani, P.; Britton, J.R.; Haase, P. Using Stable Isotopes to Analyse Extinction Risks and Reintroduction Opportunities of Native Species in Invaded Ecosystems. Sci. Rep. 2020, 10, 21576. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. Xgboost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016. [Google Scholar]
- Das, A. Logistic Regression. In Encyclopedia of Quality of Life and Well-Being Research; Springer: Berlin/Heidelberg, Germany, 2024; pp. 3985–3986. [Google Scholar]
- Shi, C.; Ye, Y.; Pei, F.; Mu, C.; Wang, C. Survival and Metabolic Modulation of Swimming Crab Portunus Trituberculatus During Live Transport. Front. Mar. Sci. 2021, 8, 724156. [Google Scholar] [CrossRef]
- Li, W.F.; Zhang, S.; Chiu, K.H.; Deng, X.Y.; Yi, Y. Silencing of Crustacean Hyperglycemic Hormone Gene Expression Reveals the Characteristic Energy and Metabolic Changes in the Gills and Epidermis of Crayfish Procambarus Clarkii. Front. Physiol. 2024, 14, 1349106. [Google Scholar] [CrossRef]
- Lundberg, S.; Erion, G.; Chen, H.; DeGrave, A.; Prutkin, J.; Nair, B.; Katz, R.; Himmelfarb, J.; Bansal, N.; Lee, S. From Local Explanations to Global Understanding with Explainable Ai for Trees. Nat. Mach. Intell. 2020, 2, 56–67. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Gong, Y.; Zhang, J.; Tang, Y.; Shi, X.; Shi, J. Intra-and Inter-Specific Variation in Edible Jellyfish Biomarkers and Implications for Origin Traceability and Authentication. Front. Mar. Sci. 2021, 8, 755048. [Google Scholar] [CrossRef]
- Cresson, P.; Ruitton, S.; Harmelin-Vivien, M. Artificial Reefs Do Increase Secondary Biomass Production: Mechanisms Evidenced by Stable Isotopes. Mar. Ecol. Prog. Ser. 2014, 509, 15–26. [Google Scholar] [CrossRef]
- Montoya, J.; Horrigan, S.; McCarthy, J. Natural Abundance of 15N in Particulate Nitrogen and Zooplankton in the Chesapeake Bay. Mar. Ecol. Prog. Ser. 1990, 65, 35–61. [Google Scholar] [CrossRef]
- Ren, X.; Li, P.; He, X.; Zhang, Q. Tracing the Sources and Evaporation Fate of Surface Water and Groundwater Using Stable Isotopes of Hydrogen and Oxygen. Sci. Total Environ. 2024, 931, 172708. [Google Scholar] [CrossRef]
- Finlay, J.C. Stable-Carbon-Isotope Ratios of River Biota: Implications for Energy Flow in Lotic Food Webs. Ecology 2001, 82, 1052–1064. [Google Scholar] [CrossRef]
- Lake, J.L.; McKinney, R.A.; Osterman, F.A.; Pruell, R.J.; Kiddon, J.; Ryba, S.A.; Libby, A.D. Stable Nitrogen Isotopes as Indicators of Anthropogenic Activities in Small Freshwater Systems. Can. J. Fish. Aquat. Sci. 2001, 58, 870–878. [Google Scholar] [CrossRef]
- Ye, H.; Tang, C.; Cao, Y. Sources and Transformation Mechanisms of Inorganic Nitrogen: Evidence from Multi-Isotopes in a Rural-Urban River Area. Sci. Total Environ. 2021, 794, 148615. [Google Scholar] [CrossRef]
- Singha, K.P.; Sahu, N.P.; Sardar, P.; Shamna, N.; Kumar, V. A Strategic Roadmap for Carbohydrate Utilization in Crustaceans Feed. Rev. Aquac. 2024, 16, 674–705. [Google Scholar] [CrossRef]
- Hobson, K.; Riget, F.; Outridge, P.; Dietz, R.; Born, E. Baleen as a Biomonitor of Mercury Content and Dietary History of North Atlantic Minke Whales (Balaenopetra acutorostrata): Combining Elemental and Stable Isotope Approaches. Sci. Total Environ. 2004, 331, 69–82. [Google Scholar] [CrossRef] [PubMed]
- Sessions, A.L.; Burgoyne, T.W.; Schimmelmann, A.; Hayes, J.M. Fractionation of Hydrogen Isotopes in Lipid Biosynthesis. Org. Geochem. 1999, 30, 1193–1200. [Google Scholar] [CrossRef]
- DeNiro, M.J.; Epstein, S. Mechanism of Carbon Isotope Fractionation Associated with Lipid Synthesis. Science. 1977, 197, 261–263. [Google Scholar] [CrossRef] [PubMed]
- Millward, D. The Nutritional Regulation of Muscle Growth and Protein Turnover. Aquaculture 1989, 79, 1–28. [Google Scholar] [CrossRef]
- Poortmans, J.R.; Carpentier, A.; Pereira-Lancha, L.; Lancha, A., Jr. Protein Turnover, Amino Acid Requirements and Recommendations for Athletes and Active Populations. Braz. J. Med. Biol. Res. 2012, 45, 875–890. [Google Scholar] [CrossRef]
- Viozzi, M.F.; Del Rio, C.M.; Williner, V. Tissue-Specific Isotopic Incorporation Turnover Rates and Trophic Discrimination Factors in the Freshwater Shrimp Macrobrachium Borellii (Crustacea: Decapoda: Palaemonidae). Zool. Stud. 2021, 60, e32. [Google Scholar]
- Schmidt, K.; McClelland, J.W.; Mente, E.; Montoya, J.P.; Atkinson, A.; Voss, M. Trophic-Level Interpretation Based on Δ15n Values: Implications of Tissue-Specific Fractionation and Amino Acid Composition. Mar. Ecol. Prog. Ser. 2004, 266, 43–58. [Google Scholar] [CrossRef]
- Sun, Y.; Zhao, Y.; Wu, J.; Liu, N.; Kang, X.; Wang, S.; Zhou, D. An Explainable Machine Learning Model for Identifying Geographical Origins of Sea Cucumber Apostichopus Japonicus Based on Multi-Element Profile. Food Control 2022, 134, 108753. [Google Scholar] [CrossRef]
- Huang, J.; Li, Z.; Zhang, W.; Lv, Z.; Dong, S.; Feng, Y.; Liu, R.; Zhao, Y. Explainable Machine Learning-Assisted Origin Identification: Chemical Profiling of Five Lotus (Nelumbo nucifera Gaertn). Parts. Food Chem. 2023, 404, 134517. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.B.; Zhao, Y.L.; Li, N.; Yang, J. Effect of Waterborne Copper on the Microstructures of Gill and Hepatopancreas in Eriocheir sinensis and Its Induction of Metallothionein Synthesis. Arch. Environ. Contam. Toxicol. 2007, 52, 222–228. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Zhang, J.; Wu, Y.; Luo, X.; Xu, Z.; Pan, J.; Zou, G.; Liang, H. Comparison of Body Characteristics, Carotenoid Composition, and Nutritional Quality of Chinese Mitten Crab (Eriocheir sinensis) with Different Hepatopancreas Redness. Foods 2024, 13, 993. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, D.; Yao, C.; Lu, Y.; Huang, D.; Li, Y.; Wu, X.; Song, W.; Rao, Q. Origin Traceability of Chinese Mitten Crab (Eriocheir sinensis) Using Multi-Stable Isotopes and Explainable Machine Learning. Foods 2025, 14, 2458. https://doi.org/10.3390/foods14142458
Wang D, Yao C, Lu Y, Huang D, Li Y, Wu X, Song W, Rao Q. Origin Traceability of Chinese Mitten Crab (Eriocheir sinensis) Using Multi-Stable Isotopes and Explainable Machine Learning. Foods. 2025; 14(14):2458. https://doi.org/10.3390/foods14142458
Chicago/Turabian StyleWang, Danhe, Chunxia Yao, Yangyang Lu, Di Huang, Yameng Li, Xugan Wu, Weiguo Song, and Qinxiong Rao. 2025. "Origin Traceability of Chinese Mitten Crab (Eriocheir sinensis) Using Multi-Stable Isotopes and Explainable Machine Learning" Foods 14, no. 14: 2458. https://doi.org/10.3390/foods14142458
APA StyleWang, D., Yao, C., Lu, Y., Huang, D., Li, Y., Wu, X., Song, W., & Rao, Q. (2025). Origin Traceability of Chinese Mitten Crab (Eriocheir sinensis) Using Multi-Stable Isotopes and Explainable Machine Learning. Foods, 14(14), 2458. https://doi.org/10.3390/foods14142458