Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (71)

Search Parameters:
Keywords = faecal microbiota transplant

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1513 KB  
Review
Gut Microbiota-Mediated Molecular Events in Hepatocellular Carcinoma: From Pathogenesis to Treatment
by Costantino Sgamato, Stefano Andrea Marchitto, Debora Compare, Pietro Coccoli, Vincenzo Colace, Stefano Minieri, Carmen Ambrosio, Gerardo Nardone and Alba Rocco
Livers 2026, 6(1), 4; https://doi.org/10.3390/livers6010004 - 12 Jan 2026
Viewed by 248
Abstract
Background/Objectives: Hepatocellular carcinoma (HCC) is one of the most common causes of cancer and cancer-related death worldwide. Beyond the well-known factors influencing the risk of HCC, experimental data from animal models and observational human studies support a significant role of the gut microbiota [...] Read more.
Background/Objectives: Hepatocellular carcinoma (HCC) is one of the most common causes of cancer and cancer-related death worldwide. Beyond the well-known factors influencing the risk of HCC, experimental data from animal models and observational human studies support a significant role of the gut microbiota (GM) in HCC initiation and progression. Dysbiosis and increased intestinal permeability synergistically disrupt the ‘gut–liver axis,’ exposing the liver to bacterial metabolites and microbial-associated molecular patterns, thereby contributing to hepatocarcinogenesis. While these findings have expanded our understanding of HCC pathogenesis, a critical translational gap persists as most data derive from preclinical settings, with limited validation in large-scale clinical studies. Methods: This narrative review aimed to contextualise the current evidence on the GM-HCC axis and its clinical translatability. A literature search was conducted in PubMed/MEDLINE, Scopus, and Web of Science up to July 2025 using Medical Subject Headings and related keywords, including HCC, GM, dysbiosis, intestinal permeability, gut–liver axis, microbial metabolites, inflammation/immune modulation, and microbiota-targeted interventions (probiotics, antibiotics, and faecal microbiota transplantation). Reference lists of relevant articles were also screened to identify additional studies. Results: Preclinical models consistently indicate that dysbiosis and impaired gut barrier function can promote hepatic inflammation, immune dysregulation, and pro-tumorigenic signalling through microbe-derived products and metabolite perturbations, supporting a contributory role of the GM in hepatocarcinogenesis. In humans, HCC and advanced chronic liver disease are associated with altered microbial composition and function, increased markers of intestinal permeability, and changes in bile acid and other metabolite profiles; however, reported signatures are heterogeneous across cohorts and analytical platforms. Conclusions: The GM is a biologically plausible and experimentally supported contributor to HCC initiation and progression, with potential for biomarker development and therapeutic targeting. However, clinical translation is limited by predominantly preclinical/associative evidence, interindividual variability, and non-standardised microbiome methods. Large longitudinal studies and adequately powered randomised trials are needed to establish causality, validate biomarkers, and determine whether GM modulation improves HCC prevention, detection, stratification, or outcomes. Full article
Show Figures

Figure 1

21 pages, 3189 KB  
Article
Gut Microbiota-Derived Propionic Acid Mediates ApoA-I-Induced Amelioration of MASLD via Activation of GPR43–Ca2+–CAMKII–ATGL Hepatic Lipolysis
by Mengyuan Liu, Yutong Wang and Haixia Huang
Int. J. Mol. Sci. 2026, 27(1), 468; https://doi.org/10.3390/ijms27010468 - 1 Jan 2026
Viewed by 397
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a widespread hepatic condition characterised by hepatic lipid accumulation and inflammation. Emerging research highlights the contribution of the intestinal microbiota and its metabolic byproducts to the pathogenesis of MASLD through the gut–liver axis. Apolipoprotein A-I (apoA-I), [...] Read more.
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a widespread hepatic condition characterised by hepatic lipid accumulation and inflammation. Emerging research highlights the contribution of the intestinal microbiota and its metabolic byproducts to the pathogenesis of MASLD through the gut–liver axis. Apolipoprotein A-I (apoA-I), the principal structural component of high-density lipoprotein (HDL), is linked to various metabolic disorders; however, its function in MASLD has not yet been clearly elucidated. This study sought to examine whether apoA-I protects against MASLD, with a focus on the possible role of the gut microbiota and propionic acid (PPA). The contribution of the gut microbiota was evaluated using faecal microbiota transplantation (FMT) and antibiotic cocktail (ABX)-mediated depletion. Microbial composition was assessed via 16S rRNA sequencing, and concentrations of short-chain fatty acids (SCFAs) were quantified. The effects of PPA on MASLD were examined using in vivo and in vitro models. The results showed that apoA-I overexpression alleviated MASLD in a gut microbiota-dependent manner, restored microbial homeostasis, and elevated PPA levels. PPA supplementation improved MASLD phenotypes. Mechanistically, PPA treatment was associated with the activation of the GPR43–Ca2+–CAMKII–ATGL pathway, suggesting that PPA plays a role in stimulating hepatic lipolysis and enhancing mitochondrial β-oxidation. These findings reveal a novel pathway through which apoA-I ameliorates MASLD by modulating the gut microbiota and increasing PPA levels, which activate a hepatic lipolysis cascade. The apoA-I–microbiota–PPA axis represents a promising therapeutic target for MASLD intervention. Full article
(This article belongs to the Special Issue Gut Microbiome Stability in Health and Disease)
Show Figures

Figure 1

22 pages, 2526 KB  
Article
Untargeted Metabolomics Identifies Faecal Filtrate-Derived Metabolites That Disrupt Clostridioides difficile Metabolism and Confer Gut Barrier Cytoprotection
by Fatimah I. Qassadi, Charlotte Johnson, Karen Robinson, Ruth Griffin, Christos Polytarchou, Dina Kao, Dong-Hyun Kim, Rian L. Griffiths, Zheying Zhu and Tanya M. Monaghan
Int. J. Mol. Sci. 2025, 26(22), 11221; https://doi.org/10.3390/ijms262211221 - 20 Nov 2025
Viewed by 1086
Abstract
Recurrent Clostridioides difficile infection (rCDI) remains a major therapeutic challenge. Although faecal microbiota transplantation (FMT) is highly effective and thought to restore microbial composition and metabolic function, the mechanisms underlying its success are not fully understood. In particular, the contribution of non-bacterial components [...] Read more.
Recurrent Clostridioides difficile infection (rCDI) remains a major therapeutic challenge. Although faecal microbiota transplantation (FMT) is highly effective and thought to restore microbial composition and metabolic function, the mechanisms underlying its success are not fully understood. In particular, the contribution of non-bacterial components such as soluble metabolites remains unclear. Therefore, further investigation is needed to identify the mechanistic drivers of FMT efficacy and clarify how non-bacterial factors contribute to therapeutic outcomes. Here, we applied untargeted three-dimensional Orbitrap secondary ion mass spectrometry (3D OrbiSIMS) to profile faecal metabolic reprogramming in rCDI patients pre- and post-FMT, alongside C. difficile cultures exposed to sterile faecal filtrates. FMT induced extensive metabolic shifts, restoring glyoxylate/dicarboxylate and glycerophosphoinositol pathways and normalising disrupted bile acid and amino acid profiles. Faecal filtrate exposure caused strain-specific metabolic disruption in C. difficile, depleting proline, fumarate and succinate while enriching tryptophan. While multiple metabolite classes were profiled, the most significant functional changes were observed in lipids. Lipidomics identified >3.8-fold enrichment of phosphatidylinositol (PI) species, which localised to bacterial membranes and conferred cytoprotection against C. difficile toxins and other epithelial insults. Spatial metabolomics imaging revealed, for the first time, metabolite compartmentalisation within C. difficile, with proline and succinate broadly distributed across the cell surface and fumarate confined to distinct microdomains, highlighting functional heterogeneity in pathogen metabolism. Collectively, these findings demonstrate that soluble metabolites within faecal filtrates mediate pathogen suppression and epithelial barrier protection, establishing metabolite-driven mechanisms underlying FMT efficacy and identifying PI lipids as candidate post-biotic therapeutics for rCDI. Full article
(This article belongs to the Special Issue Interplay Between the Human Microbiome and Diseases)
Show Figures

Figure 1

30 pages, 1124 KB  
Review
Gut Microbiota and Neurodevelopment in Preterm Infants: Mechanistic Insights and Prospects for Clinical Translation
by Kun Dai, Lingli Ding, Xiaomeng Yang, Suqing Wang and Zhihui Rong
Microorganisms 2025, 13(9), 2213; https://doi.org/10.3390/microorganisms13092213 - 22 Sep 2025
Cited by 4 | Viewed by 4049
Abstract
Preterm birth remains a significant global health challenge and is strongly associated with heightened risks of long-term neurodevelopmental impairments, including cognitive delays, behavioural disorders, and emotional dysregulation. In recent years, accumulating evidence has underscored the critical role of the gut microbiota in early [...] Read more.
Preterm birth remains a significant global health challenge and is strongly associated with heightened risks of long-term neurodevelopmental impairments, including cognitive delays, behavioural disorders, and emotional dysregulation. In recent years, accumulating evidence has underscored the critical role of the gut microbiota in early brain development through the gut–brain axis. In preterm infants, microbial colonisation is frequently delayed or disrupted due to caesarean delivery, perinatal antibiotic exposure, formula feeding, and prolonged stays in neonatal intensive care units (NICUs), all of which contribute to gut dysbiosis during critical periods of neurodevelopment. This review synthesises current knowledge on the sources, temporal patterns, and determinants of gut microbiota colonisation in preterm infants. This review focuses on the gut bacteriome and uses faecal-sample bacteriome sequencing as its primary method of characterisation. We detail five mechanistic pathways that link microbial disturbances to adverse neurodevelopmental outcomes: immune activation and white matter injury, short-chain fatty acids (SCFAs)-mediated neuroprotection, tryptophan–serotonin metabolic signalling, hypothalamic–pituitary–adrenal (HPA) axis modulation, and the integrity of intestinal and blood–brain barriers (BBB). We also critically examine emerging microbiota-targeted interventions—including probiotics, prebiotics, human milk oligosaccharides (HMOs), antibiotic stewardship strategies, skin-to-skin contact (SSC), and faecal microbiota transplantation (FMT)—focusing on their mechanisms of action, translational potential, and associated ethical concerns. Finally, we identify key research gaps, including the scarcity of longitudinal studies, limited functional modelling, and the absence of standardised protocols across clinical settings. A comprehensive understanding of microbial–neurodevelopmental interactions may provide a foundation for the development of targeted, timing-sensitive, and ethically sound interventions aimed at improving neurodevelopmental outcomes in this vulnerable population. Full article
(This article belongs to the Section Gut Microbiota)
Show Figures

Figure 1

11 pages, 827 KB  
Study Protocol
The Effect of Faecal Microbiota Transplantation on Cognitive Function in Cognitively Healthy Adults with Irritable Bowel Syndrome: Protocol for a Randomised, Placebo-Controlled, Double-Blinded Pilot Study
by Sara Alaeddin, Yanna Ko, Genevieve Z. Steiner-Lim, Slade O. Jensen, Tara L. Roberts and Vincent Ho
Methods Protoc. 2025, 8(4), 83; https://doi.org/10.3390/mps8040083 - 1 Aug 2025
Viewed by 2493
Abstract
Faecal microbiota transplantation (FMT) is an emerging therapy for gastrointestinal and neurological disorders, acting via the microbiota–gut–brain axis. Altering gut microbial composition may influence cognitive function, but this has not been tested in cognitively healthy adults. This randomised, double-blinded, placebo-controlled pilot trial investigates [...] Read more.
Faecal microbiota transplantation (FMT) is an emerging therapy for gastrointestinal and neurological disorders, acting via the microbiota–gut–brain axis. Altering gut microbial composition may influence cognitive function, but this has not been tested in cognitively healthy adults. This randomised, double-blinded, placebo-controlled pilot trial investigates whether FMT is feasible and improves cognition in adults with irritable bowel syndrome (IBS). Participants receive a single dose of FMT or placebo via rectal retention enema. Cognitive performance is the primary outcome, assessed using the Cambridge Neuropsychological Test Automated Battery (CANTAB). Secondary outcomes include IBS symptom severity and mood. Tertiary outcomes include microbiome composition and plasma biomarkers related to inflammation, short-chain fatty acids, and tryptophan metabolism. Outcomes are assessed at baseline and at one, three, six, and twelve months following treatment. We hypothesise that FMT will lead to greater improvements in cognitive performance than placebo, with benefits extending beyond practice effects, emerging at one month and persisting in the long term. The findings will contribute to evaluating the safety and efficacy of FMT and enhance our understanding of gut–brain interactions. Full article
(This article belongs to the Section Public Health Research)
Show Figures

Figure 1

13 pages, 1791 KB  
Article
Hydrogen Gas Inhalation Improved Intestinal Microbiota in Ulcerative Colitis: A Randomised Double-Blind Placebo-Controlled Trial
by Takafumi Maruyama, Dai Ishikawa, Rina Kurokawa, Hiroaki Masuoka, Kei Nomura, Mayuko Haraikawa, Masayuki Orikasa, Rina Odakura, Masao Koma, Masashi Omori, Hirotaka Ishino, Kentaro Ito, Tomoyoshi Shibuya, Wataru Suda and Akihito Nagahara
Biomedicines 2025, 13(8), 1799; https://doi.org/10.3390/biomedicines13081799 - 23 Jul 2025
Viewed by 4427
Abstract
Background/Objective: Dysbiosis is implicated in the pathogenesis of ulcerative colitis. Hydrogen has been reported to promote intestinal microbiota diversity and suppress ulcerative colitis progression in mice models. In this study, we investigated changes in the intestinal microbiota, therapeutic effects, and safety of [...] Read more.
Background/Objective: Dysbiosis is implicated in the pathogenesis of ulcerative colitis. Hydrogen has been reported to promote intestinal microbiota diversity and suppress ulcerative colitis progression in mice models. In this study, we investigated changes in the intestinal microbiota, therapeutic effects, and safety of hydrogen inhalation in patients with ulcerative colitis. Methods: In this randomised, double-blind, placebo-controlled trial, 10 active patients with ulcerative colitis (aged ≥20 years; Lichtiger’s clinical activity index, 3–10; and Mayo endoscopic subscores ≥1) participated, and they were assigned to either a hydrogen or air inhalation group (hydrogen and placebo groups, respectively). All patients inhaled gas for 4 h every day for 8 weeks. Subsequently, we performed clinical indices and microbiota analyses using the metagenomic sequencing of stool samples before and after inhalation. Results: There was significant difference in the sum of the Mayo endoscopic subscores before and after inhalation in the clinical assessment indices. The hydrogen group showed higher α-diversity (p = 0.19), and the variation in β-diversity was markedly different, compared to the placebo group, in intestinal microbiota analysis (p = 0.02). Functional gene analysis revealed 115 significant genetic changes in the hydrogen group following treatment. No inhalation-related adverse events were observed. Conclusions: Hydrogen inhalation appeared to improve intestinal microbiota diversity; however, no clear therapeutic effect on ulcerative colitis was observed. Further studies are needed, and hydrogen inhalation may possibly lead to a logical solution combined with microbiome therapy, such as faecal microbiota transplantation, with fewer adverse events. Full article
Show Figures

Figure 1

39 pages, 2733 KB  
Review
From Dysbiosis to Cardiovascular Disease: The Impact of Gut Microbiota on Atherosclerosis and Emerging Therapies
by Tiago Lima, Verónica Costa, Carla Nunes, Gabriela Jorge da Silva and Sara Domingues
Appl. Sci. 2025, 15(13), 7084; https://doi.org/10.3390/app15137084 - 24 Jun 2025
Cited by 2 | Viewed by 3536
Abstract
The gut microbiota consists of trillions of microorganisms, mostly bacteria, which establish a symbiotic relationship with the host. The host provides a favourable environment and the essential nutrients for their proliferation, while the gut microbiota plays a key role in maintaining the host’s [...] Read more.
The gut microbiota consists of trillions of microorganisms, mostly bacteria, which establish a symbiotic relationship with the host. The host provides a favourable environment and the essential nutrients for their proliferation, while the gut microbiota plays a key role in maintaining the host’s health. Therefore, imbalances in its composition, a state known as dysbiosis, can contribute to the onset or progression of various pathological conditions, including atherosclerosis. Atherosclerosis is a chronic, slow-progressing inflammatory disease characterised by the formation and potential rupture of atheromatous plaques in medium- and large-calibre arteries. It underlies major cardiovascular events, such as stroke and myocardial infarction, and remains a leading cause of global morbidity and mortality. The modulation of the gut microbiota using prebiotics, probiotics, and faecal microbiota transplantation (FMT) has emerged as a promising approach for preventing and managing atherosclerosis. Although numerous studies have explored these strategies, further research is needed to establish their efficacy and mechanisms. This review explores the pathophysiology of atherosclerosis, its main risk factors, and the interplay between the gut microbiota and atherosclerosis, with a particular focus on the mechanisms by which microbiota-targeted interventions, including prebiotics, probiotics, and FMT, may serve as therapeutic adjuvants in the prevention and treatment of atherosclerosis. Full article
(This article belongs to the Special Issue Advances in Microbiota in Human Health and Diseases)
Show Figures

Graphical abstract

22 pages, 1121 KB  
Review
Does Gut Microbial Methylglyoxal Metabolism Impact Human Physiology?
by Oluwatomisono I. Akinrimisi, Kim Maasen, Jean L. J. M. Scheijen, Ina Nemet, Max Nieuwdorp, Casper G. Schalkwijk and Nordin M. J. Hanssen
Antioxidants 2025, 14(7), 763; https://doi.org/10.3390/antiox14070763 - 21 Jun 2025
Cited by 5 | Viewed by 3048
Abstract
Methylglyoxal (MGO) is a highly reactive dicarbonyl associated with oxidative stress, inflammation, and chronic diseases, particularly diabetic vascular complications and atherosclerosis through the formation of advanced glycation end products (AGEs). In the setting of human/host diseases, the formation of MGO has mainly been [...] Read more.
Methylglyoxal (MGO) is a highly reactive dicarbonyl associated with oxidative stress, inflammation, and chronic diseases, particularly diabetic vascular complications and atherosclerosis through the formation of advanced glycation end products (AGEs). In the setting of human/host diseases, the formation of MGO has mainly been considered as the byproduct of glycolysis. Gut microbes play an important role in the development of cardiometabolic diseases. Here, we discuss a possibility that gut microbes can modulate the MGO pool within the host through (i) the alternation of the host metabolism, and (ii) direct MGO synthesis and/or detoxification by human commensal microorganisms. We also explore how dietary MGO impacts the composition of the gut microbiota and their potential role in modulating host health. This paradigm is highly innovative, with the current literature providing observations supporting this concept. Targeting the gut microbiome is emerging as an approach for treating cardiometabolic diseases through dietary, pre-, pro-, and postbiotic interventions, faecal microbiota transplantations, and the use of small molecule inhibitors of microbial enzymes. This can be a novel strategy to reduce MGO stress in the setting of cardiometabolic diseases and lowering the burden of diabetic complications and cardiovascular disease. Full article
(This article belongs to the Special Issue Novel Antioxidant Mechanisms for Health and Diseases, 2nd Edition)
Show Figures

Graphical abstract

24 pages, 393 KB  
Review
Faecal Microbiota Transplantation as an Adjuvant Treatment for Extraintestinal Disorders: Translating Insights from Human Medicine to Veterinary Practice
by Alice Nishigaki, Julian R. Marchesi and Renato L. Previdelli
Vet. Sci. 2025, 12(6), 541; https://doi.org/10.3390/vetsci12060541 - 3 Jun 2025
Cited by 1 | Viewed by 5190
Abstract
Faecal microbiota transplantation (FMT) has emerged as a transformative therapy in human medicine, particularly for managing recurrent Clostridioides difficile infections and other gastrointestinal (GI) disorders. Beyond the GI tract, FMT has shown potential in addressing extraintestinal conditions in people, including metabolic, immune-mediated, dermatological, [...] Read more.
Faecal microbiota transplantation (FMT) has emerged as a transformative therapy in human medicine, particularly for managing recurrent Clostridioides difficile infections and other gastrointestinal (GI) disorders. Beyond the GI tract, FMT has shown potential in addressing extraintestinal conditions in people, including metabolic, immune-mediated, dermatological, neurological, and infectious diseases. Research in people has highlighted its efficacy in decolonising multidrug-resistant organisms in infection, mitigating autoimmune diseases, and improving outcomes in metabolic disorders such as obesity and diabetes. Furthermore, FMT has also been linked to enhanced responses to immunotherapy in cancer and improved management of hepatic and renal conditions. These findings underscore the intricate connections between the gut microbiome and systemic health, opening novel therapeutic avenues. In veterinary medicine, while FMT has demonstrated benefits for GI disorders, its application in extraintestinal diseases remains largely unexplored. Emerging evidence suggests that conditions such as atopic dermatitis, chronic kidney disease, immune-mediated diseases, and behavioural disorders in companion animals could benefit from microbiome-targeted therapies. However, significant gaps in knowledge persist, particularly regarding the long-term safety and efficacy for veterinary applications. This review synthesises findings from human medicine to assess their relevance for veterinary applications and future research. Full article
(This article belongs to the Section Veterinary Biomedical Sciences)
Show Figures

Figure 1

18 pages, 1627 KB  
Review
Microbiome and Phageome: Key Factors in Host Organism Function and Disease Prevention in the Context of Microbiome Transplants
by Wojciech Jankowski, Małgorzata Mizielińska and Paweł Nawrotek
Appl. Sci. 2025, 15(10), 5330; https://doi.org/10.3390/app15105330 - 10 May 2025
Viewed by 1856
Abstract
The study of interactions between gut microbiota and the well-being of the host has become increasingly popular in the last decades. Growing interest in gut microbiota–host interactions has brought attention to faecal microbiota transplantation (FMT) as a clinically effective, though still debated, therapeutic [...] Read more.
The study of interactions between gut microbiota and the well-being of the host has become increasingly popular in the last decades. Growing interest in gut microbiota–host interactions has brought attention to faecal microbiota transplantation (FMT) as a clinically effective, though still debated, therapeutic approach. This review discusses how limitations in the characterisation of gut bacteriomes—particularly interindividual variation and methodological inconsistencies—may influence the outcomes of FMT. The concept of enterotypes is considered as a framework that could support more refined stratification of donors and recipients, offering a possible route toward greater precision in microbiota-based interventions. Further on, the review touches on the subject of interactions among the host, the bacteriome, and the phageome—the community of bacteriophages—with specific focus on the presence and intriguing distribution patterns of crAssviruses. The final chapters are dedicated to discussing the current state of the FMT procedure and its variations, as well as the possibility of performing faecal virome transplants (FVTs) as a potentially safer and equally efficient alternative. Full article
Show Figures

Graphical abstract

15 pages, 1492 KB  
Review
The Role of Oxidative Stress in Ischaemic Stroke and the Influence of Gut Microbiota
by Aleksandra Golenia and Piotr Olejnik
Antioxidants 2025, 14(5), 542; https://doi.org/10.3390/antiox14050542 - 30 Apr 2025
Cited by 13 | Viewed by 3138
Abstract
Ischaemic stroke is the most prevalent stroke subtype, accounting for 80–90% of all cases worldwide, and remains a leading cause of morbidity and mortality. Its pathophysiology involves complex molecular cascades, with oxidative stress playing a central role. During cerebral ischaemia, reduced blood flow [...] Read more.
Ischaemic stroke is the most prevalent stroke subtype, accounting for 80–90% of all cases worldwide, and remains a leading cause of morbidity and mortality. Its pathophysiology involves complex molecular cascades, with oxidative stress playing a central role. During cerebral ischaemia, reduced blood flow deprives neurons of essential oxygen and nutrients, triggering excitotoxicity, mitochondrial dysfunction, and excessive production of reactive oxygen and nitrogen species (RONS). Not only do these species damage cellular components, but they also activate inflammatory pathways, particularly those mediated by the transcription factor nuclear factor kappa-B (NF-κB). The pro-inflammatory milieu intensifies neuronal damage, compromises blood–brain barrier integrity, and exacerbates reperfusion-induced damage. Recent findings highlight the importance of the gut microbiota in modulating stroke outcomes, primarily through metabolic and immunological interactions along the gut–brain axis. Dysbiosis, characterised by reduced microbial diversity and an imbalance between beneficial and harmful strains, has been linked to increased systemic inflammation, oxidative stress, and worse prognoses. Specific gut-derived metabolites, including short-chain fatty acids (SCFAs) and trimethylamine N-oxide (TMAO), appear to either mitigate or intensify neuronal injury. SCFAs may strengthen the blood–brain barrier and temper inflammatory responses, whereas elevated TMAO levels may increase thrombotic risk. This narrative review consolidates both experimental and clinical data demonstrating the central role of oxidative stress in ischaemic stroke pathophysiology and explores the gut microbiota’s ability to modulate these damaging processes. Therapeutic strategies targeting oxidative pathways or rebalancing gut microbial composition, such as antioxidant supplementation, dietary modulation, probiotics, and faecal microbiota transplantation, present promising paradigms for stroke intervention. However, their widespread clinical implementation is hindered by a lack of large-scale, randomised trials. Future efforts should employ a multidisciplinary approach to elucidate the intricate mechanisms linking oxidative stress and gut dysbiosis to ischaemic stroke, thereby paving the way for novel, mechanism-based therapies for improved patient outcomes. Full article
(This article belongs to the Special Issue Oxidative Stress in Gut Microbiota)
Show Figures

Figure 1

10 pages, 532 KB  
Review
Gut Microbial Targets in Inflammatory Bowel Disease: Current Position and Future Developments
by Naveen Sivakumar, Ashwin Krishnamoorthy, Harshita Ryali and Ramesh P. Arasaradnam
Biomedicines 2025, 13(3), 716; https://doi.org/10.3390/biomedicines13030716 - 14 Mar 2025
Cited by 3 | Viewed by 2170
Abstract
Inflammatory bowel disease (IBD) is a debilitating condition in which surgery is often seen as a last resort. However, this is associated with morbidity and, in some cases, mortality. There are emerging therapies that seek to better modulate the immune response of hosts [...] Read more.
Inflammatory bowel disease (IBD) is a debilitating condition in which surgery is often seen as a last resort. However, this is associated with morbidity and, in some cases, mortality. There are emerging therapies that seek to better modulate the immune response of hosts with IBD. Aims: The main aim of this study is to focus on novel therapies and techniques studied in the last year that are non-surgical treatments of IBD. Methods: We looked at all the research between March 2024 and February 2025 detailing treatment in IBD and focused on the gut microbiome and gene therapy. Results: Novel therapies are gaining traction in safety and popularity. The results from some animal studies show promise and, with FDA approval, some probiotic therapies show optimistic research potential for future human trials. Conclusions: The research into the diagnostics and novel therapies available on the horizon for humans is very promising. Animal studies have shown potentially transferrable and safe therapies that can target specific sites of inflammation. Modulating the inflammatory response is a powerful therapy with what is shown to be a reasonably safe profile to build further research on. Full article
Show Figures

Figure 1

16 pages, 1250 KB  
Review
Effect of Gut Dysbiosis on Onset of GI Cancers
by Seema Kumari, Mundla Srilatha and Ganji Purnachandra Nagaraju
Cancers 2025, 17(1), 90; https://doi.org/10.3390/cancers17010090 - 30 Dec 2024
Cited by 6 | Viewed by 3323
Abstract
Dysbiosis in the gut microbiota plays a significant role in GI cancer development by influencing immune function and disrupting metabolic functions. Dysbiosis can drive carcinogenesis through pathways like immune dysregulation and the release of carcinogenic metabolites, and altered metabolism, genetic instability, and pro-inflammatory [...] Read more.
Dysbiosis in the gut microbiota plays a significant role in GI cancer development by influencing immune function and disrupting metabolic functions. Dysbiosis can drive carcinogenesis through pathways like immune dysregulation and the release of carcinogenic metabolites, and altered metabolism, genetic instability, and pro-inflammatory signalling, contributing to GI cancer initiation and progression. Helicobacter pylori infection and genotoxins released from dysbiosis, lifestyle and dietary habits are other factors that contribute to GI cancer development. Emerging diagnostic and therapeutic approaches show promise in colorectal cancer treatment, including the multitarget faecal immunochemical test (mtFIT), standard FIT, and faecal microbiota transplantation (FMT) combined with PD-1 inhibitors. We used search engine databases like PubMed, Scopus, and Web of Science. This review discusses the role of dysbiosis in GI cancer onset and explores strategies such as FMT, probiotics, and prebiotics to enhance the immune response and improve cancer therapy outcomes. Full article
Show Figures

Figure 1

14 pages, 3086 KB  
Article
Should the Faecal Microbiota Composition Be Determined to Certify a Faecal Donor?
by Celia Morales, Luna Ballestero, Patricia del Río, Raquel Barbero-Herranz, Leticia Olavarrieta, Leticia Gómez-Artíguez, Javier Galeano, José Avendaño-Ortiz, Juan Basterra and Rosa del Campo
Diagnostics 2024, 14(23), 2635; https://doi.org/10.3390/diagnostics14232635 - 22 Nov 2024
Cited by 1 | Viewed by 1972
Abstract
Background/Objectives: Faecal microbiota transplantation (FMT) is considered a safe and effective therapy for recurrent Clostridioides difficile infection. It is the only current clinical indication for this technique, although numerous clinical research studies and trials propose its potential usefulness for treating other pathologies. Donor [...] Read more.
Background/Objectives: Faecal microbiota transplantation (FMT) is considered a safe and effective therapy for recurrent Clostridioides difficile infection. It is the only current clinical indication for this technique, although numerous clinical research studies and trials propose its potential usefulness for treating other pathologies. Donor selection is a very rigorous process, based on a personal lifestyle interview and the absence of known pathogens in faeces and serum, leading to only a few volunteers finally achieving the corresponding certification. However, despite the high amount of data generated from the ongoing research studies relating microbiota and health, there is not yet a consensus defining what is a “healthy” microbiota. To date, knowledge of the composition of the microbiota is not a requirement to be a faecal donor. The aim of this work was to evaluate whether the analysis of the composition of the microbiota by massive sequencing of 16S rDNA could be useful in the selection of the faecal donors. Methods: Samples from 10 certified donors from Mikrobiomik Healthcare Company were collected and sequenced using 16S rDNA in a MiSeq (Illumina) platform. Alpha (Chao1 and Shannon indices) and beta diversity (Bray–Curtis) were performed using the bioinformatic web server Microbiome Analyst. The differences in microbial composition at the genera and phyla levels among the donors were evaluated. Results: The microbial diversity metric by alpha diversity indexes showed that most donors exhibited a similar microbial diversity and richness, whereas beta diversity by 16S rDNA sequencing revealed significant inter-donor differences, with a more stable microbial composition over time in some donors. The phyla Bacillota and Bacteroidota were predominant in all donors, while the density of other phyla, such as Actinomycota and Pseudomonota, varied among individuals. Each donor exhibited a characteristic genera distribution pattern; however, it was possible to define a microbiome core consisting of the genera Agathobacter, Eubacterium, Bacteroides, Clostridia UCG-014 and Akkermansia. Conclusions: The results suggest that donor certification does not need to rely exclusively on their microbiota composition, as it is unique to each donor. While one donor showed greater microbial diversity and richness, clear criteria for microbial normality and health have yet to be established. Therefore, donor certification should focus more on clinical and lifestyle aspects. Full article
(This article belongs to the Special Issue Microbiology Laboratory: Sample Collection and Diagnosis Advances)
Show Figures

Figure 1

15 pages, 2606 KB  
Review
Intestinal Insights: The Gut Microbiome’s Role in Atherosclerotic Disease: A Narrative Review
by Luana Alexandrescu, Adrian Paul Suceveanu, Alina Mihaela Stanigut, Doina Ecaterina Tofolean, Ani Docu Axelerad, Ionut Eduard Iordache, Alexandra Herlo, Andreea Nelson Twakor, Alina Doina Nicoara, Cristina Tocia, Andrei Dumitru, Eugen Dumitru, Laura Maria Condur, Cristian Florentin Aftenie and Ioan Tiberiu Tofolean
Microorganisms 2024, 12(11), 2341; https://doi.org/10.3390/microorganisms12112341 - 16 Nov 2024
Cited by 22 | Viewed by 5107
Abstract
Recent advances have highlighted the gut microbiota as a significant contributor to the development and progression of atherosclerosis, which is an inflammatory cardiovascular disease (CVD) characterized by plaque buildup within arterial walls. The gut microbiota, consisting of a diverse collection of microorganisms, impacts [...] Read more.
Recent advances have highlighted the gut microbiota as a significant contributor to the development and progression of atherosclerosis, which is an inflammatory cardiovascular disease (CVD) characterized by plaque buildup within arterial walls. The gut microbiota, consisting of a diverse collection of microorganisms, impacts the host’s metabolism, immune responses, and lipid processing, all of which contribute to atherosclerosis. This review explores the complex mechanisms through which gut dysbiosis promotes atherogenesis. We emphasize the potential of integrating microbiota modulation with traditional cardiovascular care, offering a holistic approach to managing atherosclerosis. Important pathways involve the translocation of inflammatory microbial components, modulation of lipid metabolism through metabolites such as trimethylamine-N-oxide (TMAO), and the production of short-chain fatty acids (SCFAs) that influence vascular health. Studies reveal distinct microbial profiles in atherosclerosis patients, with increased pathogenic bacteria (Megamonas, Veillonella, Streptococcus) and reduced anti-inflammatory genera (Bifidobacterium, Roseburia), highlighting the potential of these profiles as biomarkers and therapeutic targets. Probiotics are live microorganisms that have health benefits on the host. Prebiotics are non-digestible dietary fibers that stimulate the growth and activity of beneficial gut bacteria. Interventions targeting microbiota, such as probiotics, prebiotics, dietary modifications, and faecal microbiota transplantation (FMT), present effective approaches for restoring microbial equilibrium and justifying cardiovascular risk. Future research should focus on longitudinal, multi-omics studies to clarify causal links and refine therapeutic applications. Full article
(This article belongs to the Section Gut Microbiota)
Show Figures

Figure 1

Back to TopTop