Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (998)

Search Parameters:
Keywords = factor Ba

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1416 KiB  
Article
High Prevalence of Virulence and blaOXA Genes Encoding Carbapenemases Among Acinetobacter baumannii Isolates from Hospitalised Patients in Three Regions of Poland
by Magdalena Szemraj, Małgorzata Piechota, Kamila Olszowiec, Jolanta Wicha, Agata Pruss, Monika Sienkiewicz, Małgorzata Witeska, Piotr Szweda and Barbara Kot
Pathogens 2025, 14(8), 731; https://doi.org/10.3390/pathogens14080731 - 24 Jul 2025
Abstract
Infections caused by Acinetobacter baumannii are increasing worldwide. We evaluated the antibiotic resistance profile, biofilm production, and the frequency of 12 genes encoding carbapenemases and 13 virulence factors in 90 isolates from patients of three hospitals in various regions of Poland. Antibiotic resistance [...] Read more.
Infections caused by Acinetobacter baumannii are increasing worldwide. We evaluated the antibiotic resistance profile, biofilm production, and the frequency of 12 genes encoding carbapenemases and 13 virulence factors in 90 isolates from patients of three hospitals in various regions of Poland. Antibiotic resistance survey was performed using the disc-diffusion method, genes encoding resistance to carbapenems and virulence factors were detected with PCR, and biofilm formation was tested using microtiter plates. A total of 52.2% of isolates were resistant to all tested antibiotic groups (penicillins with β-lactamase inhibitors, cephalosporins, carbapenems, aminoglycosides, fluoroquinolones, and trimethoprim plus sulfamethoxazole). Among the genes encoding carbapenem resistance, the blaOXA-23 (68.9%), blaOXA-40 (83.3%), and ISAba-blaOXA-51 (18.9%) were detected. The ompA, ata, and recA genes responsible for biofilm formation, adhesion, and stress response, respectively, occurred in all isolates. Genes responsible for the production of other adhesins (bap—94.4%, espA—4.4%, chop—37.7%), biofilm formation (pbpG—90.0%), production of siderophore (basD—97.7%), toxins (lipA—92.2%, cpaA—1.1%), glycoconjugates (bfmR—84.4%), and inducing host cell death (fhaB—71.1%, abeD—93.3%) were also found. A total of 68.8% of isolates produced biofilm. The isolates from Masovia had more virulence genes than isolates from the other regions; moreover, all isolates from Masovia and West Pomerania were multidrug-resistant (MDR), including resistance to carbapenems. Full article
(This article belongs to the Section Bacterial Pathogens)
Show Figures

Figure 1

14 pages, 3849 KiB  
Article
Alkaline Earth Carbonate Engineered Pt Electronic States for High-Efficiency Propylene Oxidation at Low Temperatures
by Xuequan Sun, Yishu Lv, Yuan Shu, Yanglong Guo and Pengfei Zhang
Catalysts 2025, 15(8), 696; https://doi.org/10.3390/catal15080696 - 22 Jul 2025
Viewed by 200
Abstract
Alkaline earth elements have emerged as crucial electronic modifiers for regulating active sites in catalytic systems, yet the influence of metal–support interactions (MSIs) between alkaline earth compounds and active metals remains insufficiently understood. This study systematically investigated Pt nanoparticles supported on alkaline earth [...] Read more.
Alkaline earth elements have emerged as crucial electronic modifiers for regulating active sites in catalytic systems, yet the influence of metal–support interactions (MSIs) between alkaline earth compounds and active metals remains insufficiently understood. This study systematically investigated Pt nanoparticles supported on alkaline earth carbonates (Pt/MCO3, M = Mg, Ca, Ba) for low-temperature propylene combustion. The Pt/BaCO3 catalyst exhibited outstanding performance, achieving complete propylene conversion at 192 °C, significantly lower than Pt/MgCO3 (247 °C) and Pt/CaCO3 (282 °C). The enhanced activity stemmed from distinct MSI effects among the supports, with Pt/BaCO3 showing the poorest electron enrichment and lowest propylene adsorption energy. Through kinetic analyses, 18O2 isotope labeling, and comprehensive characterization, the reaction was confirmed to follow the Mars–van Krevelen (MvK) mechanism. Pt/BaCO3 achieves an optimal balance between propylene and oxygen adsorption, a critical factor underlying its superior activity. Full article
(This article belongs to the Section Catalytic Materials)
Show Figures

Graphical abstract

14 pages, 1157 KiB  
Article
Phenolic Exudation Control and Indirect Somatic Embryogenesis of Garlic-Fruit Tree (Malania oleifera Chun & S.K. Lee)—An Endangered Woody Tree Species of Southeastern Yunnan Province, China
by Rengasamy Anbazhakan, Xin-Meng Zhu, Neng-Qi Li, Brihaspati Poudel and Jiang-Yun Gao
Plants 2025, 14(14), 2186; https://doi.org/10.3390/plants14142186 - 15 Jul 2025
Viewed by 241
Abstract
Malania oleifera Chun & S.K. Lee, an endemic monotypic species that belongs to the family Olacaceae, is under continuous pressure of decline owing to several ecological and physiological factors. The present study aimed to establish an efficient in vitro protocol for callus-mediated indirect [...] Read more.
Malania oleifera Chun & S.K. Lee, an endemic monotypic species that belongs to the family Olacaceae, is under continuous pressure of decline owing to several ecological and physiological factors. The present study aimed to establish an efficient in vitro protocol for callus-mediated indirect somatic embryogenesis in M. oleifera by alleviating tissue browning. Internodes and leaves obtained from seedlings were used as explants. Antioxidant pre-treatment (ascorbic acid, AA) followed by different carbon sources (sucrose, maltose, glucose, and fructose) and plant growth regulators in various concentrations and combinations were employed in Woody Plant Medium (WPM) to alleviate explant browning and induce callus formation from the explants. AA pre-treatment and subsequent culture on maltose at a concentration of 116.8 mM were optimal for controlling phenolic exudation on >90% of both explants. The highest responses of 53.77% and 57.43% for embryogenic calli were induced from internode and leaf explants, respectively. The highest responses, 85.22% and 93.80%, were observed for somatic embryos that matured into the globular, heart-shaped and torpedo stages at different percentages on NAA 2.5 mg/L in combination with BA 1.0 mg/L for both explants. The matured somatic embryos were finally germinated at a maximum concentration of GA3, 2.0 mg/L. All plantlets were successfully hardened and acclimatized under culture room conditions and then transferred to the greenhouse. The current study suggests an efficient protocol for indirect somatic embryogenesis by alleviating phenolic exudation from the explants of M. oleifera. This first successful report of in vitro culture establishment in M. oleifera may offer an effective alternative measure to conserve this species and provide a system for analyzing bioactive chemicals and for use in the oil industry. Full article
(This article belongs to the Section Phytochemistry)
Show Figures

Figure 1

22 pages, 12756 KiB  
Article
The Antidiabetic Mechanisms of Cinnamon Extract: Insights from Network Pharmacology, Gut Microbiota, and Metabolites
by Rong Wang, Kuan Yang, Xuefeng Liu, Yiye Zhang, Yunmei Chen, Nana Wang, Lili Yu, Shaojing Liu, Yaqi Hu and Bei Qin
Curr. Issues Mol. Biol. 2025, 47(7), 543; https://doi.org/10.3390/cimb47070543 - 12 Jul 2025
Viewed by 359
Abstract
The progression of type 2 diabetes mellitus (T2DM) is shaped by a multifaceted interplay among genetic, behavioral, and environmental factors, alongside gut dysbiosis. Cinnamon, being abundant in polyphenols and flavonoids, shows significant antioxidant effects. Studies have substantiated that cinnamon contributes to the management [...] Read more.
The progression of type 2 diabetes mellitus (T2DM) is shaped by a multifaceted interplay among genetic, behavioral, and environmental factors, alongside gut dysbiosis. Cinnamon, being abundant in polyphenols and flavonoids, shows significant antioxidant effects. Studies have substantiated that cinnamon contributes to the management of glucose and lipid metabolism. However, the anti-diabetic efficacy of cinnamon is not completely understood. The objective of this research was to clarify the anti-diabetic mechanism associated with cinnamon extract through a combination of chemical profiling, network pharmacology, and in vivo investigations. The results indicated that 32 chemical ingredients, including quercetin, were identified through UPLC-Q-TOF-MS. Network pharmacology revealed that 471 targets related to 14 compounds were screened. The analysis of GO enrichment revealed that the primary pathways were notably enhanced in the metabolism of insulin and glucose. In vivo analyses showed that cinnamon could effectively alleviate hyperglycemia, insulin resistance, and lipid metabolism abnormalities via increased relative abundance of Akkermansia and Ligilactobacillus at the genus level and a decreased Firmicutes/Bacteroidetes ratio at the phylum level. Moreover, cinnamon reduced the serum levels of lipopolysaccharide (LPS) and proinflammatory cytokines (IL-6 and TNF-α) and significantly increased the colon Zonula occludens-1 (ZO-1) and occludin protein levels. It was also observed that cinnamon improved the fecal SCFA levels (acetic, propionic, butyric, valeric and caproic acid), while also modifying the bile acid (BA) profile and increasing the conjugated-to-unconjugated BA ratio. The Western blotting analysis further demonstrated that cinnamon activated intestinal FXR/FGF15 and hepatic PI3K/AKT signaling pathways. In summary, the finding confirmed that cinnamon ameliorated glucose and lipid metabolism disorders by safeguarding the intestinal barrier and modulating the gut microbiota and metabolites, thereby activating intestinal FXR/FGF15 and hepatic PI3K/AKT signaling pathways. Full article
(This article belongs to the Section Biochemistry, Molecular and Cellular Biology)
Show Figures

Figure 1

10 pages, 6843 KiB  
Article
Correlation Between Microstructure and Electric Behavior of (1−x)Ba0.96Ca0.04TiO3-xBa(Mg1/3Nb2/3)O3 Ceramics Prepared via Chemical-Furnace-Assisted Combustion Synthesis
by Haiqin Ding, Jun Wang, Tongchun Qin, Lingling Cui, Guodong Jia, Guang Ji and Zhiwei Li
Coatings 2025, 15(7), 817; https://doi.org/10.3390/coatings15070817 - 12 Jul 2025
Viewed by 382
Abstract
The (1−x)Ba0.96Ca0.04TiO3-xBa(Mg1/3Nb2/3)O3 (x = 0–0.20) lead-free ceramics were prepared through the chemical-furnace-assisted combustion synthesis (abbreviated as CFACS). The phase structure, microstructure, dielectric, and piezoelectric properties were systematically investigated. Phase analysis revealed the [...] Read more.
The (1−x)Ba0.96Ca0.04TiO3-xBa(Mg1/3Nb2/3)O3 (x = 0–0.20) lead-free ceramics were prepared through the chemical-furnace-assisted combustion synthesis (abbreviated as CFACS). The phase structure, microstructure, dielectric, and piezoelectric properties were systematically investigated. Phase analysis revealed the coexistence of orthorhombic and tetragonal phases in the vicinity of x = 0.07. More importantly, the composition with x = 0.07 exhibited optimal overall electrical properties, including a high piezoelectric coefficient (d33) of 495 pC/N, the planar electromechanical coupling factor (Kp) of 41.9%, and the Curie temperature (Tc) of 123.7 °C. In addition, the average grain size was observed to progressively decrease with increasing x. Full article
(This article belongs to the Section Ceramic Coatings and Engineering Technology)
Show Figures

Figure 1

11 pages, 1525 KiB  
Article
Photodetection Enhancement via Dipole–Dipole Coupling in BA2MAPb2I7/PEA2MA2Pb3I10 Perovskite Heterostructures
by Bin Han, Bingtao Lian, Qi Qiu, Xingyu Liu, Yanren Tang, Mengke Lin, Shukai Ding and Bingshe Xu
Inorganics 2025, 13(7), 240; https://doi.org/10.3390/inorganics13070240 - 11 Jul 2025
Viewed by 270
Abstract
Two-dimensional (2D) hybrid organic–inorganic perovskites (HOIPs) have attracted considerable attention in optoelectronic applications, owing to their remarkable characteristics. Nevertheless, the application of 2D HOIPs encounters inherent challenges due to the presence of insulating organic spacers, which create barriers for efficient interlayer charge transport [...] Read more.
Two-dimensional (2D) hybrid organic–inorganic perovskites (HOIPs) have attracted considerable attention in optoelectronic applications, owing to their remarkable characteristics. Nevertheless, the application of 2D HOIPs encounters inherent challenges due to the presence of insulating organic spacers, which create barriers for efficient interlayer charge transport (CT). To tackle this issue, we propose a BA2MAPb2I7/PEA2MA2Pb3I10 bilayer heterostructure, where efficient interlayer energy transfer (ET) facilitates compensation for the restricted charge transport across the organic spacer. Our findings reveal that under 532 nm light illumination, the BA2MAPb2I7/PEA2MA2Pb3I10 heterostructure photodetector exhibits a significant photocurrent enhancement compared with that of the pure PEA2MA2Pb3I10 device, mainly due to the contribution of the ET process. In contrast, under 600 nm light illumination, where ET is absent, the enhancement is rather limited, emphasizing the critical role of ET in boosting device performance. The overlap of the PL emission peak of BA2MAPb2I7 with the absorption spectra of PEA2MA2Pb3I10, alongside the PL quenching of BA2MAPb2I7 and the enhanced emission of PEA2MA2Pb3I10 provide confirmation of the existence of ET in the BA2MAPb2I7/PEA2MA2Pb3I10 heterostructure. Furthermore, the PL enhancement factor followed a 1/d2 relationship with the thickness of the hBN layer, indicating that ET originates from 2D-to-2D dipole–dipole coupling. This study not only highlights the potential of leveraging ET mechanisms to overcome the limitations of interlayer CT, but also contributes to the fundamental understanding required for engineering advanced 2D HOIP optoelectronic systems. Full article
(This article belongs to the Section Inorganic Materials)
Show Figures

Figure 1

31 pages, 2077 KiB  
Article
FD-IDS: Federated Learning with Knowledge Distillation for Intrusion Detection in Non-IID IoT Environments
by Haonan Peng, Chunming Wu and Yanfeng Xiao
Sensors 2025, 25(14), 4309; https://doi.org/10.3390/s25144309 - 10 Jul 2025
Viewed by 330
Abstract
With the rapid advancement of Internet of Things (IoT) technology, intrusion detection systems (IDSs) have become pivotal in ensuring network security. However, the data produced by IoT devices is typically sensitive and tends to display non-independent and identically distributed (Non-IID) properties. These factors [...] Read more.
With the rapid advancement of Internet of Things (IoT) technology, intrusion detection systems (IDSs) have become pivotal in ensuring network security. However, the data produced by IoT devices is typically sensitive and tends to display non-independent and identically distributed (Non-IID) properties. These factors impose significant limitations on the application of traditional centralized learning. In response to these issues, this study introduces a novel IDS framework grounded in federated learning and knowledge distillation (KD), termed FD-IDS. The proposed FD-IDS aims to tackle issues related to safeguarding data privacy and distributed heterogeneity. FD-IDS employs mutual information for feature selection to enhance training efficiency. For Non-IID data scenarios, the system combines a proximal term with KD. The proximal term restricts the deviation between local and global models, while KD utilizes the global model to steer the training process of local models. Together, these mechanisms effectively alleviate the problem of model drift. Experiments conducted on both the Edge-IIoT and N-BaIoT datasets demonstrate that FD-IDS achieves promising detection performance across multiple evaluation metrics. Full article
(This article belongs to the Section Internet of Things)
Show Figures

Figure 1

13 pages, 1612 KiB  
Article
Ozone-Mediated Washing Process of Reference Stain Textile Monitors
by Tanja Pušić, Vanja Šantak, Tihana Dekanić and Mirjana Čurlin
Polymers 2025, 17(14), 1906; https://doi.org/10.3390/polym17141906 - 10 Jul 2025
Viewed by 260
Abstract
The complex chemical composition of certain color stains on textiles requires an optimal proportion of thermal and chemical action in the Sinner cycle of the washing process. In this study, both factors were analyzed by varying the composition of the liquid detergent, bleach, [...] Read more.
The complex chemical composition of certain color stains on textiles requires an optimal proportion of thermal and chemical action in the Sinner cycle of the washing process. In this study, both factors were analyzed by varying the composition of the liquid detergent, bleach, and ozone at temperatures of 30 °C, 40 °C, 60 °C, 75 °C, and 90 °C. Standard cotton fabrics stained with tea, red wine, and blood/milk/ink were selected as monitors, which were evaluated before and after the washing process by spectral parameters. The data sets and their interrelationships were evaluated by a cluster analysis (CA) and ANOVA. An unstained standard cotton fabric was selected as a reference for qualification of the sanitation effect. The stain removal effects showed a selective influence of ozone in the washing processes under the investigated conditions, including the synergy of standard materials—stain monitors and different Sinner cycle factors. The most effective sanitation was achieved in processes using formulations with higher concentrations of liquid detergent (D) and bleaching agents (BA) across all tested temperatures. A lower ozone concentration in combination with lower concentrations of detergents and bleaching agents in washing processes at 30 °C and 40 °C also contributed positively to the effect on sanitation. Full article
(This article belongs to the Special Issue Environmentally Friendly Textiles, Fibers and Their Composites)
Show Figures

Figure 1

20 pages, 3946 KiB  
Article
Immune Durability and Breakthrough Infections 15 Months After SARS-CoV-2 Boosters in People over 65: The IMMERSION Study
by Concepció Violán, Bibiana Quirant-Sánchez, Maria Palau-Antoja, Dolors Palacin, Edwards Pradenas, Macedonia Trigueros, Guillem Pera, Gemma Molist, Gema Fernández-Rivas, Marc Boigués, Mar Isnard, Nuria Prat, Meritxell Carmona-Cervelló, Noemi Lamonja-Vicente, Brenda Biaani León-Gómez, Eva María Martínez-Cáceres, Pere Joan Cardona, Julià Blanco, Marta Massanella and Pere Torán-Monserrat
Vaccines 2025, 13(7), 738; https://doi.org/10.3390/vaccines13070738 - 9 Jul 2025
Viewed by 449
Abstract
Background: SARS-CoV-2 booster vaccination remains essential to prevent severe COVID-19, particularly in vulnerable populations such as older adults. This study evaluated the durability and dynamics of immune responses following booster vaccination(s) in >65-year-old individuals and examined their association with protection against new [...] Read more.
Background: SARS-CoV-2 booster vaccination remains essential to prevent severe COVID-19, particularly in vulnerable populations such as older adults. This study evaluated the durability and dynamics of immune responses following booster vaccination(s) in >65-year-old individuals and examined their association with protection against new infections. Methods: Immune responses were evaluated at 3, 9, and 15 months post-booster, measuring SARS-CoV-2-specific IgG antibodies against spike [IgG(S)] and nucleocapsid [IgG(N)] proteins, neutralizing activity against the Omicron BA.2 variant, and cellular immunity. A subset of participants was tested before booster administration. Regression analyses examined the influence of clinical and immunological factors—including a bivalent fourth dose—on infection risk over time. Results: Booster vaccination significantly enhanced IgG(S) and neutralizing capacity, peaking at 3 months. Although a decline was observed by 9 months, responses remained above baseline. Individuals with prior SARS-CoV-2 infection exhibited higher IgG(S) levels and neutralizing titers, and significantly lower reinfection rates (15%), compared to uninfected individuals. A fourth vaccine dose further increased IgG(S) levels. While neutralizing capacity was not consistently enhanced by the fourth dose, recipients experienced a lower rate of new infections. Immune trajectory analyses revealed that breakthrough infections elicited strong humoral responses comparable to those seen in previously infected individuals, highlighting the role of hybrid immunity. Conclusions: In older adults, booster vaccination induces durable immune responses, with hybrid immunity offering enhanced protection. A fourth dose boosts antibody levels and reduces infection risk, supporting its use in this high-risk group. Continued monitoring is needed to determine the long-term effectiveness of boosters, particularly against emerging variants. Full article
Show Figures

Figure 1

14 pages, 649 KiB  
Article
Body Appreciation, Weight Status, and Weight Management Practices Among First-Year Students at Universities of Applied Sciences in Lithuania
by Vilma Kriaučionienė, Asta Raskilienė, Lina Šnipaitienė and Janina Petkevičienė
Medicina 2025, 61(7), 1223; https://doi.org/10.3390/medicina61071223 - 5 Jul 2025
Viewed by 209
Abstract
Background and Objectives: The associations between body appreciation, weight status, and weight management practices are influenced by societal, cultural, and psychological factors. Studies indicated that a higher level of body appreciation is linked to lower engagement in unhealthy weight management practices. The transition [...] Read more.
Background and Objectives: The associations between body appreciation, weight status, and weight management practices are influenced by societal, cultural, and psychological factors. Studies indicated that a higher level of body appreciation is linked to lower engagement in unhealthy weight management practices. The transition from high school to university is a significant life event, often accompanied by substantial lifestyle changes that can affect students’ body image and weight-related behaviours. This study aimed to assess the associations between body appreciation, weight status, and weight management behaviours among first-year students at four universities of applied sciences in Lithuania. Materials and Methods: A cross-sectional online survey was conducted in 2022 among 709 first-year students (216 males and 493 females) at the four largest universities of applied sciences in Vilnius, Kaunas, Klaipėda, and Šiauliai. Body appreciation was assessed using the Body Appreciation Scale-2 (BAS-2), whilst BMI was calculated from self-reported height and weight. Students were asked about their weight management practices. Logistic regression analysis was applied to evaluate associations between weight management behaviours, body appreciation, and weight status. Results: Female students had a significantly lower median BMI (21.1 kg/m2) than males (23.3 kg/m2) but were more likely to perceive themselves as overweight (34.5% vs. 17.1%), worry about gaining weight (40.6% vs. 11.6%), and attempt weight loss (52.5% vs. 23.6%) (all p < 0.001). Higher BAS scores were associated with greater accuracy in weight perception, higher satisfaction with body weight, and fewer concerns about weight gain. Students with lower BAS scores were more likely to engage in harmful weight-control behaviours such as smoking (OR = 0.07; 95% CI: 0.02–0.25 for high vs. low BAS) and were more strongly influenced by media beauty standards and dissatisfaction with appearance. Conclusions: Body appreciation is linked to healthier weight perceptions and behaviours. Interventions that enhance body appreciation may help reduce body dissatisfaction and prevent unhealthy weight control practices, especially among female students. Full article
Show Figures

Figure 1

20 pages, 4992 KiB  
Article
Spatial Heterogeneity and Controlling Factors of Heavy Metals in Groundwater in a Typical Industrial Area in Southern China
by Jiaxu Du, Fu Liao, Ziwen Zhang, Aoao Du and Jiale Qian
Water 2025, 17(13), 2012; https://doi.org/10.3390/w17132012 - 4 Jul 2025
Viewed by 526
Abstract
Heavy metal contamination in groundwater has emerged as a significant environmental issue, driven by rapid industrialization and intensified human activities, particularly in southern China. Heavy metal pollution in groundwater often presents complex spatial patterns and multiple sources; understanding the spatial heterogeneity and controlling [...] Read more.
Heavy metal contamination in groundwater has emerged as a significant environmental issue, driven by rapid industrialization and intensified human activities, particularly in southern China. Heavy metal pollution in groundwater often presents complex spatial patterns and multiple sources; understanding the spatial heterogeneity and controlling factors of heavy metals is crucial for pollution prevention and water resource management in industrial regions. This study applied spatial autocorrelation analysis and self-organizing maps (SOM) coupled with K-means clustering to investigate the spatial distribution and key influencing factors of nine heavy metals (Cr, Fe, Mn, Ni, Cu, Zn, As, Ba, and Pb) in a typical industrial area in southern China. Heavy metals show significant spatial heterogeneity in concentrations. Cr, Mn, Fe, and Cu form local hotspots near urban and peripheral zones; Ni and As present downstream enrichment along the river pathway with longitudinal increase trends; Zn, Ba, and Pb exhibit a fluctuating pattern from west to east in the piedmont region. Local Moran’s I analysis further revealed spatial clustering in the northwest, riverine zones, and coastal outlet areas, providing insight into potential source regions. SOM clustering identified three types of groundwater: Cluster 1 (characterized by Cr, Mn, Fe, and Ni) is primarily influenced by industrial pollution and present spatially scattered distribution; Cluster 2 (dominated by As, NO3, Ca2+, and K+) is associated with domestic sewage and distributes following river flow; Cluster 3 (enriched in Zn, Ba, Pb, and NO3) is shaped by agricultural activities and natural mineral dissolution, with a lateral distribution along the piedmont zone. The findings of this study provide a scientific foundation for groundwater pollution prevention and environmental management in industrialized areas. Full article
Show Figures

Figure 1

21 pages, 10334 KiB  
Article
Gypenosides Alleviate Hyperglycemia by Regulating Gut Microbiota Metabolites and Intestinal Permeability
by Rong Wang, Xue-Feng Liu, Kuan Yang, Li-Li Yu, Shao-Jing Liu, Na-Na Wang, Yun-Mei Chen, Ya-Qi Hu and Bei Qin
Curr. Issues Mol. Biol. 2025, 47(7), 515; https://doi.org/10.3390/cimb47070515 - 3 Jul 2025
Viewed by 270
Abstract
Background/Objectives: Gypenosides (Gps) are the main active compounds of Gynostemma and show promise in managing diabetes; nevertheless, the mechanism by which Gps exert anti-diabetic effects is still not fully understood. The aim of this study is to clarify the molecular mechanisms of [...] Read more.
Background/Objectives: Gypenosides (Gps) are the main active compounds of Gynostemma and show promise in managing diabetes; nevertheless, the mechanism by which Gps exert anti-diabetic effects is still not fully understood. The aim of this study is to clarify the molecular mechanisms of Gps in ameliorating glucose dysregulation. Methods: Qualitative and quantitative analyses on the chemical components of Gps were performed, respectively. Type 2 diabetes mellitus mouse models were established, and the mice were subsequently treated with Gps at doses of 200, 100, or 50 mg/kg for 4 weeks. Biochemical markers were measured. Histopathological assessments of hepatic and colonic tissues were conducted. The compositions of the intestinal microbiota, short-chain fatty acids (SCFAs), and bile acids (BAs) in fecal samples were analyzed. Western blotting was applied to examine the activation of relevant signaling pathways. Results: Gps have potent regulatory effects on metabolic homeostasis by improving glucose and lipid profiles and alleviating hepatic tissue damage. Treatment with Gps significantly reduced serum levels of lipopolysaccharides and key pro-inflammatory cytokines (interleukin-6 and tumor necrosis factor-α). Moreover, Gps enhanced the integrity of the gut barrier by upregulating the level of tight junction proteins (ZO-1 and occludin). Microbiota profiling revealed that Gps markedly increased microbial diversity and richness, decreased the ratio of Firmicutes/Bacteroidetes, and elevated Bacteroidia abundance from the phylum to the genus level. Targeted metabolomics further demonstrated that Gps modulated gut microbial metabolites by promoting SCFA production and reshaping BA profiles. Specifically, Gps elevated the primary-to-secondary BA ratio while reducing the 12α-hydroxylated to non-12α-hydroxylated BA ratio. Mechanistically, Western blotting demonstrated that Gps triggered the hepatic PI3K/AKT pathway and the intestinal BA/FXR/FGF15 axis, suggesting the coordinated regulation of metabolic and gut–liver axis signaling pathways. Conclusions: Gps significantly ameliorate hyperglycemia and hyperlipidemia through a multifaceted mechanism involving gut microbiota modulation, the restoration of intestinal barrier function, and the regulation of microbial metabolites such as SCFAs and BAs. These findings offer novel insights into their mechanism of action via the gut–liver axis. Full article
(This article belongs to the Section Biochemistry, Molecular and Cellular Biology)
Show Figures

Graphical abstract

16 pages, 4520 KiB  
Article
Environmental Drivers of Trace Element Variability in Hypnum cupressiforme Hedw.: A Cross-Regional Moss Biomonitoring Study in Georgia and the Republic of Moldova
by Omari Chaligava, Inga Zinicovscaia and Liliana Cepoi
Plants 2025, 14(13), 2040; https://doi.org/10.3390/plants14132040 - 3 Jul 2025
Viewed by 306
Abstract
This study investigates the influence of environmental variables on the elemental composition of Hypnum cupressiforme Hedw. mosses in Georgia and the Republic of Moldova, within moss biomonitoring studies aimed at analyzing atmospheric deposition patterns. Moss samples of Hypnum cupressiforme, characterized by a [...] Read more.
This study investigates the influence of environmental variables on the elemental composition of Hypnum cupressiforme Hedw. mosses in Georgia and the Republic of Moldova, within moss biomonitoring studies aimed at analyzing atmospheric deposition patterns. Moss samples of Hypnum cupressiforme, characterized by a cosmopolitan distribution and a wide range of habitats, were collected from diverse geographical and climatic zones and analyzed for Al, Ba, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Sr, V, and Zn. Statistical methods (Spearman correlations, PCA, Kruskal–Wallis tests) were applied to evaluate interactions between elemental concentrations and factors such as topography, climate, land cover, etc. Results revealed strong correlations among lithogenic elements (Al, Co, Cr, Fe, Ni, and V), indicating natural weathering sources, while Cu exhibited potential anthropogenic origins in the Republic of Moldova. Elevated Cd and Pb levels in Georgian high-altitude regions were linked to wet deposition and steep slopes, whereas Moldovan samples showed higher Sr and Zn concentrations, likely driven by soil erosion in carbonate chernozems. The study highlights geogenic and climatic influences on element accumulation by moss, offering insights into the effectiveness of moss biomonitoring across heterogeneous landscapes. Full article
Show Figures

Figure 1

14 pages, 2762 KiB  
Article
Highly Efficient Regeneration of Bombax ceiba via De Novo Organogenesis from Hypocotyl and Bud Explants
by Yamei Li, Qionghai Jiang, Lisha Cha, Fei Lin, Fenling Tang, Yong Kang, Guangsui Yang, Surong Huang, Yuhua Guo and Junmei Yin
Plants 2025, 14(13), 2033; https://doi.org/10.3390/plants14132033 - 2 Jul 2025
Viewed by 267
Abstract
Bombax ceiba is an important medicinal and ornamental tree widely distributed in tropical and subtropical areas. However, its seeds lose viability rapidly after harvest, which has created hurdles in large-scale propagation. Here, we describe the development of a rapid and efficient de novo [...] Read more.
Bombax ceiba is an important medicinal and ornamental tree widely distributed in tropical and subtropical areas. However, its seeds lose viability rapidly after harvest, which has created hurdles in large-scale propagation. Here, we describe the development of a rapid and efficient de novo organogenesis system for Bombax ceiba, incorporating both indirect and direct regeneration pathways. The optimal basal medium used throughout the protocol was ½ MS supplemented with 30 g/L glucose, with all cultures maintained at 26–28 °C. For the indirect pathway, callus was induced from both ends of each hypocotyl on basal medium supplemented with 0.2 mg·L−1 2,4-dichlorophenoxyacetic acid (2,4-D) and 0.5 mg·L−1 6-Benzylaminopurine (6-BA) under dark conditions. The induced calluses were subsequently differentiated into adventitious shoots on basal media containing 0.5 mg·L−1 Indole-3-butyric acid (IBA), 0.15 mg·L−1 Kinetin (KIN), and 1 mg·L−1 6-BA under a 16 h photoperiod, resulting in a callus induction rate of 140% and a differentiation rate of 51%. For the direct regeneration pathway, shoot buds cultured on medium with 0.5 mg·L−1 IBA and 1 mg·L−1 6-BA achieved a 100% sprouting rate with a regeneration coefficient of approximately 3.2. The regenerated adventitious shoots rooted successfully on medium supplemented with 0.5 mg·L−1 Naphthylacetic acid (NAA) and were acclimatized under greenhouse conditions to produce viable plantlets. This regeneration system efficiently utilizes sterile seedling explants, is not limited by seasonal or environmental factors, and significantly improves the propagation efficiency of Bombax ceiba. These optimized micropropagation methods also provide a robust platform for future genetic transformation studies using hypocotyls and shoot buds as explants. Full article
Show Figures

Figure 1

10 pages, 793 KiB  
Article
The Pleiotropic Effect of ANRIL in Glaucoma and Cardiovascular Disease
by Luke O’Brien, Daire J. Hurley, Michael O’Leary, Liam Bourke and Colm O’Brien
Biomedicines 2025, 13(7), 1617; https://doi.org/10.3390/biomedicines13071617 - 1 Jul 2025
Viewed by 289
Abstract
Background/Objectives: The INK4 locus at chromosome 9p21.3, encoding CDKN2A, CDKN2B and the long non-coding RNA CDKN2B-AS1 (ANRIL), has been implicated in multiple diseases, including glaucoma and cardiovascular disease. ANRIL plays a critical role in gene regulation, inflammation and cell proliferation, contributing to [...] Read more.
Background/Objectives: The INK4 locus at chromosome 9p21.3, encoding CDKN2A, CDKN2B and the long non-coding RNA CDKN2B-AS1 (ANRIL), has been implicated in multiple diseases, including glaucoma and cardiovascular disease. ANRIL plays a critical role in gene regulation, inflammation and cell proliferation, contributing to disease susceptibility through shared molecular mechanisms. This study aims to identify SNPs within the INK4 locus associated with both glaucoma and CVD using the Open Targets Genetics platform and assess their pleiotropic effects. Methods: We utilised the Open Targets Genetics platform to identify SNPs at the INK4 locus associated with glaucoma and CVD. For each SNP, we recorded its genomic location, statistical significance and associated phenotypes. We further analysed the SNPs using the Genome Aggregation Database (gnomAD) to confirm their genomic position. Phenotypic associations were assessed using PheWAS data. Results: We identified 20 GWAS SNPs significantly associated with both glaucoma and CVD. All SNPs were located within intronic regions of the long non-coding RNA ANRIL. Certain SNPs such as rs4977756, rs1333037 and rs1063192 have known pleiotropic effects, influencing retinal ganglion cell survival in glaucoma and vascular smooth muscle cell proliferation in CVD. These SNPs influence shared biological pathways, including inflammation, oxidative stress and epigenetic regulation, and may exert either protective or pathogenic effects. Certain SNPs such as rs7853090 and rs1434537531 remain underexplored, emphasising the need for further research. Conclusions: This study highlights the pleiotropic role of ANRIL in glaucoma and CVD, driven by shared genetic and molecular pathways. While SNPs within ANRIL provide valuable insights into disease mechanisms, these conditions remain complex, influenced by multiple genetic and environmental factors. Targeting ANRIL therapeutically poses challenges due to its non-coding nature, but emerging RNA-based therapies, including antisense oligonucleotides and small-molecule modulators, hold promise. Further research into underexplored SNPs and ANRIL’s regulatory mechanisms is essential for advancing therapeutic development and understanding these multifactorial diseases. Full article
(This article belongs to the Special Issue Feature Reviews in Ophthalmology)
Show Figures

Figure 1

Back to TopTop