Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (19,291)

Search Parameters:
Keywords = fabric-based

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 7370 KB  
Article
Strength Enhancement of 3D-Printed Phosphogypsum Concrete Based on Synergistic Activation of Multi-Solid Wastes
by Junjie Li, Yangbo Li, Xianqiang Ge, Ke Li, Yahui Yang and Shuo Wang
Materials 2026, 19(3), 482; https://doi.org/10.3390/ma19030482 (registering DOI) - 25 Jan 2026
Abstract
Phosphogypsum (PG) is the main by-product of wet-process phosphoric acid production. Its annual global production reaches about 200 million tons, yet its utilization rate remains low. Consequently, long-term stockpiling of large PG volumes poses immense pressure to the ecological environment. To mitigate negative [...] Read more.
Phosphogypsum (PG) is the main by-product of wet-process phosphoric acid production. Its annual global production reaches about 200 million tons, yet its utilization rate remains low. Consequently, long-term stockpiling of large PG volumes poses immense pressure to the ecological environment. To mitigate negative environmental impacts, the utilization of PG is imperative. Despite progress in PG utilization and 3D-printing technology, there is still a significant lack of understanding about the synergistic activation mechanisms in multi-solid-waste systems. In particular, the composition design, microstructure evolution, and structure–property relationships of 3D-printed PG-based composites are not well-studied, which limits their high-value engineering applications. Three-dimensional-printed phosphogypsum concrete (3DPPGC) is proposed here, promoting PG resource utilization by leveraging the expanding applications of 3D-printed concrete (3DPC). However, the strength of 3DPPGC needs to be enhanced to meet engineering requirements. This study designed the mix proportion of 3DPPGC and fabricated the corresponding test specimens. The optimal Cement Replacement Ratio (CRR) was determined through experimental testing, and the mechanism behind the strength enhancement of the 3DPPGC was elucidated. The results indicated that the 3DPPGC’s mechanical properties peaked at the 70% CRR. Compared with cast specimens, 3DPPGC exhibited a 1.52% increase in 28-day flexural strength in the y-direction, reaching 4.69 MPa. The early-age compressive strength, flexural strength, and later-age compressive strength of 3DPPGC were significantly enhanced when PG, blast-furnace slag (BS), fly ash (FA), and silica fume (SF) were used to partially replace cement. This study provides a theoretical and experimental basis for the large-scale, high-value application of PG in intelligent construction. Full article
Show Figures

Figure 1

21 pages, 3918 KB  
Article
Mitigating Heat Stress for Pedestrians in Residential Neighborhoods: A Simulation-Based Approach to Enhance Outdoor Thermal Comfort
by Jamil Binabid
Buildings 2026, 16(3), 493; https://doi.org/10.3390/buildings16030493 (registering DOI) - 25 Jan 2026
Abstract
Saudi Arabia’s ambition to improve quality of life is paving its way, and this study aligns with that vision, adopting an experimental approach to explore urban solutions to enhance outdoor thermal comfort for pedestrians in neighborhoods within Riyadh City, Saudi Arabia. Given the [...] Read more.
Saudi Arabia’s ambition to improve quality of life is paving its way, and this study aligns with that vision, adopting an experimental approach to explore urban solutions to enhance outdoor thermal comfort for pedestrians in neighborhoods within Riyadh City, Saudi Arabia. Given the city’s hot and arid climate, outdoor spaces are often subject to extreme thermal conditions that reduce the quality of life for residents. To address this issue, the study utilizes Ladybug in Grasshopper, a tool designed for modeling the microclimate and assessing the impact of urban design strategies on outdoor thermal comfort. A base model representing the current urban fabric of selected neighborhoods is developed, and then multiple alternatives of urban morphology (sidewalk, setbacks, fence, and vegetation) are evaluated for their effectiveness in mitigating heat stress and improving outdoor thermal conditions. The findings from this study provide valuable insights into how urban planning and design interventions can be tailored to the unique climatic challenges of Riyadh, with potential applications for enhancing the sustainability, livability, and overall quality of life of the city’s neighborhoods. Full article
20 pages, 6100 KB  
Article
Application of Sustainable Crab-Waste-Derived Nanochitosan as a Soil Amendment for Tomato Cultivation in Loam Soil
by Divya Shanmugavel and Omar Solorza-Feria
Sustainability 2026, 18(3), 1213; https://doi.org/10.3390/su18031213 (registering DOI) - 25 Jan 2026
Abstract
Converting marine biowaste into nano-bioproducts for their application as bio-sourced, circular biostimulants to enhance crop productivity is a promising approach. This study evaluated chitosan–TPP nanoparticles (nanochitosan, ~38 nm) derived from blue crab (Callinectes sapidus) shells as a soil-applied biostimulant and conditioner [...] Read more.
Converting marine biowaste into nano-bioproducts for their application as bio-sourced, circular biostimulants to enhance crop productivity is a promising approach. This study evaluated chitosan–TPP nanoparticles (nanochitosan, ~38 nm) derived from blue crab (Callinectes sapidus) shells as a soil-applied biostimulant and conditioner for tomato (Solanum lycopersicum) grown in loam soil without mineral fertilizer. Our results showed that nanochitosan application as a soil supplement by drench improved the soil moisture content (39% vs. 22%), water-holding capacity (84% vs. 70%), total nitrogen (3.8 vs. 1.4 gm N kg−1), and organic carbon content (48.4 vs. 34.1 gm C kg−1) in nanochitosan-amended soil compared with the non-amended soil. This was accompanied by higher biomass, better root/shoot development and synthesis of phytohormones leading to increased shoot length, early flowering, and increased total soluble solids of fruits in nanochitosan-amended soil compared with control, suggesting that nanochitosan can act both as a beneficial soil conditioner and as a plant biostimulant. The results further show that nanochitosan-based formulations may be used not only as fertilizer-saving bio-inputs but also as bio-based nanochitosan plant biostimulants, which can partly substitute mineral fertilizer application for sustainable production of tomato. Moreover, generic fabrication of such nanochitosan from marine biowaste would support the circular-bioeconomy model to further improve sustainability of agroecosystems. Full article
(This article belongs to the Section Sustainable Agriculture)
Show Figures

Figure 1

15 pages, 1863 KB  
Article
Designing a Cr3+-Based Transition Metal Catalyst: Redox-Mediated Low-Temperature Activation for Strong Solid Base Generation
by Tiantian Li, Xiaowen Li, Hao Wu, Qunyu Chen, Hao Zhou, Xiaochen Lin and Dingming Xue
Inorganics 2026, 14(2), 34; https://doi.org/10.3390/inorganics14020034 (registering DOI) - 25 Jan 2026
Abstract
Solid base catalysts hold significant promise for replacing traditional homogeneous bases with green chemical processes. However, the construction of their strong basic sites typically relies on high-temperature calcination, which often leads to the collapse of the carrier structure and high energy consumption. This [...] Read more.
Solid base catalysts hold significant promise for replacing traditional homogeneous bases with green chemical processes. However, the construction of their strong basic sites typically relies on high-temperature calcination, which often leads to the collapse of the carrier structure and high energy consumption. This study proposes a novel “carrier reducibility tuning” strategy, which involves endowing the carrier with intrinsic reducibility to induce the low-temperature decomposition of alkali precursors via a redox pathway, thereby enabling the mild construction of strong basic sites. Low-valence Cr3+ was doped into a mesoporous zirconia framework, successfully fabricating an MCZ carrier with a mesostructure and reducible characteristics. Characterization results indicate that a significant redox interaction between the Cr3+ in the carrier and the supported KNO3 occurs at 500 °C. This interaction facilitates the complete conversion of KNO3 into highly dispersed, strongly basic K2O species, while Cr3+ is predominantly oxidized to Cr6+. This activation temperature is approximately 300 °C lower than that required for the conventional thermal decomposition pathway and effectively preserves the structural integrity of the material. In the transesterification reaction for synthesizing dimethyl carbonate, the prepared catalyst exhibits superior catalytic activity, significantly outperforming classic solid bases like MgO and other reference catalysts. Full article
(This article belongs to the Special Issue Transition Metal Catalysts: Design, Synthesis and Applications)
Show Figures

Figure 1

14 pages, 12345 KB  
Article
Reversed Fabrication Approach for Exfoliated Hybrid Systems EnablingMagnetoresistance and Current-Voltage Characterisation
by Piotr Kałuziak, Jan Raczyński, Semir El-Ahmar, Katarzyna Kwiecień, Marta Przychodnia, Wiktoria Reddig, Agnieszka Żebrowska and Wojciech Koczorowski
Physchem 2026, 6(1), 7; https://doi.org/10.3390/physchem6010007 (registering DOI) - 24 Jan 2026
Abstract
Studies on two-dimensional materials (such as topological insulators or transition metal dichalcogenides) have shown that they exhibit unique properties, including high charge carrier mobility and tunable bandgaps, making them attractive for next-generation electronics. Some of these materials (e.g., HfSe2) also offer [...] Read more.
Studies on two-dimensional materials (such as topological insulators or transition metal dichalcogenides) have shown that they exhibit unique properties, including high charge carrier mobility and tunable bandgaps, making them attractive for next-generation electronics. Some of these materials (e.g., HfSe2) also offer thickness-dependent bandgap engineering. However, the standard device fabrication techniques often introduce processing contamination, which reduces device efficiency. In this paper, we present a modified mechanical exfoliation technique, the Reversed Structuring Procedure, which enables the fabrication of hybrid systems based on 2D microflakes with improved interface cleanness and contact quality. Hall effect measurements on Bi2Se3 and HfSe2 devices confirm enhanced electrical performance, including the decrease in the measured total resistance. We also introduce a novel Star-Shaped Electrode Structure, which allows for accurate Hall measurements and the exploration of geometric magnetoresistance effects within the same device. This dual-purpose geometry enhances the flexibility and demonstrates broader functionality of the proposed fabrication method. The presented results validate the Reversed Structuring Procedure method as a robust and versatile approach for laboratory test-platforms for electronic applications of new types of layered materials whose fabrication technology is not yet compatible with CMOS. Full article
(This article belongs to the Section Surface Science)
15 pages, 9622 KB  
Article
Plasticizer-Driven Modulation of Processability and Performance in HME-Based Filaments and FDM 3D-Printed Tablets
by Sangmin Lee, Hye Jin Park and Dong Wuk Kim
J. Compos. Sci. 2026, 10(2), 61; https://doi.org/10.3390/jcs10020061 (registering DOI) - 24 Jan 2026
Abstract
This study investigated the effects of different types and ratios of plasticizers on the fabrication and properties of hot-melt-extruded filaments and fused deposition modeling (FDM) three-dimensional printed tablets containing theophylline (THEO). Polyethylene glycol (PEG) 1500 and stearic acid (SA) were used as plasticizers [...] Read more.
This study investigated the effects of different types and ratios of plasticizers on the fabrication and properties of hot-melt-extruded filaments and fused deposition modeling (FDM) three-dimensional printed tablets containing theophylline (THEO). Polyethylene glycol (PEG) 1500 and stearic acid (SA) were used as plasticizers to prepare THEO-loaded filaments in a hydroxypropyl cellulose matrix via hot melt extrusion (HME), which were subsequently fabricated into tablets using an FDM 3D printer. The physicochemical properties of the filaments and printed tablets were evaluated using scanning electron microscopy, X-ray powder diffraction, and Fourier transform infrared spectroscopy. Drug release behavior was assessed using four tablet formulations (T1–T4) with different plasticizer types and ratios. All fabricated filaments exhibited sufficient hardness and flexibility for reliable 3D printing, and solid-state analyses confirmed partial molecular dispersion of THEO within the polymer matrix. In dissolution studies, PEG-containing formulations showed faster drug release than SA-based formulations, while all 3D-printed tablets achieved approximately 80% drug release within 6 h. Overall, this study demonstrates that the combined use of HME and FDM-based 3D printing, together with rational plasticizer selection, enables the development of personalized pharmaceutical tablets with tunable immediate and sustained drug release profiles. Full article
(This article belongs to the Section Polymer Composites)
Show Figures

Figure 1

20 pages, 12502 KB  
Article
Research on Interface Damage Modes and Energy Absorption Characteristics of Additively Manufactured Graded-Aperture Honeycomb Sandwich Protective Structures
by Jin Dong, Jiaji Sun, Jianxun Du, Weisen Zhu, Chaoqi Xu, Jing Xiao and Zhongcheng Guo
Coatings 2026, 16(2), 151; https://doi.org/10.3390/coatings16020151 (registering DOI) - 24 Jan 2026
Abstract
Structural failure of the lead-carbon battery casing under external loads poses a serious threat to the safety of its energy storage function. To overcome the limitations of traditional protective casings regarding specific energy absorption (SEA) and crush force efficiency (CFE), this study proposes [...] Read more.
Structural failure of the lead-carbon battery casing under external loads poses a serious threat to the safety of its energy storage function. To overcome the limitations of traditional protective casings regarding specific energy absorption (SEA) and crush force efficiency (CFE), this study proposes a novel thin-walled protective structure utilizing graded aperture honeycomb sandwich panels fabricated via additive manufacturing (AM). Finite element (FE) models were established using HyperMesh and validated against experimental data. Subsequently, the impact resistance and energy absorption characteristics of four distinct cellular topologies were systematically investigated under varying pore-size gradients, impact directions, and velocities. Experimental and numerical simulation results indicate that, among the investigated configurations, the triangular honeycomb structure exhibits superior impact resistance and energy absorption capability under both axial and lateral loading conditions. Furthermore, the synergistic enhancement mechanism based on topological configuration and gradient design effectively optimizes the progressive crushing mode, thereby reducing the initial peak crushing force transmitted to the battery and resulting in a pronounced advantage in impact performance. This research provides a novel design approach for optimizing next-generation high-performance, lightweight protection systems for energy storage devices. Full article
Show Figures

Figure 1

8 pages, 3364 KB  
Proceeding Paper
Effect of Stirring Efficiency on Fatigue Behavior of Graphene Nanoplatelets-Reinforced Friction Stir Spot Welded Aluminum Sheets
by Amir Alkhafaji and Daniel Camas
Eng. Proc. 2026, 124(1), 6; https://doi.org/10.3390/engproc2026124006 (registering DOI) - 23 Jan 2026
Abstract
Friction stir spot welding (FSSW) is a novel variant of Friction Stir welding (FSW), developed by Mazda Motors and Kawasaki Heavy Industries to join similar and dissimilar materials in a solid state. It is an economic and environmentally friendly alternative to resistance spot [...] Read more.
Friction stir spot welding (FSSW) is a novel variant of Friction Stir welding (FSW), developed by Mazda Motors and Kawasaki Heavy Industries to join similar and dissimilar materials in a solid state. It is an economic and environmentally friendly alternative to resistance spot welding (RSW). The FSSW technique, however, includes some structural defects imbedded within the weld joint, such as keyhole formation, hook crack, and bond line oxidation challenging the joint strength. The unique properties of nanomaterials in the reinforcement of metal matrices motivated researchers to enhance the FSSW joints’ strength. Previous studies successfully fabricated nano-reinforced FSSW joints. At different volumetric ratios of nano-reinforcement, nanoparticles may agglomerate due to inefficient stirring of the welding tool pin, forming stress concentration sites and brittle phases, affecting tensile and fatigue strength under static and cyclic loading conditions, respectively. This work investigated how the welding tool pin affects stirring efficiency by controlling the distribution of a nano-reinforcing material within the joint stir zone (SZ), and thus the tensile and fatigue strength of the FSSW joints. Sheets of AA6061-T6 of 1.8 mm thickness were used as a base material. In addition, graphene nanoplatelets (GNPs) with lateral sizes of 1–10 µm and thicknesses of 3–9 nm were used as nano-reinforcements. GNP-reinforced FSSW specimens were prepared and successfully fabricated. Optical microscope (OM) and field emission scanning electron microscope (FE-SEM) methods were employed to visualize the GNPs’ incorporation into the SZs of the FSSW joints. Micrographs of as-welded specimens showed lower formations of scattered, clustered GNPs achieved by the threaded pin tool compared to continuous agglomerations observed when the cylindrical pin tool was used. Tensile test results revealed a significant improvement of about 30% exhibited by the threaded pin tool compared to the cylindrical pin tool, while fatigue test showed an improvement of 46–24% for the low- and high-cycle fatigue, respectively. Full article
(This article belongs to the Proceedings of The 6th International Electronic Conference on Applied Sciences)
Show Figures

Figure 1

12 pages, 1689 KB  
Article
Silicon Nanowire-Based Schottky Diodes for Enhanced Temperature Sensing and Extended Operable Range
by Gheorghe Pristavu, Razvan Pascu, Melania Popescu, Monica Simion, Cosmin Romanitan, Iuliana Mihalache, Florin Draghici and Gheorghe Brezeanu
Sensors 2026, 26(3), 780; https://doi.org/10.3390/s26030780 (registering DOI) - 23 Jan 2026
Abstract
This paper analyzes microstructural layout and electrical behavior of silicon nanowire-based Schottky diodes, for use as wide-domain temperature sensors. The employed nanostructured three-dimensional substrates provide larger contact areas and enable higher Schottky barrier heights, ultimately leading to a better operable temperature range. Two [...] Read more.
This paper analyzes microstructural layout and electrical behavior of silicon nanowire-based Schottky diodes, for use as wide-domain temperature sensors. The employed nanostructured three-dimensional substrates provide larger contact areas and enable higher Schottky barrier heights, ultimately leading to a better operable temperature range. Two metal deposition techniques (Radio Frequency sputtering and Electron-beam evaporation) are used to fabricate experimental Schottky diode samples. Scanning electron microscopy, X-ray diffraction, and diffuse reflectance investigations are carried out in order to determine nanowire distribution and the influence of subsequent metal deposition. The analyses evince the formation of a slightly inhomogeneous contact. The findings are validated by a thorough electrical characterization over a wide temperature domain. Inhomogeneity models are used in order to determine the main device parameters and the bias regions where they can be used as precise temperature sensors. The sputtered sample exhibits the best sensitivity, between 1 and 1.4 mV/K, while excellent linearity (R2 > 99.5%) is obtained for Electron-beam evaporated devices. Both types of silicon nanowire-based Schottky diode sensors have 100–500K operable ranges, much larger than planar counterparts. Full article
(This article belongs to the Special Issue Advances in Semiconductor Sensor Applications)
14 pages, 3433 KB  
Article
Defect Reduction in HEMT Epilayers on SiC Meta-Substrates
by Vin-Cent Su, Ting-Yu Wei, Meng-Hsin Chen, Chien-Te Ku and Guan-Shian Liu
Nanomaterials 2026, 16(3), 158; https://doi.org/10.3390/nano16030158 - 23 Jan 2026
Abstract
Dislocation reduction in gallium nitride (GaN) epitaxial layers remains a critical challenge for high-performance GaN-based electronic devices. In this study, GaN epitaxial growth on newly-developed 4H-Silicon Carbide (SiC) meta-substrates was systematically investigated to elucidate the role of surface pattern geometry in modulating dislocation [...] Read more.
Dislocation reduction in gallium nitride (GaN) epitaxial layers remains a critical challenge for high-performance GaN-based electronic devices. In this study, GaN epitaxial growth on newly-developed 4H-Silicon Carbide (SiC) meta-substrates was systematically investigated to elucidate the role of surface pattern geometry in modulating dislocation propagation. A series of truncated-hexagonal-pyramid meta-structures with a fixed array period and varying pattern ratios (R) were designed and fabricated to enable controlled tuning of the effective surface morphology. Atomic force microscopy confirmed comparable surface flatness for all samples after epitaxial growth. Cathodoluminescence analysis revealed a non-monotonic dependence of defect density on R, indicating the existence of an optimal pattern geometry. Among all configurations, the outstanding sample exhibited the lowest defect density, achieving a 54.96% reduction in threading dislocations (edge + mixed) compared with a planar reference. Cross-sectional transmission electron microscopy further confirmed a substantially reduced dislocation density and clear evidence of dislocation bending and termination near the meta-structured regions. These results demonstrate that geometry-engineered 4H-SiC meta-substrates provide an effective and scalable strategy for dislocation modulation in GaN epitaxy on SiC meta-substrates, offering a promising pathway toward advanced GaN power and RF devices. Full article
(This article belongs to the Special Issue Nonlinear Optics of Nanostructures and Metasurfaces)
28 pages, 1929 KB  
Systematic Review
Implant-Supported Auricular Prostheses: Current Evidence and a Six-Year Clinical Case Report with Navigated Flapless Placement
by Gerardo Pellegrino, Leonardo Ciocca, Carlo Barausse, Subhi Tayeb, Claudia Angelino, Martina Sansavini and Pietro Felice
Appl. Sci. 2026, 16(3), 1192; https://doi.org/10.3390/app16031192 - 23 Jan 2026
Abstract
Background: Auricular defects resulting from congenital anomalies, trauma, or oncologic resection pose significant functional and psychosocial challenges. When autologous reconstruction is not feasible or not desired, implant-retained auricular prostheses represent a reliable alternative with high patient satisfaction. This study aimed to systematically [...] Read more.
Background: Auricular defects resulting from congenital anomalies, trauma, or oncologic resection pose significant functional and psychosocial challenges. When autologous reconstruction is not feasible or not desired, implant-retained auricular prostheses represent a reliable alternative with high patient satisfaction. This study aimed to systematically evaluate the clinical performance of craniofacial implants used for auricular prosthetic rehabilitation, focusing on implant survival, prosthetic outcomes, workflow typologies, and complications. A secondary objective was to illustrate the long-term validity of a minimally invasive navigation technique through a clinical case with 6-year follow-up. Methods: A systematic review was conducted according to PRISMA guidelines. Clinical studies published between 2005 and 2025 reporting outcomes of implant-retained auricular prostheses were searched in PubMed and Scopus databases. Data were extracted on implant type, survival rates, prosthetic performance, workflow, and complications. Risk of bias was assessed using appropriate tools based on each study design. Results: A total of thirty-two studies were included, comprising fifteen case reports, fifteen case series, one cohort study, and one prospective observational study. Implant survival was consistently high across all workflow categories, with failures predominantly associated with irradiated or anatomically compromised bone. Prosthetic outcomes were favorable, showing excellent esthetics, stable retention, and high patient satisfaction irrespective of manufacturing method, although digital and navigation-assisted workflows improved reproducibility, symmetry, and planning precision. Complication rates were low and generally limited to mild peri-abutment inflammation manageable with conservative care. The clinical case confirmed these findings, showing stable osseointegration, healthy soft tissues, and uncompromised prosthetic function at 6-year follow-up. Conclusions: Implant-retained auricular prostheses show predictable long-term success, independent of whether traditional, hybrid, or fully digital workflows are employed. Digital technologies enhance surgical accuracy, minimize morbidity, and streamline prosthetic fabrication, although high-quality comparative studies remain limited. Full article
(This article belongs to the Special Issue Innovative Techniques and Materials in Implant Dentistry)
Show Figures

Figure 1

22 pages, 4834 KB  
Article
Dialdehyde Alginate as a Crosslinker for Chitosan/Starch Films: Toward Biocompatible and Antioxidant Wound Dressing Materials
by Sylwia Grabska-Zielińska, Marek Pietrzak, Lidia Zasada, Krzysztof Łukowicz, Agnieszka Basta-Kaim, Marta Michalska-Sionkowska, Marcin Wekwejt and Beata Kaczmarek-Szczepańska
Int. J. Mol. Sci. 2026, 27(3), 1174; https://doi.org/10.3390/ijms27031174 - 23 Jan 2026
Abstract
Biopolymer-based films have attracted increasing attention as sustainable and bioactive materials for wound management. Among them, chitosan (CTS) and starch (ST) blend represent promising candidate due to their natural origin, biodegradability, and intrinsic biological activity; however, their mechanical weakness and limited stability necessitate [...] Read more.
Biopolymer-based films have attracted increasing attention as sustainable and bioactive materials for wound management. Among them, chitosan (CTS) and starch (ST) blend represent promising candidate due to their natural origin, biodegradability, and intrinsic biological activity; however, their mechanical weakness and limited stability necessitate additional modification. This study reports the development and characterization of CTS-ST thin films crosslinked with dialdehyde alginate (ADA), synthesized via controlled oxidation. Two ADA variants differing in aldehyde group content were prepared to investigate the effect of crosslinking on the structural, physicochemical, and biological performance of the materials. The films were fabricated by blending 2% w/v CTS and ST in varying mass ratios (75/25, 50/50, and 25/75), followed by the addition of ADA (5% w/w) and glycerol (5% w/w) as a plasticizer. The mixtures were then cast onto plates and dried under ambient conditions. Comprehensive characterization included Fourier-transform infrared spectroscopy, moisture content analysis, contact angle measurements, antioxidant activity assay, hemolysis testing, and cytotoxicity evaluation using human keratinocyte cells. The results demonstrated that both the ADA variant and CTS/ST ratio significantly influenced crosslinking efficiency, hydrophilicity, and antioxidant behavior. All samples exhibited non-hemolytic behavior and no significant cytotoxic effects, indicating their favorable biocompatibility. The combination of biostability, antioxidant ability, and absence of cytotoxic effects highlights the potential of ADA-crosslinking CTS/ST films for further development as wound dressing materials and other biomedical applications. Full article
(This article belongs to the Special Issue Bioactive Polymer-Based Materials Dedicated to Wound Healing)
Show Figures

Figure 1

31 pages, 2608 KB  
Review
A Review of MEMS-Based Micro Gas Chromatography Columns: Principles, Technologies, and Aerospace Applications
by Sen Wang, Yang Miao, Tao Zhao, Litao Liu, Xiangyin Zhang, Junjie Liu, Haibin Liu and Gang Huang
Appl. Sci. 2026, 16(3), 1183; https://doi.org/10.3390/app16031183 - 23 Jan 2026
Abstract
Accurate gas analysis plays a critical role in aerospace missions, including spacecraft safety assurance, crew health monitoring, and deep-space scientific exploration. Although conventional gas chromatography (GC) techniques are well established, their large size, high power consumption, and long analysis time limit their applicability [...] Read more.
Accurate gas analysis plays a critical role in aerospace missions, including spacecraft safety assurance, crew health monitoring, and deep-space scientific exploration. Although conventional gas chromatography (GC) techniques are well established, their large size, high power consumption, and long analysis time limit their applicability in modern aerospace missions that require miniaturized, low-power, and highly integrated analytical systems. The development of microelectromechanical systems (MEMS) technology provides an effective pathway for the miniaturization of gas chromatography. MEMS-based micro gas chromatography columns enable the integration of meter-scale separation channels onto centimeter-scale chips through micro- and nanofabrication techniques, significantly reducing system volume and power consumption while improving analysis speed and integration capability. Compared with conventional GC systems, MEMS µGC exhibits clear advantages in size, weight, energy efficiency, and response time. This review systematically summarizes the fundamentals, structural designs, fabrication processes, and stationary phase preparation of MEMS micro gas chromatography columns. Representative aerospace application cases along with related experimental and engineering validation studies are highlighted; we re-evaluate these systems using Technology Readiness Levels (TRL) to distinguish flight heritage from concept demonstrations and propose a standardized validation roadmap for environmental reliability. In addition, key technical challenges for aerospace deployment are discussed. This work aims to provide a useful reference for the development of aerospace gas analysis systems and the engineering application of MEMS-based technologies. Full article
Show Figures

Figure 1

25 pages, 9214 KB  
Article
Measurement and Optimization of Sustainable Form in Shenyang’s Historic Urban District Based on Multi-Source Data Fusion
by Jing Yuan, Lingling Zhang, Hongtao Sun and Congbo Guan
Buildings 2026, 16(3), 474; https://doi.org/10.3390/buildings16030474 - 23 Jan 2026
Viewed by 9
Abstract
The optimization of historic district form, given the coordinated relationship between global urbanization and sustainable development, faces the core contradiction between preservation and development. Taking Shenyang’s Nanshi area as a case study, this study aimed to construct a sustainable urban form evaluation system [...] Read more.
The optimization of historic district form, given the coordinated relationship between global urbanization and sustainable development, faces the core contradiction between preservation and development. Taking Shenyang’s Nanshi area as a case study, this study aimed to construct a sustainable urban form evaluation system comprising 7 dimensions and 23 indicators by integrating multi-source geographic Big Data. A combination of a weighting approach in rank-order analysis and the entropy weight method was adopted, followed by spatial quantitative analysis conducted based on ArcGIS. The results showed that the sustainability of the area exhibited significant spatial differentiation: historic blocks became high-value areas due to their “small blocks, dense road network” fabric and high functional mix. However, newly built residential areas were low-value zones, constrained by factors such as fragmented green spaces, single-functional land use, and other limitations. Road network density and functional mixing were identified as the primary driving factors, while green coverage rate served as a secondary factor. Based on these findings, a three-tier “element–structure–system” optimization strategy was proposed, providing quantitative decision support for the low-carbon renewal of high-density historic urban districts. Full article
Show Figures

Figure 1

10 pages, 2734 KB  
Article
Dynamically Tunable Pseudo-Enhancement-Load Inverters Based on High-Performance InAlZnO Thin-Film Transistors
by Hao Gu, Jingye Xie, Chuanlin Sun, Tingchen Yi, Yi Zhuo, Junchen Dong, Yudi Zhao and Kai Zhao
Nanomaterials 2026, 16(3), 153; https://doi.org/10.3390/nano16030153 - 23 Jan 2026
Viewed by 11
Abstract
Oxide transistors have attracted significant interest in the field of integrated circuits (ICs). Among various oxide semiconductors, InAlZnO (IAZO) stands out as a promising candidate due to its potential for high mobility and excellent stability. In this work, we fabricate high-performance IAZO transistors [...] Read more.
Oxide transistors have attracted significant interest in the field of integrated circuits (ICs). Among various oxide semiconductors, InAlZnO (IAZO) stands out as a promising candidate due to its potential for high mobility and excellent stability. In this work, we fabricate high-performance IAZO transistors with a field-effect mobility of 56.60 cm2/V·s, a subthreshold swing of 82.59 mV/decade, an on-to-off current ratio over 107, and a small threshold voltage shift of 0.09 V and −0.03 V under positive and negative bias stress, respectively. Based on these transistors, Pseudo-Enhancement-Load (PEL) inverters were constructed. An adjustable bias voltage (VBIAS) was also introduced as an additional control parameter, which allows for flexible control of the trade-off between circuit performance and power consumption. The resulting inverters achieve a balance between static and dynamic performance, exhibiting a voltage gain of 1.83 V/V and a relatively low power consumption of 2.58 × 10−6 W (VBIAS = 1.0 V). Our work demonstrates the potential of IAZO transistor-based PEL inverters for high-performance, low-power oxide IC applications. Full article
(This article belongs to the Special Issue Nanomaterials-Based Memristors for Neuromorphic Systems)
Show Figures

Figure 1

Back to TopTop