Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,497)

Search Parameters:
Keywords = extreme value distributions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 28189 KiB  
Article
Landslide Susceptibility Prediction Using GIS, Analytical Hierarchy Process, and Artificial Neural Network in North-Western Tunisia
by Manel Mersni, Dhekra Souissi, Adnen Amiri, Abdelaziz Sebei, Mohamed Hédi Inoubli and Hans-Balder Havenith
Geosciences 2025, 15(8), 297; https://doi.org/10.3390/geosciences15080297 - 3 Aug 2025
Abstract
Landslide susceptibility modelling represents an efficient approach to enhance disaster management and mitigation strategies. The focus of this paper lies in the development of a landslide susceptibility evaluation in northwestern Tunisia using the Analytical Hierarchy Process (AHP) and Artificial Neural Network (ANN) approaches. [...] Read more.
Landslide susceptibility modelling represents an efficient approach to enhance disaster management and mitigation strategies. The focus of this paper lies in the development of a landslide susceptibility evaluation in northwestern Tunisia using the Analytical Hierarchy Process (AHP) and Artificial Neural Network (ANN) approaches. The used database covers 286 landslides, including ten landslide factor maps: rainfall, slope, aspect, topographic roughness index, lithology, land use and land cover, distance from streams, drainage density, lineament density, and distance from roads. The AHP and ANN approaches were applied to classify the factors by analyzing the correlation relationship between landslide distribution and the significance of associated factors. The Landslide Susceptibility Index result reveals five susceptible zones organized from very low to very high risk, where the zones with the highest risks are associated with the combination of extreme amounts of rainfall and steep slope. The performance of the models was confirmed utilizing the area under the Relative Operating Characteristic (ROC) curves. The computed ROC curve (AUC) values (0.720 for ANN and 0.651 for AHP) convey the advantage of the ANN method compared to the AHP method. The overlay of the landslide inventory data locations of historical landslides and susceptibility maps shows the concordance of the results, which is in favor of the established model reliability. Full article
(This article belongs to the Section Natural Hazards)
Show Figures

Figure 1

24 pages, 90648 KiB  
Article
An Image Encryption Method Based on a Two-Dimensional Cross-Coupled Chaotic System
by Caiwen Chen, Tianxiu Lu and Boxu Yan
Symmetry 2025, 17(8), 1221; https://doi.org/10.3390/sym17081221 - 2 Aug 2025
Viewed by 159
Abstract
Chaotic systems have demonstrated significant potential in the field of image encryption due to their extreme sensitivity to initial conditions, inherent unpredictability, and pseudo-random behavior. However, existing chaos-based encryption schemes still face several limitations, including narrow chaotic regions, discontinuous chaotic ranges, uneven trajectory [...] Read more.
Chaotic systems have demonstrated significant potential in the field of image encryption due to their extreme sensitivity to initial conditions, inherent unpredictability, and pseudo-random behavior. However, existing chaos-based encryption schemes still face several limitations, including narrow chaotic regions, discontinuous chaotic ranges, uneven trajectory distributions, and fixed pixel processing sequences. These issues substantially hinder the security and efficiency of such algorithms. To address these challenges, this paper proposes a novel hyperchaotic map, termed the two-dimensional cross-coupled chaotic map (2D-CFCM), derived from a newly designed 2D cross-coupled chaotic system. The proposed 2D-CFCM exhibits enhanced randomness, greater sensitivity to initial values, a broader chaotic region, and a more uniform trajectory distribution, thereby offering stronger security guarantees for image encryption applications. Based on the 2D-CFCM, an innovative image encryption method was further developed, incorporating efficient scrambling and forward and reverse random multidirectional diffusion operations with symmetrical properties. Through simulation tests on images of varying sizes and resolutions, including color images, the results demonstrate the strong security performance of the proposed method. This method has several remarkable features, including an extremely large key space (greater than 2912), extremely high key sensitivity, nearly ideal entropy value (greater than 7.997), extremely low pixel correlation (less than 0.04), and excellent resistance to differential attacks (with the average values of NPCR and UACI being 99.6050% and 33.4643%, respectively). Compared to existing encryption algorithms, the proposed method provides significantly enhanced security. Full article
(This article belongs to the Special Issue Symmetry in Chaos Theory and Applications)
Show Figures

Figure 1

19 pages, 1654 KiB  
Article
New Weighting System for the Ordered Weighted Average Operator and Its Application in the Balanced Expansion of Urban Infrastructures
by Matheus Pereira Libório, Petr Ekel, Marcos Flávio Silveira Vasconcelos D’Angelo, Chris Brunsdon, Alexandre Magno Alves Diniz, Sandro Laudares and Angélica C. G. dos Santos
Urban Sci. 2025, 9(8), 300; https://doi.org/10.3390/urbansci9080300 - 1 Aug 2025
Viewed by 171
Abstract
Urban infrastructure, such as water supply networks, sewage systems, and electricity networks, is essential for the functioning of cities and, consequently, for the well-being of citizens. Despite its essentiality, the distribution of infrastructure in urban areas is not homogeneous, especially in cities in [...] Read more.
Urban infrastructure, such as water supply networks, sewage systems, and electricity networks, is essential for the functioning of cities and, consequently, for the well-being of citizens. Despite its essentiality, the distribution of infrastructure in urban areas is not homogeneous, especially in cities in developing countries. Socially vulnerable areas often face significant deficiencies in sewage and road paving, exacerbating urban inequalities. In this regard, urban planners must consider the multiple elements of urban infrastructure and assess the compensation levels between them to reduce inequality effectively. In particular, the complexity of the problem necessitates considering the multidimensionality and heterogeneity of urban infrastructure. This complexity qualifies the operational framework of composite indicators as the natural solution to the problem. This study develops a new weighting system for the balanced expansion of urban infrastructures through composite indicators constructed by the Ordered Weighted Average operator. Implementing these weighting systems provides an opportunity to analyze urban infrastructure from different perspectives, offering transparency regarding the weaknesses and strengths of each perspective. This prevents unreliable representations from being used in decision-making and provides a solid basis for allocating investments in urban infrastructure. In particular, the study suggests that adopting weighting systems that prioritize intermediate values and avoid extreme values can lead to better resource allocation, helping to identify areas with deficient infrastructure and promoting more equitable urban development. Full article
Show Figures

Figure 1

20 pages, 8446 KiB  
Article
Extraction of Corrosion Damage Features of Serviced Cable Based on Three-Dimensional Point Cloud Technology
by Tong Zhu, Shoushan Cheng, Haifang He, Kun Feng and Jinran Zhu
Materials 2025, 18(15), 3611; https://doi.org/10.3390/ma18153611 (registering DOI) - 31 Jul 2025
Viewed by 112
Abstract
The corrosion of high-strength steel wires is a key factor impacting the durability and reliability of cable-stayed bridges. In this study, the corrosion pit features on a high-strength steel wire, which had been in service for 27 years, were extracted and modeled using [...] Read more.
The corrosion of high-strength steel wires is a key factor impacting the durability and reliability of cable-stayed bridges. In this study, the corrosion pit features on a high-strength steel wire, which had been in service for 27 years, were extracted and modeled using three-dimensional point cloud data obtained through 3D surface scanning. The Otsu method was applied for image binarization, and each corrosion pit was geometrically represented as an ellipse. Key pit parameters—including length, width, depth, aspect ratio, and a defect parameter—were statistically analyzed. Results of the Kolmogorov–Smirnov (K–S) test at a 95% confidence level indicated that the directional angle component (θ) did not conform to any known probability distribution. In contrast, the pit width (b) and defect parameter (Φ) followed a generalized extreme value distribution, the aspect ratio (b/a) matched a Beta distribution, and both the pit length (a) and depth (d) were best described by a Gaussian mixture model. The obtained results provide valuable reference for assessing the stress state, in-service performance, and predicted remaining service life of operational stay cables. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

26 pages, 8762 KiB  
Article
Clustered Rainfall-Induced Landslides in Jiangwan Town, Guangdong, China During April 2024: Characteristics and Controlling Factors
by Ruizeng Wei, Yunfeng Shan, Lei Wang, Dawei Peng, Ge Qu, Jiasong Qin, Guoqing He, Luzhen Fan and Weile Li
Remote Sens. 2025, 17(15), 2635; https://doi.org/10.3390/rs17152635 - 29 Jul 2025
Viewed by 210
Abstract
On 20 April 2024, an extreme rainfall event occurred in Jiangwan Town Shaoguan City, Guangdong Province, China, where a historic 24 h precipitation of 206 mm was recorded. This triggered extensive landslides that destroyed residential buildings, severed roads, and drew significant societal attention. [...] Read more.
On 20 April 2024, an extreme rainfall event occurred in Jiangwan Town Shaoguan City, Guangdong Province, China, where a historic 24 h precipitation of 206 mm was recorded. This triggered extensive landslides that destroyed residential buildings, severed roads, and drew significant societal attention. Rapid acquisition of landslide inventories, distribution patterns, and key controlling factors is critical for post-disaster emergency response and reconstruction. Based on high-resolution Planet satellite imagery, landslide areas in Jiangwan Town were automatically extracted using the Normalized Difference Vegetation Index (NDVI) differential method, and a detailed landslide inventory was compiled. Combined with terrain, rainfall, and geological environmental factors, the spatial distribution and causes of landslides were analyzed. Results indicate that the extreme rainfall induced 1426 landslides with a total area of 4.56 km2, predominantly small-to-medium scale. Landslides exhibited pronounced clustering and linear distribution along river valleys in a NE–SW orientation. Spatial analysis revealed concentrations on slopes between 200–300 m elevation with gradients of 20–30°. Four machine learning models—Logistic Regression, Support Vector Machine (SVM), Random Forest (RF), and Extreme Gradient Boosting (XGBoost)—were employed to assess landslide susceptibility mapping (LSM) accuracy. RF and XGBoost demonstrated superior performance, identifying high-susceptibility zones primarily on valley-side slopes in Jiangwan Town. Shapley Additive Explanations (SHAP) value analysis quantified key drivers, highlighting elevation, rainfall intensity, profile curvature, and topographic wetness index as dominant controlling factors. This study provides an effective methodology and data support for rapid rainfall-induced landslide identification and deep learning-based susceptibility assessment. Full article
(This article belongs to the Special Issue Study on Hydrological Hazards Based on Multi-Source Remote Sensing)
Show Figures

Figure 1

19 pages, 4155 KiB  
Article
Site-Specific Extreme Wave Analysis for Korean Offshore Wind Farm Sites Using Environmental Contour Methods
by Woobeom Han, Kanghee Lee, Jonghwa Kim and Seungjae Lee
J. Mar. Sci. Eng. 2025, 13(8), 1449; https://doi.org/10.3390/jmse13081449 - 29 Jul 2025
Viewed by 147
Abstract
Reliable estimation of extreme waves is essential for offshore wind turbine system design; however, site-specific conditions limit the application of one-size-fits-all statistical methods. We analyzed extreme wave conditions at potential offshore wind farm sites in South Korea using high-resolution hindcast data (1979–2022) based [...] Read more.
Reliable estimation of extreme waves is essential for offshore wind turbine system design; however, site-specific conditions limit the application of one-size-fits-all statistical methods. We analyzed extreme wave conditions at potential offshore wind farm sites in South Korea using high-resolution hindcast data (1979–2022) based on the Weather Research and Forecasting (WRF) model. While previous studies have typically relied on a limited combination of distribution types and parameter estimation methods, this study systematically applied various Weibull distribution models and parameter estimation techniques to the environmental contour (EC) method. The results show that the optimal statistical approach varied by site according to the tail characteristics of the wave height distribution. The inverse second-order reliability method (I-SORM) provided the highest accuracy in regions with rapidly decaying tails, achieving root mean square error (RMSE) values of 0.21 in Shinan (using the three-parameter Weibull distribution with maximum likelihood estimation, MLE) and 0.34 in Chujado (with the method of moments, MOM). In contrast, the inverse first-order reliability method (I-FORM) yielded superior performance in areas where the tail decays more gradually, such as Yokjido (RMSE = 0.47 with MLE using the exponentiated Weibull distribution) and Ulsan (RMSE = 0.29, with MLE using the exponentiated Weibull distribution). These findings underscore the importance of selecting site-specific combinations of statistical models and estimation techniques based on wave distribution characteristics, thereby improving the accuracy and reliability of extreme design wave predictions. The proposed framework can significantly contribute to the establishment of reliable design criteria for offshore wind turbine systems by reflecting region-specific marine environmental conditions. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

25 pages, 1668 KiB  
Article
The Impact of Climate Change on the Sustainability of PGI Legume Cultivation: A Case Study from Spain
by Betty Carlini, Javier Velázquez, Derya Gülçin, Víctor Rincón, Cristina Lucini and Kerim Çiçek
Agriculture 2025, 15(15), 1628; https://doi.org/10.3390/agriculture15151628 - 27 Jul 2025
Viewed by 187
Abstract
Legume crops are sensitive to shifting environmental conditions, as they depend on a narrow range of climatic stability for growth and nitrogen fixation. This research sought to assess the sustainability of Faba Asturiana (FA) cultivation under current and future climatic scenarios by establishing [...] Read more.
Legume crops are sensitive to shifting environmental conditions, as they depend on a narrow range of climatic stability for growth and nitrogen fixation. This research sought to assess the sustainability of Faba Asturiana (FA) cultivation under current and future climatic scenarios by establishing generalized linear mixed models (GLMMs). Specifically, it aimed to (1) investigate the effects of significant climatic stressors, including higher nighttime temperatures and extended drought periods, on crop viability, (2) analyze future scenarios based on Representative Concentration Pathways (RCP 4.5 and RCP 8.5), and (3) recommend adaptive measures to mitigate threats. Six spatial GLMMs were developed, incorporating variables such as extreme temperatures, precipitation, and the drought duration. Under present-day conditions (1971–2000), all the models exhibited strong predictive performances (AUC: 0.840–0.887), with warm nights (tasminNa20) consistently showing a negative effect on suitability (coefficients: −0.58 to −1.16). Suitability projections under future climate scenarios revealed considerable variation among the developed models. Under RCP 4.5, Far Future, Model 1 projected a 7.9% increase in the mean suitability, while under RCP 8.5, Far Future, the same model showed a 78% decline. Models using extreme cold, drought, or precipitation as climatic stressors (e.g., Models 2–4) revealed the most significant suitability losses under RCP 8.5, with the reductions exceeding 90%. In contrast, comprising variables less affected by severe fluctuations, Model 6 showed relative stability in most of the developed scenarios. The model also produced the highest mean suitability (0.130 ± 0.207) in an extreme projective scenario. The results highlight that high night temperatures and prolonged drought periods are the most limiting factors for FA cultivation. ecological niche models (ENMs) performed well, with a mean AUC value of 0.991 (SD = 0.006) and a mean TSS of 0.963 (SD = 0.024). According to the modeling results, among the variables affecting the current distribution of Protected Geographical Indication-registered AF, prspellb1 (max consecutive dry days) had the highest effect of 28.3%. Applying advanced statistical analyses, this study provides important insights for policymakers and farmers, contributing to the long-term sustainability of PGI agroecosystems in a warming world. Full article
(This article belongs to the Special Issue Sustainable Management of Legume Crops)
Show Figures

Figure 1

24 pages, 74760 KiB  
Article
The Application of Mobile Devices for Measuring Accelerations in Rail Vehicles: Methodology and Field Research Outcomes in Tramway Transport
by Michał Urbaniak, Jakub Myrcik, Martyna Juda and Jan Mandrysz
Sensors 2025, 25(15), 4635; https://doi.org/10.3390/s25154635 - 26 Jul 2025
Viewed by 403
Abstract
Unbalanced accelerations occurring during tram travel have a significant impact on passenger comfort and safety, as well as on the rate of wear and tear on infrastructure and rolling stock. Ideally, these dynamic forces should be monitored continuously in real-time; however, traditional systems [...] Read more.
Unbalanced accelerations occurring during tram travel have a significant impact on passenger comfort and safety, as well as on the rate of wear and tear on infrastructure and rolling stock. Ideally, these dynamic forces should be monitored continuously in real-time; however, traditional systems require high-precision accelerometers and proprietary software—investments often beyond the reach of municipally funded tram operators. To this end, as part of the research project “Accelerometer Measurements in Rail Passenger Transport Vehicles”, pilot measurement campaigns were conducted in Poland on tram lines in Gdańsk, Toruń, Bydgoszcz, and Olsztyn. Off-the-shelf smartphones equipped with MEMS accelerometers and GPS modules, running the Physics Toolbox Sensor Suite Pro app, were used. Although the research employs widely known methods, this paper addresses part of the gap in affordable real-time monitoring by demonstrating that, in the future, equipment equipped solely with consumer-grade MEMS accelerometers can deliver sufficiently accurate data in applications where high precision is not critical. This paper presents an analysis of a subset of results from the Gdańsk tram network. Lateral (x) and vertical (z) accelerations were recorded at three fixed points inside two tram models (Pesa 128NG Jazz Duo and Düwag N8C), while longitudinal accelerations were deliberately omitted at this stage due to their strong dependence on driver behavior. Raw data were exported as CSV files, processed and analyzed in R version 4.2.2, and then mapped spatially using ArcGIS cartograms. Vehicle speed was calculated both via the haversine formula—accounting for Earth’s curvature—and via a Cartesian approximation. Over the ~7 km route, both methods yielded virtually identical results, validating the simpler approach for short distances. Acceleration histograms approximated Gaussian distributions, with most values between 0.05 and 0.15 m/s2, and extreme values approaching 1 m/s2. The results demonstrate that low-cost mobile devices, after future calibration against certified accelerometers, can provide sufficiently rich data for ride-comfort assessment and show promise for cost-effective condition monitoring of both track and rolling stock. Future work will focus on optimizing the app’s data collection pipeline, refining standard-based analysis algorithms, and validating smartphone measurements against benchmark sensors. Full article
(This article belongs to the Collection Sensors and Actuators for Intelligent Vehicles)
Show Figures

Figure 1

24 pages, 6552 KiB  
Article
Assessing Flooding from Changes in Extreme Rainfall: Using the Design Rainfall Approach in Hydrologic Modeling
by Anna M. Jalowska, Daniel E. Line, Tanya L. Spero, J. Jack Kurki-Fox, Barbara A. Doll, Jared H. Bowden and Geneva M. E. Gray
Water 2025, 17(15), 2228; https://doi.org/10.3390/w17152228 - 26 Jul 2025
Viewed by 379
Abstract
Quantifying future changes in extreme events and associated flooding is challenging yet fundamental for stormwater managers. Along the U.S. Atlantic Coast, Eastern North Carolina (ENC) is frequently exposed to catastrophic floods from extreme rainfall that is typically associated with tropical cyclones. This study [...] Read more.
Quantifying future changes in extreme events and associated flooding is challenging yet fundamental for stormwater managers. Along the U.S. Atlantic Coast, Eastern North Carolina (ENC) is frequently exposed to catastrophic floods from extreme rainfall that is typically associated with tropical cyclones. This study presents a novel approach that uses rainfall data from five dynamically and statistically downscaled (DD and SD) global climate models under two scenarios to visualize a potential future extent of flooding in ENC. Here, we use DD data (at 36-km grid spacing) to compute future changes in precipitation intensity–duration–frequency (PIDF) curves at the end of the 21st century. These PIDF curves are further applied to observed rainfall from Hurricane Matthew—a landfalling storm that created widespread flooding across ENC in 2016—to project versions of “Matthew 2100” that reflect changes in extreme precipitation under those scenarios. Each Matthew-2100 rainfall distribution was then used in hydrologic models (HEC-HMS and HEC-RAS) to simulate “2100” discharges and flooding extents in the Neuse River Basin (4686 km2) in ENC. The results show that DD datasets better represented historical changes in extreme rainfall than SD datasets. The projected changes in ENC rainfall (up to 112%) exceed values published for the U.S. but do not exceed historical values. The peak discharges for Matthew-2100 could increase by 23–69%, with 0.4–3 m increases in water surface elevation and 8–57% increases in flooded area. The projected increases in flooding would threaten people, ecosystems, agriculture, infrastructure, and the economy throughout ENC. Full article
(This article belongs to the Section Water and Climate Change)
Show Figures

Figure 1

16 pages, 880 KiB  
Article
Probabilistic Estimates of Extreme Snow Avalanche Runout Distance
by David McClung and Peter Hoeller
Geosciences 2025, 15(8), 278; https://doi.org/10.3390/geosciences15080278 - 24 Jul 2025
Viewed by 243
Abstract
The estimation of runout distances for long return period avalanches is vital in zoning schemes for mountainous countries. There are two broad methods to estimate snow avalanche runout distance. One involves the use of a physical model to calculate speeds along the incline, [...] Read more.
The estimation of runout distances for long return period avalanches is vital in zoning schemes for mountainous countries. There are two broad methods to estimate snow avalanche runout distance. One involves the use of a physical model to calculate speeds along the incline, with runout distance determined when the speed drops to zero. The second method, which is used here, is based on empirical or statistical models from databases of extreme runout for a given mountain range or area. The second method has been used for more than 40 years with diverse datasets collected from North America and Europe. The primary reason for choosing the method used here is that it is independent of physical models such as avalanche dynamics, which allows comparisons between methods. In this paper, data from diverse datasets are analyzed to explain the relation between them to give an overall view of the meaning of the data. Runout is formulated from nine different datasets and 738 values of extreme runout, mostly with average return periods of about 100 years. Each dataset was initially fit to 65 probability density functions (pdf) using five goodness-of-fit tests. Detailed discussion and analysis are presented for a set of extreme value distributions (Gumbel, Frechet, Weibull). Two distributions had exemplary results in terms of goodness of fit: the generalized logistic (GLO) and the generalized extreme value (GEV) distributions. Considerations included both the goodness-of-fit and the heaviness of the tail, of which the latter is important in engineering decisions. The results showed that, generally, the GLO has a heavier tail. Our paper is the first to compare median extreme runout distances, the first to compare exceedance probability of extreme runout, and the first to analyze many probability distributions for a diverse set of datasets rigorously using five goodness-of-fit tests. Previous papers contained analysis mostly for the Gumbel distribution using only one goodness-of-fit test. Given that climate change is in effect, consideration of stationarity of the distributions is considered. Based on studies of climate change and avalanches, thus far, it has been suggested that stationarity should be a reasonable assumption for the extreme avalanche data considered. Full article
(This article belongs to the Section Natural Hazards)
Show Figures

Figure 1

14 pages, 4489 KiB  
Article
Modifying Design Standards: The 2023 Extreme Flood’s Impact on Design Discharges in Slovenia
by Mojca Šraj and Nejc Bezak
Water 2025, 17(15), 2198; https://doi.org/10.3390/w17152198 - 23 Jul 2025
Viewed by 427
Abstract
An extreme flood event occurred in Slovenia in August 2023. This study evaluated the influence of this extreme flood on the design discharges in Slovenia. This evaluation was based on flood frequency analysis for the data from 33 gauging stations. Analyses were conducted [...] Read more.
An extreme flood event occurred in Slovenia in August 2023. This study evaluated the influence of this extreme flood on the design discharges in Slovenia. This evaluation was based on flood frequency analysis for the data from 33 gauging stations. Analyses were conducted with and without the 2023 peak discharge, i.e., for the periods 1961–2022 and 1961–2023, using eight different theoretical distribution functions. In addition, specific discharge values for the 2023 flood event were analyzed and compared with regional envelope curves for Europe. The findings of the study indicate that the impact of a single flood event on the design discharge values can be substantial. Moreover, an analysis of the specific discharges resulting from the 2023 flood event in Slovenia reveals that the values for all gauging stations considered are below the regional envelopes. Concurrently, the analysis indicates that a flood event larger than the 2023 event may occur in the future. Full article
Show Figures

Figure 1

16 pages, 11002 KiB  
Article
Transcriptomic Identification of Key Genes Responding to High Heat Stress in Moso Bamboo (Phyllostachys edulis)
by Qinchao Fu, Xinlan Wen, Man Tang, Xin Zhao and Fang Liu
Genes 2025, 16(8), 855; https://doi.org/10.3390/genes16080855 - 23 Jul 2025
Viewed by 245
Abstract
Background/Objectives: Moso bamboo (Phyllostachys edulis), the most widely distributed bamboo species in China, is valued for both its shoots and timber. This species often faces challenges from high-temperature stress. To cope with this stress, Moso bamboo has evolved various adaptive mechanisms [...] Read more.
Background/Objectives: Moso bamboo (Phyllostachys edulis), the most widely distributed bamboo species in China, is valued for both its shoots and timber. This species often faces challenges from high-temperature stress. To cope with this stress, Moso bamboo has evolved various adaptive mechanisms at the physiological and molecular levels. Although numerous studies have revealed that a large number of transcription factors (TFs) and genes play important roles in the regulatory network of plant heat stress responses, the regulatory network involved in heat responses remains incompletely understood. Methods: In this study, Moso bamboo was placed in a high-temperature environment of 42 °C for 1 h and 24 h, and transcriptome sequencing was carried out to accurately identify key molecules affected by high temperature and their related biological pathways. Results: Through a differential expression analysis, we successfully identified a series of key candidate genes and transcription factors involved in heat stress responses, including members of the ethylene response factor, HSF, WRKY, MYB, and bHLH families. Notably, in addition to traditional heat shock proteins/factors, multiple genes related to lipid metabolism, antioxidant enzymes, dehydration responses, and hormone signal transduction were found to play significant roles in heat stress responses. To further verify the changes in the expression of these genes, we used qRT-PCR technology for detection, and the results strongly supported their key roles in cellular physiological processes and heat stress responses. Conclusions: This study not only deepens our understanding of plant strategies for coping with and defending against extreme abiotic stresses but also provides valuable insights for future research on heat tolerance in Moso bamboo and other plants. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

23 pages, 5310 KiB  
Article
Prediction of the Calorific Value and Moisture Content of Caragana korshinskii Fuel Using Hyperspectral Imaging Technology and Various Stoichiometric Methods
by Xuehong De, Haoming Li, Jianchao Zhang, Nanding Li, Huimeng Wan and Yanhua Ma
Agriculture 2025, 15(14), 1557; https://doi.org/10.3390/agriculture15141557 - 21 Jul 2025
Viewed by 259
Abstract
Calorific value and moisture content are the key indices to evaluate Caragana pellet fuel’s quality and combustion characteristics. Calorific value is the key index to measure the energy released by energy plants during combustion, which determines energy utilization efficiency. But at present, the [...] Read more.
Calorific value and moisture content are the key indices to evaluate Caragana pellet fuel’s quality and combustion characteristics. Calorific value is the key index to measure the energy released by energy plants during combustion, which determines energy utilization efficiency. But at present, the determination of solid fuel is still carried out in the laboratory by oxygen bomb calorimetry. This has seriously hindered the ability of large-scale, rapid detection of fuel particles in industrial production lines. In response to this technical challenge, this study proposes using hyperspectral imaging technology combined with various chemometric methods to establish quantitative models for determining moisture content and calorific value in Caragana korshinskii fuel. A hyperspectral imaging system was used to capture the spectral data in the 935–1720 nm range of 152 samples from multiple regions in Inner Mongolia Autonomous Region. For water content and calorific value, three quantitative detection models, partial least squares regression (PLSR), random forest regression (RFR), and extreme learning machine (ELM), respectively, were established, and Monte Carlo cross-validation (MCCV) was chosen to remove outliers from the raw spectral data to improve the model accuracy. Four preprocessing methods were used to preprocess the spectral data, with standard normal variate (SNV) preprocessing performing best on the quantitative moisture content detection model and Savitzky–Golay (SG) preprocessing performing best on the calorific value detection method. Meanwhile, to improve the prediction accuracy of the model to reduce the redundant wavelength data, we chose four feature extraction methods, competitive adaptive reweighted sampling (CARS), successive pojections algorithm (SPA), genetic algorithm (GA), iteratively retains informative variables (IRIV), and combined the three models to build a quantitative detection model for the characteristic wavelengths of moisture content and calorific value of Caragana korshinskii fuel. Finally, a comprehensive comparison of the modeling effectiveness of all methods was carried out, and the SNV-IRIV-PLSR modeling combination was the best for water content prediction, with its prediction set determination coefficient (RP2), root mean square error of prediction (RMSEP), and relative percentage deviation (RPD) of 0.9693, 0.2358, and 5.6792, respectively. At the same time, the moisture content distribution map of Caragana fuel particles is established by using this model. The SG-CARS-RFR modeling combination was the best for calorific value prediction, with its RP2, RMSEP, and RPD of 0.8037, 0.3219, and 2.2864, respectively. This study provides an innovative technical solution for Caragana fuel particles’ value and quality assessment. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

30 pages, 2139 KiB  
Article
Volatility Modeling and Tail Risk Estimation of Financial Assets: Evidence from Gold, Oil, Bitcoin, and Stocks for Selected Markets
by Yilin Zhu, Shairil Izwan Taasim and Adrian Daud
Risks 2025, 13(7), 138; https://doi.org/10.3390/risks13070138 - 20 Jul 2025
Viewed by 384
Abstract
As investment portfolios become increasingly diversified and financial asset risks grow more complex, accurately forecasting the risk of multiple asset classes through mathematical modeling and identifying their heterogeneity has emerged as a critical topic in financial research. This study examines the volatility and [...] Read more.
As investment portfolios become increasingly diversified and financial asset risks grow more complex, accurately forecasting the risk of multiple asset classes through mathematical modeling and identifying their heterogeneity has emerged as a critical topic in financial research. This study examines the volatility and tail risk of gold, crude oil, Bitcoin, and selected stock markets. Methodologically, we propose two improved Value at Risk (VaR) forecasting models that combine the autoregressive (AR) model, Exponential Generalized Autoregressive Conditional Heteroskedasticity (EGARCH) model, Extreme Value Theory (EVT), skewed heavy-tailed distributions, and a rolling window estimation approach. The model’s performance is evaluated using the Kupiec test and the Christoffersen test, both of which indicate that traditional VaR models have become inadequate under current complex risk conditions. The proposed models demonstrate superior accuracy in predicting VaR and are applicable to a wide range of financial assets. Empirical results reveal that Bitcoin and the Chinese stock market exhibit no leverage effect, indicating distinct risk profiles. Among the assets analyzed, Bitcoin and crude oil are associated with the highest levels of risk, gold with the lowest, and stock markets occupy an intermediate position. The findings offer practical implications for asset allocation and policy design. Full article
Show Figures

Figure 1

28 pages, 2140 KiB  
Article
Application of the GEV Distribution in Flood Frequency Analysis in Romania: An In-Depth Analysis
by Cristian Gabriel Anghel and Dan Ianculescu
Climate 2025, 13(7), 152; https://doi.org/10.3390/cli13070152 - 18 Jul 2025
Viewed by 723
Abstract
This manuscript investigates the applicability and behavior of the Generalized Extreme Value (GEV) distribution in flood frequency analysis, comparing it with the Pearson III and Wakeby distributions. Traditional approaches often rely on a limited set of statistical distributions and estimation techniques, which may [...] Read more.
This manuscript investigates the applicability and behavior of the Generalized Extreme Value (GEV) distribution in flood frequency analysis, comparing it with the Pearson III and Wakeby distributions. Traditional approaches often rely on a limited set of statistical distributions and estimation techniques, which may not adequately capture the behavior of extreme events. The study focuses on four hydrometric stations in Romania, analyzing maximum discharges associated with rare and very rare events. The research employs seven parameter estimation methods: the method of ordinary moments (MOM), the maximum likelihood estimation (MLE), the L-moments, the LH-moments, the probability-weighted moments (PWMs), the least squares method (LSM), and the weighted least squares method (WLSM). Results indicate that the GEV distribution, particularly when using L-moments, consistently provides more reliable predictions for extreme events, reducing biases compared to MOM. Compared to the Wakeby distribution for an extreme event (T = 10,000 years), the GEV distribution produced smaller deviations than the Pearson III distribution, namely +7.7% (for the Danube River, Giurgiu station), +4.9% (for the Danube River, Drobeta station), and +35.3% (for the Ialomita River). In the case of the Siret River, the Pearson III distribution generated values closer to those obtained by the Wakeby distribution, being 36.7% lower than those produced by the GEV distribution. These results support the use of L-moments in national hydrological guidelines for critical infrastructure design and highlight the need for further investigation into non-stationary models and regionalization techniques. Full article
(This article belongs to the Special Issue Hydroclimatic Extremes: Modeling, Forecasting, and Assessment)
Show Figures

Figure 1

Back to TopTop