Modifying Design Standards: The 2023 Extreme Flood’s Impact on Design Discharges in Slovenia
Abstract
1. Introduction
2. Materials and Methods
2.1. Flood Frequency Analysis (FFA)
- Generalized Extreme Value (GEV) distribution;
- Gumbel distribution (GUM);
- Pearson distribution type 3 (P3);
- Log-Pearson distribution type 3 (LP3);
- 3-parameter log-normal distribution (LN3);
- Gamma distribution (GAM);
- Generalized Logistic Distribution (GLO);
- Exponential distribution (EXP).
2.2. Specific Discharge Analysis
3. Results and Discussion
3.1. Flood Frequency Analysis (FFA)
3.2. Specific Discharge Values
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fischer, S.; Dallan, E.; Fiori, A.; Grimaldi, S.; Kochanek, K.; Prieto, C.; Reis, D.S.; Volpi, E. Hydrologic Design in the HELPING Decade—Inspiring the Community to Innovate the Hydrologic Design Concept. Hydrol. Sci. J. 2025, 70, 375–389. [Google Scholar] [CrossRef]
- Steirou, E.; Gerlitz, L.; Apel, H.; Sun, X.; Merz, B. Climate Influences on Flood Probabilities across Europe. Hydrol. Earth Syst. Sci. 2019, 23, 1305–1322. [Google Scholar] [CrossRef]
- Šraj, M.; Bezak, N. Comparison of Time Trend- and Precipitation-Informed Models for Assessing Design Discharges in Variable Climate. J. Hydrol. 2020, 589, 125374. [Google Scholar] [CrossRef]
- Blöschl, G.; Gaál, L.; Hall, J.; Kiss, A.; Komma, J.; Nester, T.; Parajka, J.; Perdigão, R.A.P.; Plavcová, L.; Rogger, M.; et al. Increasing River Floods: Fiction or Reality? Wiley Interdiscip. Rev. Water 2015, 2, 329–344. [Google Scholar] [CrossRef] [PubMed]
- Blöschl, G.; Hall, J.; Viglione, A.; Perdigão, R.A.P.; Parajka, J.; Merz, B.; Lun, D.; Arheimer, B.; Aronica, G.T.; Bilibashi, A.; et al. Changing Climate Both Increases and Decreases European River Floods. Nature 2019, 573, 108–111. [Google Scholar] [CrossRef] [PubMed]
- Bonacci, O.; Žaknić-Ćatović, A.; Roje-Bonacci, T. Floods: Emerging Concepts and Persisting Challenges. Acta Hydrotech. 2024, 37, 127–141. [Google Scholar] [CrossRef]
- Gnjato, S.; Leščešen, I.; Basarin, B.; Popov, T. What Is Happening with Frequency and Occurrence of the Maximum River Discharges in Bosnia and Herzegovina? Acta Geogr. Slov. 2024, 64, 129–149. [Google Scholar] [CrossRef]
- WMO Devastating Rainfall Hits Spain in yet Another Flood-Related Disaster. Available online: https://wmo.int/media/news/devastating-rainfall-hits-spain-yet-another-flood-related-disaster (accessed on 7 November 2024).
- He, K.; Yang, Q.; Shen, X.; Dimitriou, E.; Mentzafou, A.; Papadaki, C.; Stoumboudi, M.; Anagnostou, E.N. Brief Communication: Storm Daniel Flood Impact in Greece in 2023: Mapping Crop and Livestock Exposure from Synthetic-Aperture Radar (SAR). Nat. Hazards Earth Syst. Sci. 2024, 24, 2375–2382. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, M.; Xing, Z.; Liu, H.; Song, J.; Hou, Q.; Xu, Y. Study of Nonstationary Flood Frequency Analysis in Songhua River Basin. Water 2023, 15, 3443. [Google Scholar] [CrossRef]
- Arheimer, B.; Cudennec, C.; Castellarin, A.; Grimaldi, S.; Heal, K.V.; Lupton, C.; Sarkar, A.; Tian, F.; Kileshye Onema, J.M.; Archfield, S.; et al. The IAHS Science for Solutions Decade, with Hydrology Engaging Local People IN One Global World (HELPING). Hydrol. Sci. J. 2024, 69, 1417–1435. [Google Scholar] [CrossRef]
- Hrachowitz, M.; Savenije, H.H.G.; Blöschl, G.; McDonnell, J.J.; Sivapalan, M.; Pomeroy, J.W.; Arheimer, B.; Blume, T.; Clark, M.P.; Ehret, U.; et al. A Decade of Predictions in Ungauged Basins (PUB)-a Review. Hydrol. Sci. J. 2013, 58, 1198–1255. [Google Scholar] [CrossRef]
- Blöschl, G.; Sivapalan, M.; Wagener, T.; Viglione, A.; Savenije, H. Runoff Prediction in Ungauged Basins: Synthesis Across Processes, Places and Scales; Cambridge University Press (CUP): Cambridge, UK, 2013; ISBN 9781139235761. [Google Scholar]
- Sivapalan, M.; Takeuchi, K.; Franks, S.W.; Gupta, V.K.; Karambiri, H.; Lakshmi, V.; Liang, X.; Mcdonnell, J.J.; Mendiondo, E.M.; O’connell, P.E.; et al. IAHS Decade on Predictions in Ungauged Basins (PUB), 2003–2012: Shaping an Exciting Future for the Hydrological Sciences. Hydrol. Sci. J. 2003, 48, 857–880. [Google Scholar] [CrossRef]
- Kjeldsen, T.R.; Macdonald, N.; Lang, M.; Mediero, L.; Albuquerque, T.; Bogdanowicz, E.; Brázdil, R.; Castellarin, A.; David, V.; Fleig, A.; et al. Documentary Evidence of Past Floods in Europe and Their Utility in Flood Frequency Estimation. J. Hydrol. 2014, 517, 963–973. [Google Scholar] [CrossRef]
- Strupczewski, W.G.; Kochanek, K.; Bogdanowicz, E. Historical Floods in Flood Frequency Analysis: Is This Game Worth the Candle? J. Hydrol. 2017, 554, 800–816. [Google Scholar] [CrossRef]
- Anghel, C.G.; Ianculescu, D. An In-Depth Statistical Analysis of the Pearson Type III Distribution Behavior in Modeling Extreme and Rare Events. Water 2025, 17, 1539. [Google Scholar] [CrossRef]
- Bezak, N.; Brilly, M.; Šraj, M. Flood Frequency Analyses, Statistical Trends and Seasonality Analyses of Discharge Data: A Case Study of the Litija Station on the Sava River. J. Flood Risk Manag. 2016, 9, 154–168. [Google Scholar] [CrossRef]
- Leščešen, I.; Dolinaj, D. Regional Flood Frequency Analysis of the Pannonian Basin. Water 2019, 11, 193. [Google Scholar] [CrossRef]
- Petrović, A.M.; Leščešen, I.; Radevski, I. Unveiling Torrential Flood Dynamics: A Comprehensive Study of Spatio-Temporal Patterns in the Šumadija Region, Serbia. Water 2024, 16, 991. [Google Scholar] [CrossRef]
- Bezak, N.; Šraj, M.; Mikoš, M. Are high waters that appear every four years really a 100-year flood. Ujma 2015, 29, 318–323. [Google Scholar]
- Bezak, N.; Panagos, P.; Liakos, L.; Mikoš, M. Brief Communication: A First Hydrological Investigation of Extreme August 2023 Floods in Slovenia, Europe. Nat. Hazards Earth Syst. Sci. 2023, 23, 3885–3893. [Google Scholar] [CrossRef]
- Dolšak, D.; Bezak, N.; Šraj, M. Temporal Characteristics of Rainfall Events under Three Climate Types in Slovenia. J. Hydrol. 2016, 541, 1395–1405. [Google Scholar] [CrossRef]
- Ogrin, D.; Repe, B.; Štaut, L.; Svetlin, D.; Ogrin, M. Climate Classification of Slovenia Based on Data from the Period 1991–2020. Dela 2023, 2023, 5–89. [Google Scholar] [CrossRef]
- Oblak, J.; Kobold, M.; Šraj, M. The Influence of Climate Change on Discharge Fluctuations in Slovenian Rivers. Acta Geogr. Slov. 2021, 61, 155–169. [Google Scholar] [CrossRef]
- ARSO. Extreme Floods in Slovenia Between 4th and 8th of August 2023 (Izjemne Poplave v Sloveniji Med 4. in 8. Avgustom 2023); ARSO: Ljubljana, Slovenia, 2023. [Google Scholar]
- ARSO. Torrential Rain and Heavy Precipitation from 3 to 6 August 2023 (Nalivi in Obilne Padavine od 3. do 6. Avgusta 2023); ARSO: Ljubljana, Slovenia, 2023. [Google Scholar]
- Bertola, M.; Blöschl, G.; Bohac, M.; Borga, M.; Castellarin, A.; Chirico, G.B.; Claps, P.; Dallan, E.; Danilovich, I.; Ganora, D.; et al. Megafloods in Europe Can Be Anticipated from Observations in Hydrologically Similar Catchments. Nat. Geosci. 2023, 16, 982–988. [Google Scholar] [CrossRef]
- ARSO. Data on the Highest Annual Values of Discharges for the Gauging Stations in Slovenia. Personal Communication; ARSO: Ljubljana, Slovenia, 2025. [Google Scholar]
- Salinas, J.L.; Castellarin, A.; Viglione, A.; Kohnová, S.; Kjeldsen, T.R. Regional Parent Flood Frequency Distributions in Europe—Part 1: Is the GEV Model Suitable as a Pan-European Parent? Hydrol. Earth Syst. Sci. 2014, 18, 4381–4389. [Google Scholar] [CrossRef]
- Hosking, J.R.M.; Wallis, J.R. Regional Frequency Analysis: An Approach Based on L-Moments; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar]
- Akaike, H. A New Look at the Statistical Model Identification. IEEE Trans. Autom. Contr. 1974, 19, 716–723. [Google Scholar] [CrossRef]
- Laio, F.; Di Baldassarre, G.; Montanari, A. Model Selection Techniques for the Frequency Analysis of Hydrological Extremes. Water Resour. Res. 2009, 45, 7416. [Google Scholar] [CrossRef]
- Schöniger, A.; Wöhling, T.; Samaniego, L.; Nowak, W. Model Selection on Solid Ground: Rigorous Comparison of Nine Ways to Evaluate Bayesian Model Evidence. Water Resour. Res. 2014, 50, 9484–9513. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing 2021; R Core Team: Vienna, Austria, 2021. [Google Scholar]
- Stephens, M.A. Tests Based on Edf Statistics. In Goodness-of-Fit Techniques; D’Agostino, R.B., Stephens, M.A., Eds.; Marcel Dekker: New York, NY, USA, 1986; pp. 97–194. [Google Scholar]
- Asquith, W. Package Lmomco 2024. Available online: https://cran.r-project.org/web/packages/lmomco/lmomco.pdf (accessed on 20 November 2024).
- Frantar, P.; Hrvatin, M. Discharge Regimes. In Water Balance of Slovenia 1971–2000; Frantar, P., Ed.; MOP-ARSO: Ljubljana, Slovenija, 2008; pp. 44–50. ISBN 978-961-6024-38-9. [Google Scholar]
- Fuchs, R.; Herold, M.; Verburg, P.H.; Clevers, J.G.P.W. A High-Resolution and Harmonized Model Approach for Reconstructing and Analysing Historic Land Changes in Europe. Biogeosciences 2013, 10, 1543–1559. [Google Scholar] [CrossRef]
- Fuchs, R.; Herold, M.; Verburg, P.H.; Clevers, J.G.P.W.; Eberle, J. Gross Changes in Reconstructions of Historic Land Cover/Use for Europe between 1900 and 2010. Glob. Change Biol. 2015, 21, 299–313. [Google Scholar] [CrossRef] [PubMed]
- Copernicus Climate Change Service, C. D. Store. Alpine Gridded Monthly Precipitation Data since 1871 Derived from In-Situ Observations. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). Available online: https://cds.climate.copernicus.eu/datasets/insitu-gridded-observations-alpine-precipitation?tab=overview (accessed on 14 July 2025).
- HISTALP. Historical Instrumental Climatological Surface Time Series of the Greater Alpine Region. Available online: https://www.zamg.ac.at/histalp/dataset/grid/crsm.php (accessed on 14 July 2025).
- Kiang, J.E.; Gazoorian, C.; McMillan, H.; Coxon, G.; Le Coz, J.; Westerberg, I.K.; Belleville, A.; Sevrez, D.; Sikorska, A.E.; Petersen-Øverleir, A.; et al. A Comparison of Methods for Streamflow Uncertainty Estimation. Water Resour. Res. 2018, 54, 7149–7176. [Google Scholar] [CrossRef]
- Petan, S.; Golob, A.; Moderc, M. Hydrological Forecasting System of the Slovenian Environment Agency. Acta Hydrotech. 2015, 28, 119–131. [Google Scholar]
- Petan, S.; Koprivšek, M. Analysis of Regional River Flows in Slovenia. Acta Hydrotech. 2024, 37, 65–77. [Google Scholar] [CrossRef]
- Mikoš, M.; Bezak, N. Extreme August 2023 Floods in Slovenia—Reconstruction Efforts Explained. In Proceedings of the INTERPRAEVENT 2024: Conference Proceedings; Interpraevent: Vienna, Austria, 2024; pp. 988–992. [Google Scholar]
- Mikoš, M. Flood Hazard in Slovenia and Assessment of Extreme Design Floods. Acta Hydrotech. 2020, 33, 43–59. [Google Scholar] [CrossRef]
- Amponsah, W.; Ayral, P.-A.; Boudevillain, B.; Bouvier, C.; Braud, I.; Brunet, P.; Delrieu, G.; Didon-Lescot, J.-F.; Gaume, E.; Lebouc, L.; et al. Integrated High-Resolution Dataset of High-Intensity European and Mediterranean Flash Floods. Earth Syst. Sci. Data 2018, 10, 1783–1794. [Google Scholar] [CrossRef]
- Ogrin, D. Long-Term Air Temperature Changes in Ljubljana (Slovenia) in Comparison to Trieste (Italy) and Zagreb (Croatia). Maravian Geogr. Rep. 2015, 23, 17–26. [Google Scholar] [CrossRef]
- Guerreiro, S.B.; Fowler, H.J.; Barbero, R.; Westra, S.; Lenderink, G.; Blenkinsop, S.; Lewis, E.; Li, X.-F. Detection of Continental-Scale Intensification of Hourly Rainfall Extremes. Nat. Clim. Change 2018, 8, 803–807. [Google Scholar] [CrossRef]
- ERCC Bosnia and Herzegovina—UCPM Response to Floods. Available online: https://erccportal.jrc.ec.europa.eu/API/ERCC/Maps/DownloadPublicMap?fileN=MainFile&forceDownload=False&contentItemID=5027 (accessed on 7 November 2024).
No. | ID | River | Gauging Station | Catchment Area [km2] | Longitude | Latitude | Station Elevation [m a.s.l.] |
---|---|---|---|---|---|---|---|
1 | 1140 | Ščavnica | Pristava I | 272.5 | 16.2367 | 46.5189 | 169.77 |
2 | 1220 | Ledava | Polana | 208.2 | 16.1420 | 46.6783 | 191.40 |
3 | 2250 | Meža | Otiški Vrh I * | 550.89 | 15.0308 | 46.5781 | 333.97 |
4 | 2652 | Dravinja | Videm | 767.34 | 15.9068 | 46.3669 | 209.21 |
5 | 2754 | Polskava | Tržec | 189.16 | 15.8717 | 46.3624 | 214.07 |
6 | 2900 | Pesnica | Zamušani | 477.8 | 16.0389 | 46.4144 | 201.86 |
7 | 3180 | Radovna | Podhom | 166.8 | 14.0904 | 46.3938 | 566.07 |
8 | 3200 | Sava Bohinjka | Sveti Janez | 94 | 13.8913 | 46.2786 | 524.95 |
9 | 3400 | Jezernica | Mlino | 8.57 | 14.1047 | 46.3575 | 467.52 |
10 | 3420 | Sava | Radovljica | 907.9 | 14.1701 | 46.3404 | 408.09 |
11 | 3570 | Sava | Šentjakob * | 2285 | 14.5872 | 46.0843 | 268.19 |
12 | 3660 | Sava | Litija | 4821.4 | 14.8277 | 46.0559 | 230.44 |
13 | 4120 | Kokra | Kokra | 112.2 | 14.5036 | 46.3062 | 522.85 |
14 | 4200 | Sora | Suha | 566 | 14.3307 | 46.1624 | 329.47 |
15 | 4230 | Poljanska Sora | Zminec | 305.5 | 14.2954 | 46.1538 | 343.31 |
16 | 4480 | Nevljica | Nevlje * | 82.21 | 14.6296 | 46.2332 | 379.94 |
17 | 4969 | Lahinja | Gradac | 221.3 | 15.2500 | 45.6137 | 129.00 |
18 | 5078 | Ljubljanica | Moste | 1762.5 | 14.5492 | 46.0557 | 280.80 |
19 | 5540 | Šujica | Razori * | 46.95 | 14.4425 | 46.0484 | 298.37 |
20 | 5770 | Cerkniščica | Cerknica | 47.3 | 14.3694 | 45.7942 | 559.58 |
21 | 6020 | Savinja | Solčava * | 63.7 | 14.6979 | 46.4200 | 636.01 |
22 | 6060 | Savinja | Nazarje * | 457.3 | 14.9573 | 46.3216 | 336.97 |
23 | 6200 | Savinja | Laško | 1668.16 | 15.2384 | 46.1543 | 215.03 |
24 | 7029 | Krka | Podbukovje | 321.44 | 14.7897 | 45.8770 | 259.22 |
25 | 7160 | Krka | Podbočje | 2238.1 | 15.4602 | 45.8651 | 146.32 |
26 | 7380 | Radulja | Škocjan | 108.14 | 15.2967 | 45.9078 | 159.71 |
27 | 8080 | Soča | Kobarid | 437 | 13.5910 | 46.2477 | 195.86 |
28 | 8270 | Učja | Žaga | 50.2 | 13.4824 | 46.3101 | 342.50 |
29 | 8450 | Idrijca | Hotešk | 442.83 | 13.7984 | 46.1287 | 160.81 |
30 | 8500 | Bača | Bača pri Modreju | 142.31 | 13.7802 | 46.1559 | 164.43 |
31 | 8601 | Vipava | Miren | 589.9 | 13.6126 | 45.8944 | 96.38 |
32 | 9050 | Reka | Cerkvenikov mlin | 377.9 | 14.0655 | 45.6552 | 341.72 |
33 | 9210 | Rižana | Kubed | 204.5 | 13.8808 | 45.5329 | 57.68 |
ID | River | Gauging Station | Best Fitting Distribution | Difference in Design Discharges Comparing Periods 1961–2023 and 1961–2022 [%] | |||
---|---|---|---|---|---|---|---|
T = 10 | T = 100 | T = 500 | |||||
1 | 1140 | Ščavnica | Pristava I | GEV | 1 | 2 | 2 |
2 | 1220 | Ledava | Polana | GAM | 0 | 0 | 0 |
3 | 2250 | Meža | Otiški Vrh I * | GEV | 6 | 19 | 30 |
4 | 2652 | Dravinja | Videm | GAM | 1 | 1 | 1 |
5 | 2754 | Polskava | Tržec | GAM | 0 | 0 | 0 |
6 | 2900 | Pesnica | Zamušani | GEV | 1 | 1 | 1 |
7 | 3180 | Radovna | Podhom | GAM | 1 | 2 | 2 |
8 | 3200 | Sava Bohinjka | Sveti Janez | LN3 | 1 | 0 | −1 |
9 | 3400 | Jezernica | Mlino | LN3 | 2 | 2 | 3 |
10 | 3420 | Sava | Radovljica | LN3 | 2 | 2 | 2 |
11 | 3570 | Sava | Šentjakob * | GAM | 2 | 3 | 3 |
12 | 3660 | Sava | Litija | LN3 | 3 | 7 | 10 |
13 | 4120 | Kokra | Kokra | GAM | 0 | 0 | 0 |
14 | 4200 | Sora | Suha | GUM | 4 | 6 | 6 |
15 | 4230 | Poljanska Sora | Zminec | GLO | 7 | 21 | 35 |
16 | 4480 | Nevljica | Nevlje * | P3 | 2 | 2 | 3 |
17 | 4969 | Lahinja | Gradac | GAM | 0 | 1 | 1 |
18 | 5078 | Ljubljanica | Moste | LN3 | 0 | 0 | −1 |
19 | 5540 | Šujica | Razori * | GLO | 9 | 33 | 57 |
20 | 5770 | Cerkniščica | Cerknica | LN3 | 0 | −1 | −2 |
21 | 6020 | Savinja | Solčava * | LN3 | 9 | 22 | 31 |
22 | 6060 | Savinja | Nazarje * | GLO | 5 | 16 | 25 |
23 | 6200 | Savinja | Laško | LN3 | 3 | 6 | 7 |
24 | 7029 | Krka | Podbukovje | GLO | 0 | −1 | −1 |
25 | 7160 | Krka | Podbočje | GLO | 0 | 0 | 0 |
26 | 7380 | Radulja | Škocjan | GUM | 1 | 0 | 0 |
27 | 8080 | Soča | Kobarid | GLO | 1 | 2 | 3 |
28 | 8270 | Učja | Žaga | LN3 | 2 | 2 | 2 |
29 | 8450 | Idrijca | Hotešk | GAM | 1 | 1 | 1 |
30 | 8500 | Bača | Bača pri Modreju | LN3 | 4 | 8 | 11 |
31 | 8600 | Vipava | Miren | GAM | 0 | 0 | 0 |
32 | 9050 | Reka | Cerkevnikov mlin | GEV | 0 | −1 | −1 |
33 | 9210 | Rižana | Kubed | LN3 | 0 | 0 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Šraj, M.; Bezak, N. Modifying Design Standards: The 2023 Extreme Flood’s Impact on Design Discharges in Slovenia. Water 2025, 17, 2198. https://doi.org/10.3390/w17152198
Šraj M, Bezak N. Modifying Design Standards: The 2023 Extreme Flood’s Impact on Design Discharges in Slovenia. Water. 2025; 17(15):2198. https://doi.org/10.3390/w17152198
Chicago/Turabian StyleŠraj, Mojca, and Nejc Bezak. 2025. "Modifying Design Standards: The 2023 Extreme Flood’s Impact on Design Discharges in Slovenia" Water 17, no. 15: 2198. https://doi.org/10.3390/w17152198
APA StyleŠraj, M., & Bezak, N. (2025). Modifying Design Standards: The 2023 Extreme Flood’s Impact on Design Discharges in Slovenia. Water, 17(15), 2198. https://doi.org/10.3390/w17152198