Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (566)

Search Parameters:
Keywords = extreme daily precipitation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 1559 KiB  
Article
Assessing Hydropower Impacts on Flood and Drought Hazards in the Lancang–Mekong River Using CNN-LSTM Machine Learning
by Muzi Zhang, Boying Chi, Hongbin Gu, Jian Zhou, Honggang Chen, Weiwei Wang, Yicheng Wang, Juanjuan Chen, Xueqian Yang and Xuan Zhang
Water 2025, 17(15), 2352; https://doi.org/10.3390/w17152352 (registering DOI) - 7 Aug 2025
Abstract
The efficient and rational development of hydropower in the Lancang–Mekong River Basin can promote green energy transition, reduce carbon emissions, prevent and mitigate flood and drought disasters, and ensure the sustainable development of the entire basin. In this study, based on publicly available [...] Read more.
The efficient and rational development of hydropower in the Lancang–Mekong River Basin can promote green energy transition, reduce carbon emissions, prevent and mitigate flood and drought disasters, and ensure the sustainable development of the entire basin. In this study, based on publicly available hydrometeorological observation data and satellite remote sensing monitoring data from 2001 to 2020, a machine learning model of the Lancang–Mekong Basin was developed to reconstruct the basin’s hydrological processes, and identify the occurrence patterns and influencing mechanisms of water-related hazards. The results show that, against the background of climate change, the Lancang–Mekong Basin is affected by the increasing frequency and intensity of extreme precipitation events. In particular, Rx1day, Rx5day, R10mm, and R95p (extreme precipitation indicators determined by the World Meteorological Organization’s Expert Group on Climate Change Monitoring and Extreme Climate Events) in the northwestern part of the Mekong River Basin show upward trends, with the average maximum daily rainfall increasing by 1.8 mm/year and the total extreme precipitation increasing by 18 mm/year on average. The risks of flood and drought disasters will continue to rise. The flood peak period is mainly concentrated in August and September, with the annual maximum flood peak ranging from 5600 to 8500 m3/s. The Stung Treng Station exhibits longer drought duration, greater severity, and higher peak intensity than the Chiang Saen and Pakse Stations. At the Pakse Station, climate change and hydropower development have altered the non-drought proportion by −12.50% and +15.90%, respectively. For the Chiang Saen Station, the fragmentation degree of the drought index time series under the baseline, naturalized, and hydropower development scenarios is 0.901, 1.16, and 0.775, respectively. These results indicate that hydropower development has effectively reduced the frequency of rapid drought–flood transitions within the basin, thereby alleviating pressure on drought management efforts. The regulatory role of the cascade reservoirs in the Lancang River can mitigate risks posed by climate change, weaken adverse effects, reduce flood peak flows, alleviate hydrological droughts in the dry season, and decrease flash drought–flood transitions in the basin. The research findings can enable basin managers to proactively address climate change, develop science-based technical pathways for hydropower dispatch, and formulate adaptive disaster prevention and mitigation strategies. Full article
(This article belongs to the Section Water and Climate Change)
28 pages, 19171 KiB  
Article
Spatiotemporal Evolution of Precipitation Concentration in the Yangtze River Basin (1960–2019): Associations with Extreme Heavy Precipitation and Validation Using GPM IMERG
by Tao Jin, Yuliang Zhou, Ping Zhou, Ziling Zheng, Rongxing Zhou, Yanqi Wei, Yuliang Zhang and Juliang Jin
Remote Sens. 2025, 17(15), 2732; https://doi.org/10.3390/rs17152732 - 7 Aug 2025
Abstract
Precipitation concentration reflects the uneven temporal distribution of rainfall. It plays a critical role in water resource management and flood–drought risk under climate change. However, its long-term trends, associations with atmospheric teleconnections as potential drivers, and links to extreme heavy precipitation events remain [...] Read more.
Precipitation concentration reflects the uneven temporal distribution of rainfall. It plays a critical role in water resource management and flood–drought risk under climate change. However, its long-term trends, associations with atmospheric teleconnections as potential drivers, and links to extreme heavy precipitation events remain poorly understood in complex basins like the Yangtze River Basin. This study analyzes these aspects using ground station data from 1960 to 2019 and conducts a comparison using the Global Precipitation Measurement Integrated Multi-satellitE Retrievals for GPM (GPM IMERG) satellite product. We calculated three indices—Daily Precipitation Concentration Index (PCID), Monthly Precipitation Concentration Index (PCIM), and Seasonal Precipitation Concentration Index (SPCI)—to quantify rainfall unevenness, selected for their ability to capture multi-scale variability and associations with extremes. Key methods include Mann–Kendall trend tests for detecting changes, Hurst exponents for persistence, Pettitt detection for abrupt shifts, random forest modeling to assess atmospheric teleconnections, and hot spot analysis for spatial clustering. Results show a significant basin-wide decrease in PCID, driven by increased frequency of small-to-moderate rainfall events, with strong spatial synchrony to extreme heavy precipitation indices. PCIM is most strongly associated with El Niño-Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO). GPM IMERG captures PCIM patterns well but underestimates PCID trends and magnitudes, highlighting limitations in daily-scale resolution. These findings provide a benchmark for satellite product improvement and support adaptive strategies for extreme precipitation risks in changing climates. Full article
(This article belongs to the Special Issue Remote Sensing in Hydrometeorology and Natural Hazards)
Show Figures

Figure 1

17 pages, 6476 KiB  
Article
Spatiotemporal Exposure to Heavy-Day Rainfall in the Western Himalaya Mapped with Remote Sensing, GIS, and Deep Learning
by Zahid Ahmad Dar, Saurabh Kumar Gupta, Shruti Kanga, Suraj Kumar Singh, Gowhar Meraj, Pankaj Kumar, Bhartendu Sajan, Bojan Đurin, Nikola Kranjčić and Dragana Dogančić
Geomatics 2025, 5(3), 37; https://doi.org/10.3390/geomatics5030037 - 7 Aug 2025
Abstract
Heavy rainfall events, characterized by extreme downpours that exceed 100 mm per day, pose an intensifying hazard to the densely settled valleys of the western Himalaya; however, their coupling with expanding urban land cover remains under-quantified. This study mapped the spatiotemporal exposure of [...] Read more.
Heavy rainfall events, characterized by extreme downpours that exceed 100 mm per day, pose an intensifying hazard to the densely settled valleys of the western Himalaya; however, their coupling with expanding urban land cover remains under-quantified. This study mapped the spatiotemporal exposure of built-up areas to heavy-day rainfall (HDR) across Jammu, Kashmir, and Ladakh and the adjoining areas by integrating daily Climate Hazards Group InfraRed Precipitation with Stations product (CHIRPS) precipitation (0.05°) with Global Human Settlement Layer (GHSL) built-up fractions within the Google Earth Engine (GEE). Given the limited sub-hourly observations, a daily threshold of ≥100 mm was adopted as a proxy for HDR, with sensitivity evaluated at alternative thresholds. The results showed that HDR is strongly clustered along the Kashmir Valley and the Pir Panjal flank, as demonstrated by the mean annual count of threshold-exceeding pixels increasing from 12 yr−1 (2000–2010) to 18 yr−1 (2011–2020), with two pixel-scale hotspots recurring southwest of Srinagar and near Baramulla regions. The cumulative high-intensity areas covered 31,555.26 km2, whereas 37,897.04 km2 of adjacent terrain registered no HDR events. Within this hazard belt, the exposed built-up area increased from 45 km2 in 2000 to 72 km2 in 2020, totaling 828 km2. The years with the most expansive rainfall footprints, 344 km2 (2010), 520 km2 (2012), and 650 km2 (2014), coincided with heavy Western Disturbances (WDs) and locally vigorous convection, producing the largest exposure increments. We also performed a forecast using a univariate long short-term memory (LSTM), outperforming Autoregressive Integrated Moving Average (ARIMA) and linear baselines on a 2017–2020 holdout (Root Mean Square Error, RMSE 0.82 km2; measure of errors, MAE 0.65 km2; R2 0.89), projecting the annual built-up area intersecting HDR to increase from ~320 km2 (2021) to ~420 km2 (2030); 95% prediction intervals widened from ±6 to ±11 km2 and remained above the historical median (~70 km2). In the absence of a long-term increase in total annual precipitation, the projected rise most likely reflects continued urban encroachment into recurrent high-intensity zones. The resulting spatial masks and exposure trajectories provide operational evidence to guide zoning, drainage design, and early warning protocols in the region. Full article
Show Figures

Figure 1

27 pages, 16782 KiB  
Article
Response of Grain Yield to Extreme Precipitation in Major Grain-Producing Areas of China Against the Background of Climate Change—A Case Study of Henan Province
by Keding Sheng, Rui Li, Fengqiuli Zhang, Tongde Chen, Peng Liu, Yanan Hu, Bingyin Li and Zhiyuan Song
Water 2025, 17(15), 2342; https://doi.org/10.3390/w17152342 - 6 Aug 2025
Abstract
Based on the panel data of daily meteorological stations and winter wheat yield in Henan Province from 2000 to 2023, this study comprehensively used the Mann–Kendall trend test, wavelet coherence analysis (WTC), and other methods to reveal the temporal and spatial evolution of [...] Read more.
Based on the panel data of daily meteorological stations and winter wheat yield in Henan Province from 2000 to 2023, this study comprehensively used the Mann–Kendall trend test, wavelet coherence analysis (WTC), and other methods to reveal the temporal and spatial evolution of extreme precipitation and its multi-scale stress mechanism on grain yield. The results showed the following: (1) Extreme precipitation showed the characteristics of ‘frequent fluctuation-gentle trend-strong spatial heterogeneity’, and the maximum daily precipitation in spring (RX1DAY) showed a significant uplift. The increase in rainstorm events (R95p/R99p) in the southern region during the summer is particularly prominent; at the same time, the number of consecutive drought days (CDDs > 15 d) in the middle of autumn was significantly prolonged. It was also found that 2010 is a significant mutation node. Since then, the synergistic effect of ‘increasing drought days–increasing rainstorm frequency’ has begun to appear, and the short-period coherence of super-strong precipitation (R99p) has risen to more than 0.8. (2) The spatial pattern of winter wheat in Henan is characterized by the three-level differentiation of ‘stable core area, sensitive transition zone and shrinking suburban area’, and the stability of winter wheat has improved but there are still local risks. (3) There is a multi-scale stress mechanism of extreme precipitation on winter wheat yield. The long-period (4–8 years) drought and flood events drive the system risk through a 1–2-year lag effect (short-period (0.5–2 years) medium rainstorm intensity directly impacted the production system). This study proposes a ‘sub-scale governance’ strategy, using a 1–2-year lag window to establish a rainstorm warning mechanism, and optimizing drainage facilities for high-risk areas of floods in the south to improve the climate resilience of the agricultural system against the background of climate change. Full article
(This article belongs to the Special Issue Soil Erosion and Soil and Water Conservation, 2nd Edition)
Show Figures

Figure 1

21 pages, 7111 KiB  
Article
Seasonal Variation in Energy Balance, Evapotranspiration and Net Ecosystem Production in a Desert Ecosystem of Dengkou, Inner Mongolia, China
by Muhammad Zain Ul Abidin, Huijie Xiao, Sanaullah Magsi, Fang Hongxin, Komal Muskan, Phuocthoi Hoang and Muhammad Azher Hassan
Water 2025, 17(15), 2307; https://doi.org/10.3390/w17152307 - 3 Aug 2025
Viewed by 261
Abstract
This study investigates the seasonal dynamics of energy balance, evapotranspiration (ET), and Net Ecosystem Production (NEP) in the Dengkou desert ecosystem of Inner Mongolia, China. Using eddy covariance and meteorological data from 2019 to 2022, the research focuses on understanding how these processes [...] Read more.
This study investigates the seasonal dynamics of energy balance, evapotranspiration (ET), and Net Ecosystem Production (NEP) in the Dengkou desert ecosystem of Inner Mongolia, China. Using eddy covariance and meteorological data from 2019 to 2022, the research focuses on understanding how these processes interact in one of the world’s most water-limited environments. This arid research area received an average of 109.35 mm per annum precipitation over the studied period, classifying the region as a typical arid ecosystem. Seasonal patterns were observed in daily air temperature, with extremes ranging from −20.6 °C to 29.6 °C. Temporal variations in sensible heat flux (H), latent heat flux (LE), and net radiation (Rn) peaked during summer season. The average ground heat flux (G) was mostly positive throughout the observation period, indicating heat transmission from atmosphere to soil, but showed negative values during the winter season. The energy balance ratio for the studied period was in the range of 0.61 to 0.80, indicating challenges in achieving energy closure and ecological shifts. ET exhibited two annual peaks influenced by vegetation growth and climate change, with annual ET exceeding annual precipitation, except in 2021. Net ecosystem production (NEP) from 2019 to 2020 revealed that the Dengkou desert were a net source of carbon, indicating the carbon loss from the ecosystem. In 2021, the Dengkou ecosystem shifted to become a net carbon sink, effectively sequestrating carbon. However, this was sharply reversed in 2022, resulting in a significant net release of carbon. The study findings highlight the complex interactions between energy balance components, ET, and NEP in desert ecosystems, providing insights into sustainable water management and carbon neutrality strategies in arid regions under climate change effect. Full article
(This article belongs to the Special Issue The Observation and Modeling of Surface Air Hydrological Factors)
Show Figures

Graphical abstract

24 pages, 3832 KiB  
Article
Temperature and Precipitation Extremes Under SSP Emission Scenarios with GISS-E2.1 Model
by Larissa S. Nazarenko, Nickolai L. Tausnev and Maxwell T. Elling
Atmosphere 2025, 16(8), 920; https://doi.org/10.3390/atmos16080920 - 30 Jul 2025
Viewed by 267
Abstract
Atmospheric warming results in increase in temperatures for the mean, the coldest, and the hottest day of the year, season, or month. Global warming leads to a large increase in the atmospheric water vapor content and to changes in the hydrological cycle, which [...] Read more.
Atmospheric warming results in increase in temperatures for the mean, the coldest, and the hottest day of the year, season, or month. Global warming leads to a large increase in the atmospheric water vapor content and to changes in the hydrological cycle, which include an intensification of precipitation extremes. Using the GISS-E2.1 climate model, we present the future changes in the coldest and hottest daily temperatures as well as in extreme precipitation indices (under four main Shared Socioeconomic Pathways (SSPs)). The increase in the wet-day precipitation ranges between 6% and 15% per 1 °C global surface temperature warming. Scaling of the 95th percentile versus the total precipitation showed that the sensitivity for the extreme precipitation to the warming is about 10 times stronger than that for the mean total precipitation. For six precipitation extreme indices (Total Precipitation, R95p, RX5day, R10mm, SDII, and CDD), the histograms of probability density functions become flatter, with reduced peaks and increased spread for the global mean compared to the historical period of 1850–2014. The mean values shift to the right end (toward larger precipitation and intensity). The higher the GHG emission of the SSP scenario, the more significant the increase in the index change. We found an intensification of precipitation over the globe but large uncertainties remained regionally and at different scales, especially for extremes. Over land, there is a strong increase in precipitation for the wettest day in all seasons over the mid and high latitudes of the Northern Hemisphere. There is an enlargement of the drying patterns in the subtropics including over large regions around Mediterranean, southern Africa, and western Eurasia. For the continental averages, the reduction in total precipitation was found for South America, Europe, Africa, and Australia, and there is an increase in total precipitation over North America, Asia, and the continental Russian Arctic. Over the continental Russian Arctic, there is an increase in all precipitation extremes and a consistent decrease in CDD for all SSP scenarios, with the maximum increase of more than 90% for R95p and R10 mm observed under SSP5–8.5. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

27 pages, 3840 KiB  
Article
A Study of Monthly Precipitation Timeseries from Argentina (Corrientes, Córdoba, Buenos Aires, and Bahía Blanca) for the Period of 1860–2023
by Pablo O. Canziani, S. Gabriela Lakkis and Adrián E. Yuchechen
Atmosphere 2025, 16(8), 914; https://doi.org/10.3390/atmos16080914 - 29 Jul 2025
Viewed by 254
Abstract
This study investigates the long-term variability and extremes of monthly precipitation during 150 years or more at 4 locations in Argentina: Corrientes, Córdoba, Buenos Aires, and Bahía Blanca. Annual and seasonal trends, extreme dry and wet months over the whole period, and the [...] Read more.
This study investigates the long-term variability and extremes of monthly precipitation during 150 years or more at 4 locations in Argentina: Corrientes, Córdoba, Buenos Aires, and Bahía Blanca. Annual and seasonal trends, extreme dry and wet months over the whole period, and the relationships between large-scale climate drivers and monthly rainfall are considered. Results show that, except for Córdoba, the complete anomaly timeseries trend analysis for all other stations yielded null trends over the centennial study period. Considerable month-to-month variability is observed for all locations together with the existence of low-frequency decadal to interdecadal variability, both for monthly precipitation anomalies and for statistically significant excess and deficit months. Linear fits considering oceanic climate indicators as drivers of variability yield significant differences between locations, while not between full records and seasonally sampled. Issues regarding the use of linear analysis to quantify variability, the dispersion along the timeline of record extreme rainy months at each location, together with the evidence of severe daily precipitation events not necessarily coinciding with the ranking of the rainiest months at each location, highlights the challenges of understanding the drivers of variability of both monthly and severe daily precipitation and the need of using extended centennial timeseries whenever possible. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

17 pages, 4550 KiB  
Article
Spatiotemporal Characteristics and Associated Circulation Features of Summer Extreme Precipitation in the Yellow River Basin
by Degui Yao, Xiaohui Wang and Jinyu Wang
Atmosphere 2025, 16(7), 892; https://doi.org/10.3390/atmos16070892 - 21 Jul 2025
Viewed by 180
Abstract
By utilizing daily precipitation data from 400 meteorological stations in the Yellow River Basin (YRB) of China, atmospheric and oceanic reanalysis data, this study investigates the climatological characteristics, leading modes, and relationships with atmospheric circulation and sea surface temperature (SST) of summer extreme [...] Read more.
By utilizing daily precipitation data from 400 meteorological stations in the Yellow River Basin (YRB) of China, atmospheric and oceanic reanalysis data, this study investigates the climatological characteristics, leading modes, and relationships with atmospheric circulation and sea surface temperature (SST) of summer extreme precipitation in the YRB from 1981 to 2020 through the extreme precipitation metrics and Empirical Orthogonal Function (EOF) analysis. The results indicate that both the frequency and intensity of extreme precipitation exhibit an eastward and southward increasing pattern in terms of climate state, with regions of higher precipitation showing greater interannual variability. When precipitation in the YRB exhibits a spatially coherent enhancement pattern, high latitudes exhibits an Eurasian teleconnection wave train that facilitates the southward movement of cold air. Concurrently, the northward extension of the Western Pacific subtropical high (WPSH) enhances moisture transport from low latitudes to the YRB, against the backdrop of a transitioning SST pattern from El Niño to La Niña. When precipitation in the YRB shows a “south-increase, north-decrease” dipole pattern, the southward-shifted Ural high and westward-extended WPSH converge cold air and moist in the southern YRB region, with no dominant SST drivers identified. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

16 pages, 3426 KiB  
Article
Climate Projections and Time Series Analysis over Roma Fiumicino Airport Using COSMO-CLM: Insights from Advanced Statistical Methods
by Edoardo Bucchignani
Atmosphere 2025, 16(7), 843; https://doi.org/10.3390/atmos16070843 - 11 Jul 2025
Viewed by 452
Abstract
The evaluation of climate change effects on airport infrastructures is important to maintain safety and flexibility in air travel operations. Airports are particularly vulnerable to extreme weather events and temperature fluctuations, which can disrupt operations, compromise passenger safety, and cause economic losses. Issues [...] Read more.
The evaluation of climate change effects on airport infrastructures is important to maintain safety and flexibility in air travel operations. Airports are particularly vulnerable to extreme weather events and temperature fluctuations, which can disrupt operations, compromise passenger safety, and cause economic losses. Issues such as flooded runways and the disruption of power supplies highlight the need for strong adaptation strategies. The study focuses on the application of the high-resolution regional model COSMO-CLM to assess climate change impacts on Roma Fiumicino airport (Italy) under the IPCC RCP8.5 scenario. The complex topography of Italy requires fine-scale simulation to catch localized climate dynamics. By employing advanced statistical methods, such as fractal analysis, this research aims to increase an understanding of climate change and improve the model prediction capability. The findings provide valuable insights for designing resilient airport infrastructures and updating operational protocols in view of evolving climate risks. A consistent increase in daily temperatures is projected, along with a modest positive trend in annual precipitation. The use of advanced statistical methods revealed insights into the fractal dimensions and frequency components of climate variables, showing an increasing complexity and variability of future climatic patterns. Full article
(This article belongs to the Section Climatology)
Show Figures

Figure 1

16 pages, 3074 KiB  
Article
Evaluation of a BCC-CPSv3-S2Sv2 Model for the Monthly Prediction of Summer Extreme Precipitation in the Yellow River Basin
by Zhe Li, Zhongyuan Xia and Jiaying Ke
Atmosphere 2025, 16(7), 830; https://doi.org/10.3390/atmos16070830 - 9 Jul 2025
Viewed by 249
Abstract
The performance of monthly prediction of extreme precipitation from the BCC-CPSv3-S2Sv2 model over the Yellow River Basin (YRB) using historical hindcast data from 2008 to 2022 was evaluated in this study, mainly from three aspects: overall performance in predicting daily precipitation rates, systematic [...] Read more.
The performance of monthly prediction of extreme precipitation from the BCC-CPSv3-S2Sv2 model over the Yellow River Basin (YRB) using historical hindcast data from 2008 to 2022 was evaluated in this study, mainly from three aspects: overall performance in predicting daily precipitation rates, systematic biases, and monthly prediction of extreme precipitation metrics. The results showed that the BCC-CPSv3-S2Sv2 model demonstrates approximately 10-day predictive skill for summer daily precipitation over the YRB. Relatively higher skill regions concentrate in the central basin, while skill degradation proves more pronounced in downstream areas compared to the upper basin. After correcting model systematic biases, prediction skills for total precipitation-related metrics significantly surpass those of extreme precipitation indices, and metrics related to precipitation amounts demonstrate relatively higher skill compared to those associated with precipitation days. Total precipitation (TP) and rainy days (RD) exhibit comparable skills in June and July, with August showing weaker performance. Nevertheless, basin-wide predictions within 10-day lead times remain practically valuable for most regions. Prediction skills for extreme precipitation amounts and extreme precipitation days share similar spatiotemporal patterns, with high-skill regions shifting progressively south-to-north from June to August. Significant skills for June–July are constrained within 10-day leads, while August skills rarely exceed 1 week. Further analysis reveals that the predictive capability of the model predominantly originates from normal or below-normal precipitation years, whereas the accurate forecasting of extremely wet years remains a critical challenge, which highlights limitations in capturing mechanisms governing exceptional precipitation events. Full article
(This article belongs to the Section Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

18 pages, 6379 KiB  
Article
Assessing Extreme Precipitation in Northwest China’s Inland River Basin Under a Novel Low Radiative Forcing Scenario
by Mingjie Yang, Lianqing Xue, Tao Lin, Peng Zhang and Yuanhong Liu
Water 2025, 17(13), 2009; https://doi.org/10.3390/w17132009 - 4 Jul 2025
Viewed by 355
Abstract
Accelerating climate change poses significant risks to water security and ecological stability in arid regions due to the increasing frequency and intensity of extreme precipitation events. As a climate-sensitive area, the inland river basin (IRB) of Northwest China—a critical water source for local [...] Read more.
Accelerating climate change poses significant risks to water security and ecological stability in arid regions due to the increasing frequency and intensity of extreme precipitation events. As a climate-sensitive area, the inland river basin (IRB) of Northwest China—a critical water source for local ecosystems and socioeconomic activities—remains insufficiently studied in terms of future extreme precipitation dynamics. This study evaluated the spatiotemporal evolution of extreme precipitation in the IRB under a new low radiative forcing scenario (SSP1-1.9) by employing four global climate models (GCMs: GFDL-ESM4, MRI-ESM2, MIROC6, and IPSL-CM6A-LR). Eight core extreme precipitation indices were analyzed to quantify changes during the near future (NF: 2021–2050) and far future (FF: 2071–2100) periods. Our research demonstrated that all four models were capable of capturing seasonal patterns and exhibited inherent uncertainty. The annual total precipitation (PRCPTOT) in mountainous regions showed minimal variation, while desert areas were projected to experience a 2-6-fold increase in precipitation in the NF and FF. The Precipitation Intensity Index (SDII) weakened by approximately −10% in mountainous areas but strengthened by around +10% in desert regions. Most mountainous areas showed an increase in the maximum consecutive dry days (CDD), whereas desert regions exhibited extended maximum consecutive wet days (CWD). Moderate rainfall (P1025) variations primarily ranged between −5% and +20%, with greater fluctuations in desert areas. Heavy rainfall (PG25) fluctuated between −40% and +40%, reflecting stark contrasts in extreme precipitation between arid basins and mountainous zones. The maximum 1-day precipitation (Rx1day) and maximum 5-day precipitation (Rx5day) both showed significant increases, which indicated heightened risks from extreme rainfall events in the future. Moreover, the IRB region experienced increased total precipitation, enhanced rainfall intensity, more frequent alternations between drought and precipitation, more frequent moderate-to-heavy rainfall days, and higher daily precipitation extremes in both the NF and FF periods. These findings provide critical data for regional development planning and emergency response strategy formulation. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

26 pages, 5006 KiB  
Article
Kilometer-Scale Regional Modeling of Precipitation Projections for Bulgaria Using HPC Discoverer
by Rilka Valcheva and Ivan Popov
Atmosphere 2025, 16(7), 814; https://doi.org/10.3390/atmos16070814 - 3 Jul 2025
Viewed by 354
Abstract
The main goal of this study is to present future changes in various precipitation indices at a kilometer-scale resolution for Bulgaria on an annual and seasonal basis. Numerical simulations were conducted using the Non-Hydrostatic Regional Climate Model version 4 (RegCM4-NH) following the Coordinated [...] Read more.
The main goal of this study is to present future changes in various precipitation indices at a kilometer-scale resolution for Bulgaria on an annual and seasonal basis. Numerical simulations were conducted using the Non-Hydrostatic Regional Climate Model version 4 (RegCM4-NH) following the Coordinated Regional Climate Downscaling Experiment Flagship Pilot Study protocol for three 10-year periods (1995–2004, 2041–2050, and 2090–2099), with horizontal grid resolutions of 15 km and 3 km, on the petascale supercomputer HPC Discoverer at Sofia Tech Park. Data from the Hadley Centre Global Environment Model version 2 (HadGEM2-ES), based on the Representative Concentration Pathway 8.5 (RCP8.5) scenario, were used as boundary conditions for the regional climate model (RCM) simulations, which were subsequently downscaled to the kilometer-scale (3 km) simulations using a one-way nesting approach. High-resolution model data were compared with high-resolution observational datasets as well as lower-resolution (15 km) data. Future changes in precipitation indices were analyzed on both annual and seasonal scales, including mean daily and hourly precipitation, the frequency and intensity of wet days (>1 mm/day) and wet hours (>0.1 mm/hour), extreme daily precipitation (99th percentile, p99), and extreme hourly precipitation (99.9th percentile, p99.9) for both future periods. Additionally, changes in near-surface (2 m) temperature and surface snow amount were also presented. There is no substantial difference in projected temperature change between the resolutions. A positive trend in annual mean precipitation is expected in the near future. Extreme precipitation (p99 and p99.9) is projected to increase in spring and winter, accompanied by a rise in daily and hourly precipitation intensity across both future periods. An increase in surface snow amount is observed in the central Danubian Plain, Thracian Lowland, and parts of the Rila and Pirin mountains for the near-future period. However, surface snow amount is expected to decrease by the end of the century. Full article
(This article belongs to the Section Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

21 pages, 11460 KiB  
Article
Changes in the Intra-Annual Precipitation Regime in Poland from 1966 to 2024
by Joanna Wibig and Joanna Jędruszkiewicz
Atmosphere 2025, 16(7), 813; https://doi.org/10.3390/atmos16070813 - 3 Jul 2025
Viewed by 764
Abstract
Many studies relate to long-term changes in annual precipitation in Poland, yet most of them were statistically insignificant. The primary objective of this research was to investigate the precipitation regime during the year in the context of climate change, which is more crucial [...] Read more.
Many studies relate to long-term changes in annual precipitation in Poland, yet most of them were statistically insignificant. The primary objective of this research was to investigate the precipitation regime during the year in the context of climate change, which is more crucial than annual averages from the perspectives of agriculture and plant growth, as well as for the industrial sector and human access to clean water. For this reason, we used daily precipitation data from the Institute of Meteorology and Water Management—National Research Institute from 1966 to 2024. Each month of the study was examined for changes in monthly totals, the number of dry and wet days, precipitation intensities, and extremes. In the cold season, a considerable shift in precipitation patterns was found between November and December, which became drier, and January and February, which became wetter with more intense and extreme precipitation. Pronounced changes were also noticed in April and June, when not only the monthly totals but also the number of wet days and precipitation intensity decreased. These two months, together with winter, are essential for plant growth. On the contrary, July became slightly wetter. Interesting changes were also observed in September, including an increase in dry days and more intense rainfall. With the increase in temperature and changes in the advection of air masses, September became more similar to summer than to autumn months. The key factors driving shifts in precipitation regimes during the year were a warmer atmosphere and changes in circulation patterns. Full article
(This article belongs to the Section Climatology)
Show Figures

Figure 1

23 pages, 3151 KiB  
Article
Should We Use Quantile-Mapping-Based Methods in a Climate Change Context? A “Perfect Model” Experiment
by Mathieu Vrac, Harilaos Loukos, Thomas Noël and Dimitri Defrance
Climate 2025, 13(7), 137; https://doi.org/10.3390/cli13070137 - 1 Jul 2025
Viewed by 1117
Abstract
This study assesses the use of Quantile-Mapping methods for bias correction and downscaling in climate change studies. A “Perfect Model Experiment” is conducted using high-resolution climate simulations as pseudo-references and coarser versions as biased data. The focus is on European daily temperature and [...] Read more.
This study assesses the use of Quantile-Mapping methods for bias correction and downscaling in climate change studies. A “Perfect Model Experiment” is conducted using high-resolution climate simulations as pseudo-references and coarser versions as biased data. The focus is on European daily temperature and precipitation under the RCP 8.5 scenario. Six methods are tested: an empirical Quantile-Mapping approach, the “Cumulative Distribution Function—transform” (CDF-t) method, and four CDF-t variants with different parameters. Their performance is evaluated based on univariate and multivariate properties over the calibration period (1981–2010) and a future period (2071–2100). The results show that while Quantile Mapping and CDF-t perform similarly during calibration, significant differences arise in future projections. Quantile Mapping exhibits biases in the means, standard deviations, and extremes, failing to capture the climate change signal. CDF-t and its variants show smaller biases, with one variant proving particularly robust. The choice of discretization parameter in CDF-t is crucial, as the low number of bins increases the biases. This study concludes that Quantile Mapping is not appropriate for adjustments in a climate change context, whereas CDF-t, especially a variant that stabilizes extremes, offers a more reliable alternative. Full article
Show Figures

Figure 1

25 pages, 6923 KiB  
Article
Groundwater Level Response to Precipitation and Potential Climate Trends
by Miguel A. Medina
Water 2025, 17(13), 1882; https://doi.org/10.3390/w17131882 - 24 Jun 2025
Viewed by 857
Abstract
Stream–aquifer interactions, as well as surface water/groundwater interactions within wetlands, require a solution of complex partial differential equations of flow and contaminant transport, namely a deterministic approach. Groundwater level (GWL) responses to precipitation, particularly for extreme value events such as annual maxima, require [...] Read more.
Stream–aquifer interactions, as well as surface water/groundwater interactions within wetlands, require a solution of complex partial differential equations of flow and contaminant transport, namely a deterministic approach. Groundwater level (GWL) responses to precipitation, particularly for extreme value events such as annual maxima, require a probabilistic approach to evaluate potential climate trends. It is commonly assumed that the distribution of annual maxima series (AMS) precipitation follows the generalized extreme value distribution (GEV). If the extremes of the data are nonstationary, it is possible to incorporate this knowledge into the parameters of the GEV. This approach is also applied to the computed annual maxima of daily groundwater level data. Nonstationary versus stationary time series for both groundwater level and AMS 24-h duration precipitation are compared for National Oceanic and Atmospheric Administration (NOAA) stations with nearby wells. Predicted extreme value analysis (EVA) climate trends for wells penetrating limestone aquifers directly beneath rainfall monitoring stations at major airports indicate similar GWL response. Groundwater levels at wells located near coastlines are partially impacted by sea level rise. An extreme value analysis of the GWL is shown to be a useful tool to confirm hydrologic connections and long-term climate trends. Full article
(This article belongs to the Special Issue Groundwater Flow and Transport Modeling in Aquifer Systems)
Show Figures

Figure 1

Back to TopTop