Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,180)

Search Parameters:
Keywords = extracellular-signal-regulated kinase (Erk)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2558 KB  
Article
Standardized Hericium erinaceus Extract Powder Improves Scopolamine-Induced Cognitive Deficits via BDNF-Mediated Neuroplasticity
by Seon-Hyeok Kim, Se Jeong Kim, Eun Ji Ko, Hae Ran Lee, Seong Min Hong, Se Hwan Ryu, Dae Hee Lee, Young Guk Kim, Jeong Yun Yu, Jae Kang Lee, Mi Kyeong Lee and Sun Yeou Kim
Sci. Pharm. 2026, 94(1), 12; https://doi.org/10.3390/scipharm94010012 - 23 Jan 2026
Abstract
Alzheimer’s disease and related neurodegenerative disorders are associated with progressive cognitive decline, primarily driven by cholinergic dysfunction and impaired synaptic signaling. Hericium erinaceus, also known as lion’s mane mushroom, has been reported to promote neuronal differentiation and synaptic plasticity. In this study, [...] Read more.
Alzheimer’s disease and related neurodegenerative disorders are associated with progressive cognitive decline, primarily driven by cholinergic dysfunction and impaired synaptic signaling. Hericium erinaceus, also known as lion’s mane mushroom, has been reported to promote neuronal differentiation and synaptic plasticity. In this study, a standardized H. erinaceus extract powder (HEP) was prepared from fruiting bodies and quantified using hericene A as a marker compound. The neuroprotective effects of HEP were then evaluated in both cellular and animal models of scopolamine-induced cognitive dysfunction. Pretreatment of SH-SY5Y human neuroblastoma cells with HEP (5–25 μg/mL) significantly improved cell viability and reduced scopolamine-induced apoptosis, while enhancing the activation of neuroplasticity-related signaling proteins, including brain-derived neurotrophic factor (BDNF), cAMP response element-binding protein (CREB), and extracellular signal-regulated kinase (ERK). In vivo, oral administration of HEP (300 mg/kg) to scopolamine-treated ICR mice markedly improved cognitive performance, increasing the recognition index to 63.8% compared with 41.6% in the scopolamine group, and enhancing spontaneous alternation in the Y-maze test to 59.6%. These cognitive improvements were accompanied by preserved hippocampal neuronal structure and increased BDNF immunoreactivity. Additionally, HEP improved cholinergic function by restoring serum acetylcholine levels and reducing acetylcholinesterase activity. Collectively, these findings suggest that standardized HEP exerts neuroprotective and cognition-enhancing effects via modulation of cholinergic markers and activation of BDNF-mediated neuroplasticity, highlighting its potential as a functional food ingredient or nutraceutical for preventing cognitive decline related to cholinergic dysfunction. Full article
(This article belongs to the Topic Functional Foods and Nutraceuticals in Health and Disease)
Show Figures

Figure 1

30 pages, 5159 KB  
Article
Garlic-Derived S-allylcysteine Improves Functional Recovery and Neurotrophin Signaling After Brain Ischemia in Female Rats
by Sandra Monserrat Bautista-Perez, Carlos Alfredo Silva-Islas, Maria-del-Carmen Cardenas-Aguayo, Obed-Ricardo Lora-Marín, Maria-del-Carmen Silva-Lucero, Arturo Avendaño-Estrada, Miguel A. Ávila-Rodríguez, Jacqueline V. Lara-Espinosa, Rogelio Hernández-Pando, Martha Menes-Arzate, José Pedraza-Chaverri, Omar Emiliano Aparicio-Trejo, Rosina Sánchez-Thomas, Alejandra Figueroa, Diana Barrera-Oviedo and Perla D. Maldonado
Nutrients 2026, 18(2), 362; https://doi.org/10.3390/nu18020362 - 22 Jan 2026
Viewed by 19
Abstract
Background/Objectives: Ischemic stroke is a leading cause of death and disability, and neuroprotection therapies, or those that increase recovery, are not available. While the garlic-derived bioactive compound S-allyl cysteine (SAC) has shown neuroprotective properties, its subacute long-term effects remain underexplored, particularly in females. [...] Read more.
Background/Objectives: Ischemic stroke is a leading cause of death and disability, and neuroprotection therapies, or those that increase recovery, are not available. While the garlic-derived bioactive compound S-allyl cysteine (SAC) has shown neuroprotective properties, its subacute long-term effects remain underexplored, particularly in females. Methods: We evaluated whether SAC supports functional recovery after ischemia/reperfusion (IR), focusing on neurotrophin signaling, tropomyosin receptor kinase B (TrkB), protein kinase B (AKT), and extracellular signal-regulated kinase (ERK). Adult female Wistar rats underwent 1 h of ischemia and 15 days of reperfusion. SAC (100 mg/kg, i.p.) was administered at the onset of reperfusion and daily for 15 days. Motor and cognitive deficit tests were performed. Infarct area, Ki67, brain-derived neurotrophic factor (BDNF), vascular endothelial growth factor (VEGF), nerve growth factor (NGF), pTrkB, pAKT, and pERK levels were quantified in the cortex, striatum, and hippocampus. Results: MicroPET analysis revealed comparable glucose uptake between the IR and IR + SAC groups, indicating similar ischemic severity. SAC reduced infarct area (54.7%) and significantly improved motor deficits (53.9%), circling behavior (38.9%), and long-term memory compared with ischemia/reperfusion (IR) animals. SAC increased the proportion of Ki67-positive cells (4.3-fold in the cortex and 1.8-fold in the striatum) and enhanced neurotrophin levels, NGF (cortex), BDNF (cortex and striatum), VEGF (striatum), pTrkB, pAKT, and pERK (cortex and striatum). Conclusions: SAC supports post-ischemic recovery, improving motor performance and preserving long-term recognition memory, effects that could be associated with increased cell proliferation, neurotrophin levels, and activation of the TrkB, AKT, and ERK pathways. Full article
(This article belongs to the Special Issue Neuroprotective Roles of Dietary Bioactive Compounds)
Show Figures

Figure 1

40 pages, 4524 KB  
Article
Pharmacologic Modulation of the PAR-2–ERK Axis by Statins Converts Inflammatory Survival Signalling into Apoptosis in Colorectal Cancer Cells
by Layla Amiri, Rajashree Patnaik, Riah Lee Varghese, Bintul Huda and Yajnavalka Banerjee
Int. J. Mol. Sci. 2026, 27(2), 916; https://doi.org/10.3390/ijms27020916 - 16 Jan 2026
Viewed by 119
Abstract
Chronic inflammation constitutes a well-established driver of colorectal carcinogenesis, yet the molecular circuitry linking inflammatory receptor signalling to tumour cell survival remains incompletely delineated. Here we demonstrate that the HMG-CoA reductase inhibitors atorvastatin and rosuvastatin modulate inflammatory survival pathways in colorectal cancer cells [...] Read more.
Chronic inflammation constitutes a well-established driver of colorectal carcinogenesis, yet the molecular circuitry linking inflammatory receptor signalling to tumour cell survival remains incompletely delineated. Here we demonstrate that the HMG-CoA reductase inhibitors atorvastatin and rosuvastatin modulate inflammatory survival pathways in colorectal cancer cells in a manner consistent with targeted interference with the protease-activated receptor 2 (PAR-2)–extracellular signal-regulated kinase (ERK)–tumour necrosis factor-α (TNF-α) signalling axis. Using lipopolysaccharide-stimulated HT-29 and Caco-2 cells as complementary models of inflammatory colorectal malignancy, we show that both statins selectively attenuate PAR-2 expression at the protein and transcript levels while leaving structurally related PAR-1 unaffected. This pattern of receptor modulation is accompanied by suppression of total ERK1/2 expression, ERK1/2 phosphorylation, and the transcriptional target DUSP6, together with attenuation of TNF-α secretion. Importantly, these signaling shifts are associated with dual apoptotic programs; the extrinsic pathway, reflected by transcriptional upregulation and proteolytic activation of caspase-8; and the intrinsic mitochondrial pathway, evidenced by reciprocal modulation of Bcl-2 family proteins favoring Bax over Bcl-2. Both pathways converge upon activation of executioner caspase-3 and an increase in Annexin V-defined apoptotic fractions, indicating re-engagement of programmed cell death under inflammatory stress. Notably, rosuvastatin consistently demonstrates superior potency across signaling endpoints, achieving comparable biological effects at lower concentrations than atorvastatin. Collectively, these data indicate that clinically deployed statins target the PAR-2–ERK axis and are associated with re-activation of apoptotic pathways in inflammatory colorectal cancer models, while leaving open the possibility that additional statin-responsive networks contribute to their pro-apoptotic effects. This mechanistic framework provides biological plausibility for epidemiologic observations linking statin use with reduced colorectal cancer risk and improved outcomes, and supports further translational evaluation of PAR-2-directed statin strategies in colorectal malignancy. Full article
(This article belongs to the Special Issue Colorectal Cancer—Emerging Trends and Treatment Strategies)
Show Figures

Graphical abstract

21 pages, 916 KB  
Review
Biological Roles of Melanin and Natural Product-Derived Approaches for Its Modulation
by Sunghyun Hong, Hanbin Lim and Do-Hee Kim
Int. J. Mol. Sci. 2026, 27(2), 653; https://doi.org/10.3390/ijms27020653 - 8 Jan 2026
Viewed by 312
Abstract
Melanin produced in melanocytes contributes to photoprotection, oxidative stress reduction, immune regulation, and epidermal homeostasis, while its dysregulation underlies diverse pigmentary disorders. Natural products modulate melanogenesis by regulating tyrosinase activity, intracellular signaling pathways such as extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK) and cyclicAMP/protein [...] Read more.
Melanin produced in melanocytes contributes to photoprotection, oxidative stress reduction, immune regulation, and epidermal homeostasis, while its dysregulation underlies diverse pigmentary disorders. Natural products modulate melanogenesis by regulating tyrosinase activity, intracellular signaling pathways such as extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK) and cyclicAMP/protein kinase A/cAMP response element-binding protein (cAMP/PKA/CREB), and cellular redox balance. Anti-melanogenic effects have been reported for various fruit-derived phytochemicals, ginseng-based metabolites, and plant polyphenols, which act through direct enzymatic inhibition, suppression of melanoenic signaling, modulation of melanosome dynamics, and antioxidant or anti-inflammatory activities. Advances in delivery systems, including nano- and microencapsulation platforms, further enhance the stability and topical bioavailability of these compounds. In contrast, certain methoxylated flavonoids and phenolic constituents can stimulate pigmentation by sustaining melanogenic signaling and promoting microphthalmia-associated transcription factor (MITF)-driven transcription, emphasizing the context-dependent and bidirectional influence of natural substances on pigmentation outcomes. Collectively, these findings highlight the therapeutic potential of natural product-based modulators of melanogenesis while underscoring the need for mechanistic clarification, safety evaluation, and translational studies to ensure effective and controlled pigmentation management. This review summarizes the biological functions of melanin and examines natural strategies for regulating pigmentation. Full article
(This article belongs to the Special Issue Molecular Mechanisms for Skin Protection and Aging)
Show Figures

Figure 1

23 pages, 24530 KB  
Article
MFAP5 Activates ITGA5 to Drive Tooth Germ Mineralization Through the MAPK/ERK Pathway: Insights from Single-Cell Transcriptomics
by Xu Wang, Lanxin Gu, Ping Zhang and Yongsheng Zhou
Int. J. Mol. Sci. 2026, 27(1), 394; https://doi.org/10.3390/ijms27010394 - 30 Dec 2025
Viewed by 229
Abstract
Tooth germ development is a precisely orchestrated process dependent on integrated cellular interactions and molecular signals, yet its regulatory mechanisms remain incompletely defined. Here, we constructed a high-resolution cellular atlas of miniature pig tooth germs using 10× single-cell RNA sequencing to investigate the [...] Read more.
Tooth germ development is a precisely orchestrated process dependent on integrated cellular interactions and molecular signals, yet its regulatory mechanisms remain incompletely defined. Here, we constructed a high-resolution cellular atlas of miniature pig tooth germs using 10× single-cell RNA sequencing to investigate the molecular mechanisms underlying tooth mineralization. By leveraging cellular heterogeneity and dynamic gene expression trajectories in epithelial and mesenchymal populations, we identified microfibril-associated protein 5 (MFAP5) as a previously unrecognized regulator of the odontogenic program. Functional assays demonstrate that MFAP5, an extracellular matrix component, is indispensable for mesenchymal differentiation and matrix mineralization in vitro. Mechanistically, MFAP5 engages Integrin alpha-5 (ITGA5) to activate Extracellular Signal-Regulated Kinase/Mitogen-Activated Protein Kinase (ERK/MAPK) signaling in odontoblast-lineage cells, thereby promoting odontoblast differentiation and dentin deposition. Collectively, our single-cell–resolved analyses uncovered a MFAP5–ITGA5–ERK/MAPK signaling axis that operates in a cell-state–specific manner during tooth germ mineralization, providing new mechanistic insights into odontogenic differentiation and a potential molecular basis for dental tissue regeneration strategies. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

15 pages, 3532 KB  
Article
Anticancer Effects of Combined Blue Light and Ionizing Irradiation
by Keita Kitano, Hironori Yoshino, Kosuke Kawanami, Ryosuke Kajimoto and Eichi Tsuruga
Curr. Issues Mol. Biol. 2026, 48(1), 45; https://doi.org/10.3390/cimb48010045 - 29 Dec 2025
Viewed by 224
Abstract
While there have been reports indicating the potential anticancer benefits of blue light irradiation and its enhanced effectiveness when combined with anticancer drugs, no studies have explored its combined use with radiation therapy. In this study, the anticancer effects of blue light irradiation [...] Read more.
While there have been reports indicating the potential anticancer benefits of blue light irradiation and its enhanced effectiveness when combined with anticancer drugs, no studies have explored its combined use with radiation therapy. In this study, the anticancer effects of blue light irradiation alone and in combination with radiation therapy were investigated in vitro. Blue light was applied using a transilluminator (470 nm). For combination experiments, cells were exposed to X-rays 24 h after blue light irradiation. Cell viability was assessed using the trypan blue exclusion method, and protein expression was analyzed by Western blotting. Blue light irradiation suppressed the proliferation of human head and neck squamous cell carcinoma (HNSCC) cells. Furthermore, combined blue light and X-ray irradiation more effectively inhibited the proliferation of human HNSCC cells compared to either irradiation alone. Mechanistically, the irradiation of HNSCC cell line SAS with blue light suppressed the activity of extracellular signal-regulated kinase (ERK1/2), which is an important kinase that is involved in cell proliferation. Collectively, these findings suggest that blue light suppresses the proliferation of HNSCC cells, at least in part through ERK1/2 inactivation observed in SAS cells, and that its combination with radiation may represent a promising therapeutic approach. Full article
(This article belongs to the Section Biochemistry, Molecular and Cellular Biology)
Show Figures

Figure 1

17 pages, 1451 KB  
Review
Targeting the MAPK Pathway in Cancer
by Sultan F. Kadasah
Int. J. Mol. Sci. 2026, 27(1), 214; https://doi.org/10.3390/ijms27010214 - 24 Dec 2025
Viewed by 682
Abstract
The mitogen-activated protein kinase (MAPK) signaling cascade is fundamental in regulating cellular proliferation and differentiation, cell survival and cell death via apoptosis. Disruption of the MAPK signaling cascade at any point can lead to the evasion of apoptosis and unchecked cell growth and [...] Read more.
The mitogen-activated protein kinase (MAPK) signaling cascade is fundamental in regulating cellular proliferation and differentiation, cell survival and cell death via apoptosis. Disruption of the MAPK signaling cascade at any point can lead to the evasion of apoptosis and unchecked cell growth and proliferation, leading to oncogenesis. This narrative review describes MAPK pathway dysregulation, its therapeutic targets, and resistance mechanisms. The therapeutic targeting of the MAPK pathway is complex due to the dual context-dependent roles of several kinases in the signaling cascade. Despite the therapeutic effectiveness of MAPK inhibitors, cancer cells develop chemoresistance that needs to be targeted via bypassing (c-Jun N-terminal kinases) JNK, protein kinase AKT and (mammalian target of rapamycin) mTOR signaling cascades, pairing MAPK inhibitors with multiple immune agents and targeting the MAPK pathway downstream of (extracellular signal-regulated kinase) ERK to prevent its reactivation mechanisms using combination therapies, downstream signaling regulators and (Proteolysis Targeting Chimeras) PROTACs. Additionally, MAPK-mediated regulation of ferroptosis is a novel oncological therapeutic targeting strategy for controlling tumor progression. The inhibition of the RAF/MAPK pathway results in alteration of several key regulators of ferroptosis, including SLCA11, GSH, GPX4 and NCO4A, hence affecting lipid cellular iron concentration and lipid peroxidation. Emerging therapies targeting the MAPK pathway should be designed considering crosstalk, compensatory signaling mechanism activation, the role of ferroptosis and the impact of the tumor microenvironment. Full article
Show Figures

Figure 1

11 pages, 1006 KB  
Article
Elevated Flotillin-1 in Saliva and Salivary Glands: A Novel Non-Invasive Biomarker in an Alzheimer’s Disease Mouse Model
by Sunao Kawakami, Cha-Gyun Jung, Rieko Inoue, Tomohisa Nakamura, Soh Sato and Makoto Michikawa
Diagnostics 2026, 16(1), 61; https://doi.org/10.3390/diagnostics16010061 - 24 Dec 2025
Viewed by 342
Abstract
Background/Objectives: Alzheimer’s disease (AD) is currently diagnosed using established biomarkers, such as reduced cerebrospinal fluid (CSF) Aβ42, increased phosphorylated tau, and cerebral amyloid levels detected by PiB-PET. Because these methods are invasive or require specialized facilities, less invasive and easily detectable [...] Read more.
Background/Objectives: Alzheimer’s disease (AD) is currently diagnosed using established biomarkers, such as reduced cerebrospinal fluid (CSF) Aβ42, increased phosphorylated tau, and cerebral amyloid levels detected by PiB-PET. Because these methods are invasive or require specialized facilities, less invasive and easily detectable biomarkers are needed. Flotillin-1 concentrations are reduced in the CSF and serum of patients with AD. This study examined whether flotillin-1 in saliva, a less invasive specimen than blood, could serve as a biomarker. Methods: Wild-type (WT) and AppNL–G–F (APP knock-in; APP-KI) mice were used to create four groups (2 and 9 months of age, six animals per group). Saliva and salivary glands were collected, and flotillin-1 levels were measured using Western blotting. Intracellular signaling pathways regulating flotillin-1 and salivary gland Aβ42 levels were analyzed using Western blotting and ELISA, respectively. Results: Flotillin-1 levels in the saliva and salivary glands were significantly higher in the 9-month-old APP-KI group than in all other groups, including age-matched WT mice. Phosphorylated extracellular signal-regulated kinase (p-ERK) levels were also significantly elevated in the 9-month-old APP-KI group, whereas phosphorylated c-Jun N-terminal kinase (p-JNK) levels did not differ significantly. Salivary gland Aβ42 levels were markedly increased only in the 9-month-old APP-KI group. Conclusions: Flotillin-1 levels in saliva and salivary glands were significantly elevated in the presence of AD pathology. Aβ accumulation in the salivary glands likely activates the ERK signaling cascade, promoting flotillin-1 expression and secretion. Thus, salivary flotillin-1 may serve as a promising noninvasive biomarker for the early diagnosis of Alzheimer’s disease. Full article
(This article belongs to the Section Clinical Laboratory Medicine)
Show Figures

Figure 1

16 pages, 3034 KB  
Article
DUSP5 Downregulation in Nucleus Accumbens Core Correlates with Cocaine-Induced Maladaptive Synaptic Plasticity
by Juan Pablo Taborda-Bejarano, Michael Meyerink, Debbie C. Crans, Ramani Ramchandran and Constanza Garcia-Keller
Cells 2026, 15(1), 32; https://doi.org/10.3390/cells15010032 - 23 Dec 2025
Viewed by 446
Abstract
The United States is currently facing a drug overdose epidemic. The nucleus accumbens core (NAcore), a brain region critical for reward and aversion behaviors, undergoes structural and functional synaptic adaptations in response to chronic drug exposure. However, the molecular mechanisms underlying these adaptations [...] Read more.
The United States is currently facing a drug overdose epidemic. The nucleus accumbens core (NAcore), a brain region critical for reward and aversion behaviors, undergoes structural and functional synaptic adaptations in response to chronic drug exposure. However, the molecular mechanisms underlying these adaptations remain poorly understood. In this study, we investigate the role of dual-specificity phosphatase 5 (DUSP5), a phosphatase known to deactivate extracellular signal-regulated kinase (ERK), in cocaine-induced neuroplasticity. While prior research has linked other DUSP family members to various drugs of abuse, the specific role of DUSP5 in cocaine addiction remains unexplored. We hypothesized that lack of DUSP5 contributes to cocaine-induced maladaptive synaptic plasticity in NAcore. To test this, we employed a rat cocaine self-administration model and molecular analyses and mined publicly available single-cell RNA sequencing data from cocaine-treated NAcore. Our findings reveal a role for DUSP5 in cocaine-related synaptic and behavioral adaptations, highlighting DUSP5 and DUSP5-associated signaling pathways as potential mechanisms underlying substance use disorders and as candidates for therapeutic intervention. Full article
Show Figures

Figure 1

13 pages, 1782 KB  
Article
In Vivo Assessment of Peripheral and Spinal Neuronal Activity in the PSNL Model: Insights into Neuropathic Pain Mechanisms
by Daisuke Uta, Takuya Yamane, Sosuke Yoneda, Erika Kasai and Toshiaki Kume
Int. J. Mol. Sci. 2026, 27(1), 124; https://doi.org/10.3390/ijms27010124 - 22 Dec 2025
Viewed by 458
Abstract
Neuropathic pain represents a critical challenge in medical research and clinical practice. Enhanced peripheral nerve activity and spinal dorsal horn neuronal firing are thought to contribute to the nociceptive hypersensitivities that are observed in chronic pain conditions, including those modeled by partial sciatic [...] Read more.
Neuropathic pain represents a critical challenge in medical research and clinical practice. Enhanced peripheral nerve activity and spinal dorsal horn neuronal firing are thought to contribute to the nociceptive hypersensitivities that are observed in chronic pain conditions, including those modeled by partial sciatic nerve ligation (PSNL). However, the detailed in vivo neuronal response dynamics and underlying mechanisms in the PSNL model remain to be fully clarified. To better understand these mechanisms, we evaluated dorsal root ganglion (DRG) and spinal dorsal horn neuronal activity in the PSNL model using in vivo approaches. Von Frey testing revealed sustained mechanical allodynia in PSNL animals; withdrawal thresholds were significantly reduced up to day 14 post-surgery. Immunohistochemistry revealed a stimulation-dependent increase in phosphorylated extracellular signal-regulated kinase (pERK)-positive neurons in the DRG, thereby indicating heightened peripheral nerve activity. Additionally, electrophysiological recordings demonstrated the enhanced firing of spinal dorsal horn neurons in response to the same stimuli. Notably, DRG pERK expression changes correlated with spinal neuronal firing frequency. Together, these findings suggest that peripheral nerve activity drives spinal neuronal sensitization, thus elucidating both pain mechanisms in the PSNL model and activity-dependent signaling in neuropathic pain. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Graphical abstract

19 pages, 3502 KB  
Article
Oyster Peptides Prepared by Lactobacillus casei Fermentation Enhance Immune Activity in RAW264.7 Cells via Activation of the MAPK Pathway
by Lingyue Zhong, Yirui Wu, Xuefang Guan, Mei Xu, Juqing Huang, Yafeng Zheng and Qi Wang
Mar. Drugs 2025, 23(12), 484; https://doi.org/10.3390/md23120484 - 18 Dec 2025
Viewed by 710
Abstract
Oyster peptides (OPs) have gained increasing attention for their excellent biological activities, especially immunomodulatory effects. In this study, oyster proteins were fermented using Lactobacillus casei to prepare bioactive peptides, and the effects of fermentation parameters (time, temperature, and inoculum amount) on the degree [...] Read more.
Oyster peptides (OPs) have gained increasing attention for their excellent biological activities, especially immunomodulatory effects. In this study, oyster proteins were fermented using Lactobacillus casei to prepare bioactive peptides, and the effects of fermentation parameters (time, temperature, and inoculum amount) on the degree of hydrolysis (DH) were optimized. The optimal fermentation conditions were determined as 30 h, 35 °C, and 5% inoculum amount, resulting in a DH of 28.24%. Structural characterization showed that OPs were mainly composed of low-molecular-weight peptides (<1000 Da) with high hydrophobic amino acid content, and they exhibited good stability during in vitro gastrointestinal digestion. In vitro immunological evaluation using RAW264.7 macrophages demonstrated that OPs significantly enhanced phagocytic activity and nitric oxide (NO) production, and upregulated the mRNA expression levels of pro-inflammatory cytokines including interleukin (IL)-6, IL-1β, and tumor necrosis factor (TNF)-α. Mechanistically, OPs exerted immunostimulatory effects by specifically activating the extracellular signal-regulated kinase (ERK) pathway within the mitogen-activated protein kinase (MAPK) signaling cascade, without significant alterations in the phosphorylation levels of p38 and c-Jun N-terminal kinase (JNK). These findings highlight the potential of Lactobacillus casei-fermented oyster peptides as natural immunomodulatory ingredients for functional food development. Full article
Show Figures

Figure 1

19 pages, 3199 KB  
Article
Role of the Insulin Receptor in Mediating Cytosolic Delivery of Proteins by a Modified Cell-Penetrating Peptide
by Keito Sugai and Akiko Okuda
Pharmaceuticals 2025, 18(12), 1885; https://doi.org/10.3390/ph18121885 - 12 Dec 2025
Viewed by 389
Abstract
Background: Intracellular delivery of high-molecular-weight proteins is limited by the cell membrane. Cell-penetrating peptides (CPPs) offer a potential solution, but effective cytosolic delivery remains hindered by endosomal sequestration. Pas2r12, a CPP-derived peptide, facilitates cytosolic delivery of proteins including immunoglobulin G. Because Pas2r12 internalization [...] Read more.
Background: Intracellular delivery of high-molecular-weight proteins is limited by the cell membrane. Cell-penetrating peptides (CPPs) offer a potential solution, but effective cytosolic delivery remains hindered by endosomal sequestration. Pas2r12, a CPP-derived peptide, facilitates cytosolic delivery of proteins including immunoglobulin G. Because Pas2r12 internalization occurs via caveolae-dependent endocytosis, we hypothesized that cell-surface receptors contribute to uptake. Methods: HEK293 cells were treated with Pas2r12 alone or complexed with enhanced green fluorescent protein (EGFP). Phosphorylation of insulin receptor (INSR), insulin-like growth factor 1 receptor (IGF1R), and extracellular signal–regulated kinase 1/2 (ERK1/2) was analyzed by Western blot. Linsitinib was used to inhibit INSR/IGF1R kinase activity. Cytosolic delivery was assessed by confocal microscopy, and receptor involvement was evaluated using siRNA-mediated knockdown and receptor overexpression. Results: Pas2r12 alone transiently increased INSR/IGF1R phosphorylation at 2 min (6.6-fold), which was suppressed by linsitinib (1.3-fold), and strongly increased ERK1/2 phosphorylation (6.2-fold), which was not inhibited by linsitinib. Pas2r12–EGFP did not induce detectable INSR/IGF1R phosphorylation in parental cells but increased ERK1/2 phosphorylation (3.4-fold). Linsitinib markedly reduced cytosolic EGFP delivery to 16% of control. INSR knockdown decreased delivery to 13–16%, and IGF1R knockdown to 19–65%. In INSR-overexpressing lines, Pas2r12–EGFP induced INSR/IGF1R phosphorylation (6.0-fold) and enhanced delivery (230–270%). In IGF1R-overexpressing lines, Pas2r12–EGFP did not induce phosphorylation, and delivery decreased to 60–69%. Conclusions: Pas2r12-mediated cytosolic delivery involves both INSR and IGF1R, with INSR contributing more prominently. These findings, including the largely INSR/IGF1R-independent ERK1/2 activation, provide mechanistic insight into Pas2r12-mediated protein delivery. Full article
(This article belongs to the Special Issue Protein and Peptide-Based Drug Delivery)
Show Figures

Graphical abstract

22 pages, 1358 KB  
Review
Beyond Viral Assembly: The Emerging Role of HIV-1 p17 in Vascular Inflammation and Endothelial Dysfunction
by Ylenia Pastorello, Nicoleta Arnaut, Mihaela Straistă, Francesca Caccuri, Arnaldo Caruso and Mark Slevin
Int. J. Mol. Sci. 2025, 26(24), 11949; https://doi.org/10.3390/ijms262411949 - 11 Dec 2025
Viewed by 378
Abstract
p17, the human immunodeficiency virus type 1 (HIV-1) matrix protein traditionally associated with viral assembly, has been recently investigated for its extracellular functions linked to vascular damage. This review examines the molecular and pathogenic signatures by which p17 and its variants (vp17s) contribute [...] Read more.
p17, the human immunodeficiency virus type 1 (HIV-1) matrix protein traditionally associated with viral assembly, has been recently investigated for its extracellular functions linked to vascular damage. This review examines the molecular and pathogenic signatures by which p17 and its variants (vp17s) contribute to endothelial activation, aberrant angiogenesis, and vascular inflammation, highlighting their relevance even under effective antiretroviral therapy (ART). Specifically, p17 exerts chemokine-like activities by binding to chemokine (C-X-C motif) receptor-1 and 2 (CXCR-1/2) on endothelial cells (ECs). This interaction triggers key signaling cascades, including the protein kinase B (Akt)-dependent extracellular signal-regulated kinase (ERK) pathway and endothelin-1/endothelin receptor B axis, driving EC motility, capillary formation, and lymphangiogenesis. Variants such as S75X demonstrate enhanced lymphangiogenic potency, associating them with tumorigenic processes involved in non-Hodgkin lymphoma (NHL) pathogenesis. Importantly, p17 promotes endothelial von Willebrand factor (vWF) storage and secretion, implicating a pro-coagulant state that may trigger the increased thromboembolic risks observed in HIV-positive patients. Furthermore, p17 crosses the blood–brain barrier (BBB) via CXCR-2-mediated pathways, contributing to neuroinflammation by activating microglia and astrocytes and amplifying monocyte chemoattractant protein-1 (MCP-1) levels, therefore playing a critical role in the development of HIV-associated neurocognitive disorders. Hence, the elaboration of potential therapeutic strategies finalized at inhibiting p17/vp17s’ interaction with their receptors could complement ART by addressing HIV-related neurovascular morbidity. Full article
(This article belongs to the Special Issue Advances in HIV Research: Molecular Basis and Potential Therapies)
Show Figures

Figure 1

23 pages, 4639 KB  
Article
Azelastine Inhibits Triple-Negative Breast Cancer Cell Viability via an ARF1-Dependent Mechanism
by Seon Uk Park, Gi Ung Jung, Eun Kyung Paik, Jeong-Yeon Lee, Dong Charn Cho, Hee Kyoung Chung, Hang Joon Jo and Sung Jun Jung
Int. J. Mol. Sci. 2025, 26(24), 11849; https://doi.org/10.3390/ijms262411849 - 8 Dec 2025
Viewed by 445
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype characterized by a lack of targetable receptors, leading to limited treatment options and a critical need for novel therapeutic strategies. This study aimed to evaluate the potential of azelastine, a clinically approved H1-antihistamine, for drug [...] Read more.
Triple-negative breast cancer (TNBC) is an aggressive subtype characterized by a lack of targetable receptors, leading to limited treatment options and a critical need for novel therapeutic strategies. This study aimed to evaluate the potential of azelastine, a clinically approved H1-antihistamine, for drug repositioning against TNBC and to elucidate its underlying HRH1-independent mechanism of action. Cell viability assays (CCK-8) were performed on TNBC cell lines (MDA-MB-231 and BT-549) following treatment with azelastine and its major metabolite, desmethyl azelastine. After observing ambiguous clinical associations between HRH1 expression and patient prognosis, HRH1 dependency was assessed through histamine stimulation and HRH1 knockdown (siRNA). Subsequently, the role of ADP-ribosylation factor 1 (ARF1), found to be overexpressed in TNBC and linked to poor prognosis, was investigated using ARF1 knockdown (siRNA), co-treatment with the Golgi-specific brefeldin A-resistance guanine nucleotide exchange factor 1 (GBF1) inhibitor golgicide A (GCA), and co-treatment with the Drp1 inhibitor M-divi 1. Azelastine and desmethyl azelastine potently reduced MDA-MB-231 cell viability in a dose- and time-dependent manner, achieving cell survivals of 61.3 ± 6.1% (30 µM) and 34.9 ± 3.7% (50 µM) for azelastine, and 52.4 ± 12.5% (30 µM) for desmethyl azelastine, respectively, after 72 h, with an IC50 of 35.93 µM determined for azelastine in MDA-MB-231 cells. Additionally, azelastine significantly reduced the viability of BT-549 cells. Bioinformatic analysis of clinical datasets revealed HRH1 downregulation in tumors and, functionally, neither histamine stimulation nor HRH1 knockdown mediated azelastine cytotoxicity in cell culture. Importantly, ARF1 expression was significantly upregulated in TNBC and associated with poor prognosis. Co-treatment with GCA, preventing ARF1 activation, restored viability to near-control levels, supporting dependence on the GBF1–ARF1 activation axis of azelastine, whereas the Dynamic-related protein 1 (Drp1) inhibitor M-divi 1 not only partially rescued CCK-8-based cell viability but also normalized azelastine-induced loss of MitoTracker™ Red CMXRos signal and partially preserved (4′,6-diamidino-2-phenylindole) DAPI-based cell density, indicating Drp1-dependent mitochondrial dysfunction. Furthermore, azelastine selectively reduced p-ERK phosphorylation in the cell signaling pathway. Azelastine exerts potent anticancer effects in TNBC cells via an HRH1-independent, ARF1-dependent mechanism that attenuates the Extracellular signal-regulated kinase (ERK)–Drp1 axis, and induces Drp1-dependent mitochondrial dysfunction, independent of its canonical HRH1 receptor function. This ARF1-dependent mechanism provides strong scientific rationale for the drug repositioning of azelastine as an effective therapeutic agent for ARF1-driven TNBC. Full article
(This article belongs to the Section Molecular Informatics)
Show Figures

Figure 1

24 pages, 9439 KB  
Article
MAPK Pathway Activation Patterns in the Synovium Reveal ERK1/2 and EGFR as Key Players in Osteoarthritis
by Ivana Jurić, Petar Todorović, Nela Kelam, Danica Boban, Patricija Bajt, Anita Racetin, Matko Rošin, Davor Čarić and Katarina Vukojević
Biomedicines 2025, 13(12), 2992; https://doi.org/10.3390/biomedicines13122992 - 5 Dec 2025
Viewed by 606
Abstract
Background/Objectives: Chronic synovitis is a hallmark of osteoarthritis (OA) progression, driving cartilage degradation via inflammatory mediators. While the MAPK signaling pathway is implicated in OA pathogenesis its activation patterns in hip synovium remain poorly characterized, and regional differences within the synovial membrane [...] Read more.
Background/Objectives: Chronic synovitis is a hallmark of osteoarthritis (OA) progression, driving cartilage degradation via inflammatory mediators. While the MAPK signaling pathway is implicated in OA pathogenesis its activation patterns in hip synovium remain poorly characterized, and regional differences within the synovial membrane have not been systematically examined. This research aims to determine the expression of extracellular signal-regulated kinase 1/2 (ERK1/2), p38 mitogen-activated protein kinase (p38 MAPK), c-Jun N-terminal kinase (JNK), and the Epidermal Growth Factor Receptor (EGFR) in the MAPK signaling pathway in the synovial membrane of osteoarthritic hips. Methods: We compared synovial immunofluorescence expression of the aforementioned proteins in a control (CTRL) group of subjects with femoral neck fractures and a group with hip OA. Results: Higher ERK1/2 immunoexpression was detected in the intima compared with the subintima in the CTRL group (p < 0.05), and a similar distribution was observed in the OA group (p < 0.0001). The intima of the OA group exhibited a considerably greater area percentage of positive signal than the intima of the CTRL group (p < 0.01). In all groups examined, we observed that p38 MAPK expression was markedly more positive in the intima than in the subintima (p < 0.0001), but without statistically significant differences between groups. JNK and EGFR immunoexpression were higher in the intima than in the subintima across all analyzed groups, but the difference did not reach statistical significance (p > 0.05). No differences in the expression of these two markers were detected between the CTRL and OA groups (p > 0.05). Differential analysis of the GEO dataset revealed no significant differences in expression between the OA and CTRL groups in the expression of MAPK1, MAPK3, MAPK8, MAPK9, MAPK10, and MAPK11. EGFR was significantly elevated in OA compared to CTRLs in the differential analysis of the GEO dataset. Conclusions: This study provides the first comprehensive analysis of MAPK pathway activation in hip OA synovium, revealing ERK1/2 as a key player with region-specific upregulation in the synovial intima. Combined with elevated EGFR expression, these findings suggest potential therapeutic targets for hip OA synovitis. The discordance between protein and mRNA levels for ERK1/2 indicates post-transcriptional regulation, warranting further investigation into phosphorylation status and functional activation. Our results support the development of targeted interventions for hip OA, a condition with limited treatment options beyond joint replacement. Full article
(This article belongs to the Section Molecular and Translational Medicine)
Show Figures

Graphical abstract

Back to TopTop