Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (156)

Search Parameters:
Keywords = extracellular chromatin

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 417 KB  
Review
Long noncoding RNAs and microRNAs in Endometriosis
by Edi Muhaxhiri, Maruša Debeljak, Katarina Trebušak Podkrajšek and Helena Ban Frangež
Biomedicines 2025, 13(11), 2777; https://doi.org/10.3390/biomedicines13112777 - 13 Nov 2025
Viewed by 95
Abstract
Endometriosis represents a prevalent gynaecological disorder, impacting around 10% of the female population and affecting as many as 50% of women who are facing challenges with infertility. The pathogenesis of the disease encompasses intricate processes such as the formation of adhesions, degradation of [...] Read more.
Endometriosis represents a prevalent gynaecological disorder, impacting around 10% of the female population and affecting as many as 50% of women who are facing challenges with infertility. The pathogenesis of the disease encompasses intricate processes such as the formation of adhesions, degradation of the extracellular matrix, angiogenesis, increased cell proliferation, impaired apoptosis, and dysregulation of the immune response. Although endometriosis is common, its precise etiology remains unidentified, despite various hypotheses being suggested. Recent findings underscore the significance of non-coding RNAs, specifically long non-coding RNAs (lncRNAs) and microRNAs (miRNAs), which have been identified as important regulators in the development of endometriosis. This literature review integrates findings from various transcriptomic and molecular studies to distinguish between lncRNAs and miRNAs that are associated with direct pathogenic roles and those that simply represent altered gene expression profiles in endometriosis. Particular long non-coding RNAs, such as H19, MALAT1, and LINC01116, are associated with chromatin remodeling, functioning as competitive endogenous RNAs, and influencing critical signaling pathways. Concurrently, specific microRNAs, including the miR-200 family, miR-145, and let-7b, seem to govern processes like epithelial-to-mesenchymal transition, angiogenesis, and cell adhesion. The findings highlight the significant potential of non-coding RNAs to serve as biomarkers for diagnostic purposes and as innovative therapeutic targets. Subsequent research endeavours ought to focus on corroborating these findings and elucidating the specific pathogenic roles of these non-coding RNAs in the context of endometriosis. Full article
(This article belongs to the Special Issue Gynecological Diseases in Cellular and Molecular Perspectives)
31 pages, 1502 KB  
Review
Non-Coding RNAs (microRNAs, lncRNAs, circRNAs) in Adenomyosis: A Systematic Review of Mechanistic and Translational Evidence
by Rafał Watrowski, Stoyan Kostov, Mario Palumbo, Andrea Rosati, Radmila Sparić, Ibrahim Alkatout, Ingolf Juhasz-Böss, Salvatore Giovanni Vitale and Liliana Mereu
Int. J. Mol. Sci. 2025, 26(21), 10713; https://doi.org/10.3390/ijms262110713 - 4 Nov 2025
Viewed by 491
Abstract
Adenomyosis (AM) is a hormonally responsive uterine disorder defined by ectopic endometrial tissue within the myometrium, causing pain, abnormal bleeding, and subfertility. Non-coding RNAs (ncRNAs)—including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs)—are post-transcriptional regulators implicated also in uterine remodeling. We [...] Read more.
Adenomyosis (AM) is a hormonally responsive uterine disorder defined by ectopic endometrial tissue within the myometrium, causing pain, abnormal bleeding, and subfertility. Non-coding RNAs (ncRNAs)—including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs)—are post-transcriptional regulators implicated also in uterine remodeling. We systematically reviewed original studies evaluating ncRNAs in AM using human samples, in vitro and animal models, or bioinformatic approaches. Data sources included PubMed and Google Scholar (inception up to 10 August 2025). Forty-one studies were included and synthesized across mechanistic, diagnostic, and translational domains. miRNAs (n = 31) were the most studied subclass, followed by lncRNAs (n = 10) and circRNAs (n = 5). Recurrent miRNAs such as miR-10b and miR-30c-5p (downregulated, inhibitory) and miR-145 (upregulated, promotive) regulate epithelial invasion, epithelial–mesenchymal transition, and cytoskeletal remodeling via PI3K–AKT/MAPK and Talin1 signaling. The let-7a/LIN28B axis governed estrogen-sensitive proliferation in the junctional zone, while miR-21 exhibited compartment-specific roles in decidualization and ectopic cell survival. Extracellular-vesicle (EV)-bornemiRNAs (e.g., miR-92a-3p, miR-25-3p, miR-4669) contributed to immune polarization and show early diagnostic potential. lncRNAs and circRNAs acted via chromatin modifiers and ceRNA networks. Most findings remain at the discovery stage. Convergent dysregulation was observed in key signaling pathways, including JAK–STAT, Wnt/β-catenin, and Hippo–YAP. ncRNAs regulate critical axes of invasion, proliferation, immune modulation, and hormonal response in AM. Targets with preliminary causal support—miR-10b/ZEB1, let-7a/LIN28B, and miR-145/Talin1—warrant further validation. Circulating miRNAs—especially in EVs—offer promise for non-invasive diagnosis. Full article
(This article belongs to the Special Issue MicroRNAs as Biomarkers and Therapeutic Targets in Human Diseases)
Show Figures

Figure 1

21 pages, 6412 KB  
Review
Eosinophil ETosis and Cancer: Ultrastructural Evidence and Oncological Implications
by Rosario Caruso, Valerio Caruso and Luciana Rigoli
Cancers 2025, 17(19), 3250; https://doi.org/10.3390/cancers17193250 - 7 Oct 2025
Viewed by 691
Abstract
Eosinophils are innate immune cells that infiltrate tissues in response to cell proliferation and necrosis, which occurs during normal injury repair, parasitic infections, allergies, and cancer. Their involvement in cancer is controversial particularly with regard to tumor-associated tissue eosinophilia (TATE) and a recently [...] Read more.
Eosinophils are innate immune cells that infiltrate tissues in response to cell proliferation and necrosis, which occurs during normal injury repair, parasitic infections, allergies, and cancer. Their involvement in cancer is controversial particularly with regard to tumor-associated tissue eosinophilia (TATE) and a recently defined mechanism of extracellular trap cell death (ETosis), a particular type of eosinophil cell death that is distinct from both apoptosis and necrosis. This narrative review synthesizes the literature regarding the prognostic significance of TATE, focusing on eosinophil ETosis and the important role of transmission electron microscopy (TEM) in its detection and morphological characterization. The prognostic role of TATE is contradictory: in certain tumors, it is a favorable prognostic marker, while in others, it is unfavorable. However, recent research reveals that TATE is associated with a better prognosis in non-viral neoplasms, but it may correlate with a poor prognosis in virus-related neoplasms, such as human T-lymphotropic virus type 1 (HTLV-1)-associated lymphomas and HPV-positive carcinomas. Our ultrastructural investigations revealed distinct phases of eosinophil ETosis in gastric cancer, which were defined by chromatin decondensation, plasma membrane disruption, granule discharge, and development of extracellular traps. We observed synapse-like interactions between eosinophils, exhibiting ETosis or compound exocytosis, and tumor cells, which showed various degrees of cellular damage, ultimately leading to colloid-osmotic tumor cell death. TEM provides important insights into eosinophil-mediated cytotoxicity, requiring further investigation as potential immune effector mechanisms in non-viral tumors. TATE evaluation, together with the viral status of the neoplasia, may be useful to confirm its prognostic significance and consequently its therapeutic implication in specific cancers. Full article
(This article belongs to the Section Cancer Immunology and Immunotherapy)
Show Figures

Figure 1

26 pages, 1799 KB  
Review
Mechanotransduction-Epigenetic Coupling in Pulmonary Regeneration: Multifunctional Bioscaffolds as Emerging Tools
by Jing Wang and Anmin Xu
Pharmaceuticals 2025, 18(10), 1487; https://doi.org/10.3390/ph18101487 - 2 Oct 2025
Viewed by 789
Abstract
Pulmonary fibrosis (PF) is a progressive and fatal lung disease characterized by irreversible alveolar destruction and pathological extracellular matrix (ECM) deposition. Currently approved agents (pirfenidone and nintedanib) slow functional decline but do not reverse established fibrosis or restore functional alveoli. Multifunctional bioscaffolds present [...] Read more.
Pulmonary fibrosis (PF) is a progressive and fatal lung disease characterized by irreversible alveolar destruction and pathological extracellular matrix (ECM) deposition. Currently approved agents (pirfenidone and nintedanib) slow functional decline but do not reverse established fibrosis or restore functional alveoli. Multifunctional bioscaffolds present a promising therapeutic strategy through targeted modulation of critical cellular processes, including proliferation, migration, and differentiation. This review synthesizes recent advances in scaffold-based interventions for PF, with a focus on their dual mechano-epigenetic regulatory functions. We delineate how scaffold properties (elastic modulus, stiffness gradients, dynamic mechanical cues) direct cell fate decisions via mechanotransduction pathways, exemplified by focal adhesion–cytoskeleton coupling. Critically, we highlight how pathological mechanical inputs establish and perpetuate self-reinforcing epigenetic barriers to regeneration through aberrant chromatin states. Furthermore, we examine scaffolds as platforms for precision epigenetic drug delivery, particularly controlled release of inhibitors targeting DNA methyltransferases (DNMTi) and histone deacetylases (HDACi) to disrupt this mechano-reinforced barrier. Evidence from PF murine models and ex vivo lung slice cultures demonstrate scaffold-mediated remodeling of the fibrotic niche, with key studies reporting substantial reductions in collagen deposition and significant increases in alveolar epithelial cell markers following intervention. These quantitative outcomes highlight enhanced alveolar epithelial plasticity and upregulating antifibrotic gene networks. Emerging integration of stimuli-responsive biomaterials, CRISPR/dCas9-based epigenetic editors, and AI-driven design to enhance scaffold functionality is discussed. Collectively, multifunctional bioscaffolds hold significant potential for clinical translation by uniquely co-targeting mechanotransduction and epigenetic reprogramming. Future work will need to resolve persistent challenges, including the erasure of pathological mechanical memory and precise spatiotemporal control of epigenetic modifiers in vivo, to unlock their full therapeutic potential. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

37 pages, 4732 KB  
Article
Analysis of Genomic and Transcriptomic Data Revealed Key Genes and Processes in the Development of Major Depressive Disorder
by Sergey M. Ivanov, Vladislav S. Sukhachev, Olga A. Tarasova, Alexey A. Lagunin and Vladimir V. Poroikov
Int. J. Mol. Sci. 2025, 26(19), 9557; https://doi.org/10.3390/ijms26199557 - 30 Sep 2025
Viewed by 990
Abstract
Major depressive disorder (MDD) is one of the most common diseases, affecting millions of people worldwide. Existing antidepressants do not allow sustainable remission to be achieved in many cases, probably due to insufficient understanding of the etiopathogenesis of MDD. The aim of this [...] Read more.
Major depressive disorder (MDD) is one of the most common diseases, affecting millions of people worldwide. Existing antidepressants do not allow sustainable remission to be achieved in many cases, probably due to insufficient understanding of the etiopathogenesis of MDD. The aim of this study was to identify the key genes, pathways, and master regulators associated with MDD based on a combination of genomic and transcriptomic data analyses. We performed a transcriptome-wide association study (TWAS) to identify the increase and decrease in transcription of particular genes that can be associated with MDD risk, the results of which were used to perform a pathway enrichment analysis that elucidated the pathways and processes associated with MDD. Besides changes in the metabolism of neurotransmitters, the association of some other processes with MDD was revealed, including changes in phospholipid and glycan metabolism, chromatin remodeling, RNA processing and splicing, and cell–extracellular matrix interaction. The transcriptomic analysis performed for brain regions mostly confirmed genome-level findings. The gene expression changes in the brain related to MDD were mostly sex-specific, and the transcription of many genes was changed in the opposite direction in males and females. Finally, master regulators were found, which are the proteins responsible for the transcriptional regulation of the revealed genes and represent the most important proteins contributing to MDD development. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

18 pages, 2524 KB  
Article
Transcriptional Consequences of MeCP2 Knockdown and Overexpression in Mouse Primary Cortical Neurons
by Mostafa Rezapour, Joshua Bowser, Christine Richardson and Metin Nafi Gurcan
Int. J. Mol. Sci. 2025, 26(18), 9032; https://doi.org/10.3390/ijms26189032 - 17 Sep 2025
Viewed by 859
Abstract
Rett syndrome (RTT) and MECP2 duplication syndrome, a subtype of autism spectrum disorder (ASD), are neurodevelopmental disorders caused by MeCP2 loss and gain of function, respectively. While MeCP2 is known to regulate transcription through its interaction with methylated DNA and chromatin-associated factors such [...] Read more.
Rett syndrome (RTT) and MECP2 duplication syndrome, a subtype of autism spectrum disorder (ASD), are neurodevelopmental disorders caused by MeCP2 loss and gain of function, respectively. While MeCP2 is known to regulate transcription through its interaction with methylated DNA and chromatin-associated factors such as topoisomerase IIβ (TOP2β), the downstream transcriptional consequences of MeCP2 dosage imbalance remain partially characterized. Here, we present a transcriptome-centered analysis of mouse primary cortical neurons subjected to MeCP2 knockdown (KD) or overexpression (OE), which model RTT and ASD-like conditions in parallel. Using a robust computational pipeline integrating generalized linear models with quasi-likelihood F-tests and Magnitude–Altitude Scoring (GLMQL-MAS), we identified differentially expressed genes (DEGs) in KD and OE relative to wild-type (WT) neurons. This study represents a computational analysis of secondary transcriptomic data aimed at nominating candidate genes for future experimental validation. Gene Ontology enrichment revealed both shared and condition-specific biological processes, with KD uniquely affecting neurodevelopmental and stress-response pathways, and OE perturbing extracellular matrix, calcium signaling, and neuroinflammatory processes. To prioritize robust and disease-relevant targets, we applied Cross-MAS and further filtered DEGs by correlation with MeCP2 expression and regulation directional consistency. This yielded 16 high-confidence dosage-sensitive genes that were capable of classifying WT, KD, and OE samples with 100% accuracy using PCA and logistic regression. Among these, RTT-associated candidates such as Plcb1, Gpr161, Mknk2, Rgcc, and Abhd6 were linked to disrupted synaptic signaling and neurogenesis, while ASD-associated genes, including Aim2, Mcm6, Pcdhb9, and Cbs, implicated neuroinflammation and metabolic stress. These findings establish a compact and mechanistically informative set of MeCP2-responsive genes, which enhance our understanding of transcriptional dysregulation in RTT and ASD and nominate molecular markers for future functional validation and therapeutic exploration. Full article
(This article belongs to the Special Issue Genes and Human Diseases: 3rd Edition)
Show Figures

Figure 1

15 pages, 6599 KB  
Article
Low Expression of Selenoprotein S Modulates Osteogenic Differentiation Through Bidirectional Regulation of the SP7HSP47/COL1A1/SPARC Axis
by Hao Wu, Yun-Shan Zhao, Chun-Shen Li, Jing-Yi Shi, Yi Li, Liang-Qiu-Yue Zhong, Yan Liu and Xi Chen
Curr. Issues Mol. Biol. 2025, 47(9), 677; https://doi.org/10.3390/cimb47090677 - 23 Aug 2025
Viewed by 693
Abstract
Previous studies revealed that low expression of Selenoprotein S (SELS) could enhance osteogenic differentiation, but the underlying mechanisms remain unclear. In this study, we aimed to elucidate the role of SELS and its transcription-factor-based regulatory mechanism during osteogenic differentiation. In comparison with 12-week-old [...] Read more.
Previous studies revealed that low expression of Selenoprotein S (SELS) could enhance osteogenic differentiation, but the underlying mechanisms remain unclear. In this study, we aimed to elucidate the role of SELS and its transcription-factor-based regulatory mechanism during osteogenic differentiation. In comparison with 12-week-old mice, which represent the stage of stable osteogenic differentiation, 3-week-old mice, representing the active ossification stage, showed significantly higher levels of SELS in the mandible. Transcriptomic analysis revealed that SELS is primarily associated with extracellular matrix organization and collagen biosynthesis during mandibular development. In bone marrow mesenchymal stem cells (BMSCs) with SELS knockdown, SP7 levels were elevated after 7 days of osteogenic induction in vitro. Consistently, immunohistochemical and immunofluorescence staining confirmed increased SP7 expression in the mandibles of 7-week-old Sels knockout mice. Dual-luciferase reporter assays and chromatin immunoprecipitation (ChIP) analysis demonstrated that SP7 directly binds to the heat shock protein 47 (HSP47) promoter and negatively regulates its transcription. Consequently, upregulation of SP7 following SELS knockdown led to downregulation of HSP47 and concurrent upregulation of the SP7 downstream targets, collagen type I alpha 1 chain (COL1A1) and Secreted protein acidic and rich in cysteine (SPARC). SELS expression is upregulated during active osteogenesis. Low expression of SELS regulates osteogenic differentiation in a bidirectional and fine-tuned manner through the SP7HSP47/COL1A1/SPARC axis. Full article
(This article belongs to the Section Biochemistry, Molecular and Cellular Biology)
Show Figures

Figure 1

19 pages, 2204 KB  
Article
Stimulation of Transient Receptor Potential Channels TRPM3 and TRPM8 Increases Human Prostaglandin Endoperoxide Synthase-2 Promoter Activity
by Nikolas Brandmeier, Oliver G. Rössler and Gerald Thiel
Molecules 2025, 30(16), 3320; https://doi.org/10.3390/molecules30163320 - 8 Aug 2025
Viewed by 816
Abstract
The transient receptor potential channels TRPM3 and TRPM8 are cation channels that regulate numerous cellular activities, including thermo- and pain sensation. Stimulation of either TRPM3 or TRPM8 channels induces an intracellular signaling cascade that leads to the activation of stimulus-responsive transcription factors. As [...] Read more.
The transient receptor potential channels TRPM3 and TRPM8 are cation channels that regulate numerous cellular activities, including thermo- and pain sensation. Stimulation of either TRPM3 or TRPM8 channels induces an intracellular signaling cascade that leads to the activation of stimulus-responsive transcription factors. As part of a search for delayed-response genes that are activated upon TRPM3 or TRPM8 stimulation, we analyzed the gene encoding prostaglandin endoperoxide synthase-2. The expression of this gene is not detectable under basal conditions but is rapidly induced upon stimulation of the cells with numerous extracellular signaling molecules. Here, we show that chromatin-embedded reporter genes under the control of the prostaglandin endoperoxide synthase-2 promoter were activated after stimulation of TRPM3 channels with pregnenolone sulfate or TRPM8 channels with the cooling agent icilin. TRP channel-induced activation of the prostaglandin endoperoxide synthase-2 promoter was attenuated by pharmacological inhibitors of TRPM3 and TRPM8. Mutational analysis of the prostaglandin endoperoxide synthase-2 promoter showed the importance of a cAMP response element within the proximal promoter region of the prostaglandin endoperoxide synthase-2 gene. In summary, our results establish a link between the stimulation of TRPM3 and TRPM8 and the biosynthesis of proinflammatory mediators via the regulation of prostaglandin endoperoxide synthase-2 expression. Full article
Show Figures

Graphical abstract

18 pages, 1939 KB  
Review
Dual Nature of Neutrophil Extracellular Traps (NETs)—From Cancer’s Ally to Therapeutic Target
by Karolina Buszka, Claudia Dompe, Kinga Derwich, Izabela Pieścikowska, Michał Nowicki and Joanna Budna-Tukan
Cells 2025, 14(15), 1200; https://doi.org/10.3390/cells14151200 - 5 Aug 2025
Cited by 2 | Viewed by 3341
Abstract
Cancer remains a major global health challenge requiring the development of diagnostic and therapeutic strategies. Liquid biopsy is considered a promising minimally invasive tool for cancer screening, prognosis and treatment monitoring. Recent studies suggest that neutrophil extracellular traps (NETs) may also be potential [...] Read more.
Cancer remains a major global health challenge requiring the development of diagnostic and therapeutic strategies. Liquid biopsy is considered a promising minimally invasive tool for cancer screening, prognosis and treatment monitoring. Recent studies suggest that neutrophil extracellular traps (NETs) may also be potential liquid biopsy markers. NETs are web-like chromatin structures released by neutrophils in response to various stimuli to trap and neutralize pathogens. However, excessive or dysregulated NET formation has been implicated in tumor progression and metastasis. Elevated levels of NETs have been observed in patients with various types of cancer and correlate with disease stage and prognosis. The presence of NET markers such as citrullinated histone H3 (H3Cit), neutrophil elastase (NE) and myeloperoxidase (MPO) has been associated with higher tumor burden and poorer clinical outcomes. Several studies have shown a positive correlation between NET markers and circulating free DNA (cfDNA) levels, suggesting that NETs may increase the sensitivity of liquid biopsy in detecting and monitoring cancer progression. This review examines the role of NETs in the tumor microenvironment, their contribution to cancer progression and metastasis, and their potential use in liquid biopsy and cancer therapy. Full article
(This article belongs to the Special Issue Targeting Tumor Microenvironments for Enhanced Cancer Immunotherapy)
Show Figures

Figure 1

22 pages, 513 KB  
Review
Unraveling NETs in Sepsis: From Cellular Mechanisms to Clinical Relevance
by Giulia Pignataro, Stefania Gemma, Martina Petrucci, Fabiana Barone, Andrea Piccioni, Francesco Franceschi and Marcello Candelli
Int. J. Mol. Sci. 2025, 26(15), 7464; https://doi.org/10.3390/ijms26157464 - 1 Aug 2025
Cited by 1 | Viewed by 2915
Abstract
Sepsis is a clinical syndrome characterized by a dysregulated host response to infection, frequently resulting in septic shock and multi-organ failure. Emerging evidence highlights the critical role of neutrophil extracellular traps (NETs) in the pathophysiology of sepsis. NETs are extracellular structures composed of [...] Read more.
Sepsis is a clinical syndrome characterized by a dysregulated host response to infection, frequently resulting in septic shock and multi-organ failure. Emerging evidence highlights the critical role of neutrophil extracellular traps (NETs) in the pathophysiology of sepsis. NETs are extracellular structures composed of chromatin DNA, histones, and granular proteins released by neutrophils through a specialized form of cell death known as NETosis. While NETs contribute to the containment of pathogens, their excessive or dysregulated production in sepsis is associated with endothelial damage, immunothrombosis, and organ dysfunction. Several NET-associated biomarkers have been identified, including circulating cell-free DNA (cfDNA), histones, MPO-DNA complexes, and neutrophil elastase–DNA complexes, which correlate with the disease severity and prognosis. Therapeutic strategies targeting NETs are currently under investigation. Inhibition of NET formation using PAD4 inhibitors or ROS scavengers has shown protective effects in preclinical models. Conversely, DNase I therapy facilitates the degradation of extracellular DNA, reducing the NET-related cytotoxicity and thrombotic potential. Additionally, heparin and its derivatives have demonstrated the ability to neutralize NET-associated histones and mitigate coagulopathy. Novel approaches include targeting upstream signaling pathways, such as TLR9 and IL-8/CXCR2, offering further therapeutic promise. Full article
(This article belongs to the Collection Advances in Cell and Molecular Biology)
Show Figures

Figure 1

15 pages, 1211 KB  
Review
Epigenetic Regulation of Neutrophils in ARDS
by Jordan E. Williams, Zannatul Mauya, Virginia Walkup, Shaquria Adderley, Colin Evans and Kiesha Wilson
Cells 2025, 14(15), 1151; https://doi.org/10.3390/cells14151151 - 25 Jul 2025
Cited by 2 | Viewed by 1335
Abstract
Acute respiratory distress syndrome (ARDS) is an inflammatory pulmonary condition that remains at alarming rates of fatality, with neutrophils playing a vital role in its pathogenesis. Beyond their classical antimicrobial functions, neutrophils contribute to pulmonary injury via the release of reactive oxygen species, [...] Read more.
Acute respiratory distress syndrome (ARDS) is an inflammatory pulmonary condition that remains at alarming rates of fatality, with neutrophils playing a vital role in its pathogenesis. Beyond their classical antimicrobial functions, neutrophils contribute to pulmonary injury via the release of reactive oxygen species, proteolytic enzymes, and neutrophil extracellular traps (NETs). To identify targets for treatment, it was found that epigenetic mechanisms, including histone modifications, hypomethylation, hypermethylation, and non-coding RNAs, regulate neutrophil phenotypic plasticity, survival, and inflammatory potential. It has been identified that neutrophils in ARDS patients exhibit abnormal methylation patterns and are associated with altered gene expression and prolonged neutrophil activation, thereby contributing to sustained inflammation. Histone citrullination, particularly via PAD4, facilitates NETosis, while histone acetylation status modulates chromatin accessibility and inflammatory gene expression. MicroRNAs have also been shown to regulate neutrophil activity, with miR-223 and miR-146a potentially being biomarkers and therapeutic targets. Neutrophil heterogeneity, as evidenced by distinct subsets such as low-density neutrophils (LDNs), varies across ARDS etiologies, including COVID-19. Single-cell RNA sequencing analyses, including the use of trajectory analysis, have revealed transcriptionally distinct neutrophil clusters with differential activation states. These studies support the use of epigenetic inhibitors, including PAD4, HDAC, and DNMT modulators, in therapeutic intervention. While the field has been enlightened with new findings, challenges in translational application remain an issue due to species differences, lack of stratification tools, and heterogeneity in ARDS presentation. This review describes how targeting neutrophil epigenetic regulators could help regulate hyperinflammation, making epigenetic modulation a promising area for precision therapeutics in ARDS. Full article
(This article belongs to the Section Cell Microenvironment)
Show Figures

Figure 1

18 pages, 2037 KB  
Article
Gene-by-Environment Interactions Involving Maternal Exposures with Orofacial Cleft Risk in Filipinos
by Zeynep Erdogan-Yildirim, Jenna C. Carlson, Nandita Mukhopadhyay, Elizabeth J. Leslie-Clarkson, Carmencita D. Padilla, Jeffrey C. Murray, Terri H. Beaty, Seth M. Weinberg, Mary L. Marazita and John R. Shaffer
Genes 2025, 16(8), 876; https://doi.org/10.3390/genes16080876 - 25 Jul 2025
Viewed by 934
Abstract
Background/Objectives: Maternal exposures are known to influence the risk of isolated cleft lip with or without cleft palate (CL/P)—a common and highly heritable birth defect with a multifactorial etiology. Methods: To identify new risk loci, we conducted a genome-wide gene–environment interaction (GEI) analysis [...] Read more.
Background/Objectives: Maternal exposures are known to influence the risk of isolated cleft lip with or without cleft palate (CL/P)—a common and highly heritable birth defect with a multifactorial etiology. Methods: To identify new risk loci, we conducted a genome-wide gene–environment interaction (GEI) analysis of CL/P with maternal smoking and vitamin use in Filipinos (Ncases = 540, Ncontrols = 260). Since GEI analyses are typically low in power and the results can be difficult to interpret, we applied multiple testing frameworks to evaluate potential GEI effects: a one degree-of-freedom (1df) GxE test, the 3df joint test, and the two-step EDGE approach. Results: While no genome-wide significant interactions were detected, we identified 11 suggestive GEIs with smoking and 24 with vitamin use. Several implicated loci contain biologically plausible genes. Notable interactions with smoking include loci near FEZF1, TWIST2, and NET1. While FEZF1 is involved in early neuronal development, TWIST2 and NET1 regulate epithelial–mesenchymal transition, which is required for proper lip and palate fusion. Interactions with vitamins encompass CECR2—a chromatin remodeling protein required for neural tube closure—and FURIN, a critical protease during early embryogenesis that activates various growth factors and extracellular matrix proteins. The activity of both proteins is influenced by folic acid. Conclusions: Our findings highlight the critical role of maternal exposures in identifying genes associated with structural birth defects such as CL/P and provide new paths to explore for CL/P genetics. Full article
(This article belongs to the Section Genes & Environments)
Show Figures

Figure 1

18 pages, 4532 KB  
Article
Epigenetic Modifiers to Treat Retinal Degenerative Diseases
by Evgenya Y. Popova, Lisa Schneper, Aswathy Sebastian, Istvan Albert, Joyce Tombran-Tink and Colin J. Barnstable
Cells 2025, 14(13), 961; https://doi.org/10.3390/cells14130961 - 23 Jun 2025
Viewed by 2290
Abstract
We have previously demonstrated the ability of inhibitors of LSD1 and HDAC1 to block rod degeneration, preserve vision, maintain transcription of rod photoreceptor genes, and downregulate transcripts involved in cell death, gliosis, and inflammation in the mouse model of Retinitis Pigmentosa (RP), rd10. [...] Read more.
We have previously demonstrated the ability of inhibitors of LSD1 and HDAC1 to block rod degeneration, preserve vision, maintain transcription of rod photoreceptor genes, and downregulate transcripts involved in cell death, gliosis, and inflammation in the mouse model of Retinitis Pigmentosa (RP), rd10. To extend our findings, we tested the hypothesis that this effect was due to altered chromatin structure by using a range of inhibitors of chromatin condensation to prevent photoreceptor degeneration in the rd10 mouse model. We used inhibitors for both G9A/GLP, which catalyzes methylation of H3K9, and EZH2, which catalyzes trimethylation of H3K27, and compared them to the actions of inhibitors of LSD1 and HDAC. All the inhibitors are likely to decondense chromatin and all preserve, to different extents, retinas from degeneration in rd10 mice, but they act through different metabolic pathways. One group of inhibitors, modifiers for LSD1 and EZH2, demonstrate a high level of maintenance of rod-specific transcripts, activation of Ca2+ and Wnt signaling pathways with the inhibition of antigen processing and presentation, immune response, and microglia phagocytosis. Another group of inhibitors, modifiers for HDAC and G9A/GLP, work through upregulation of NGF-stimulated transcription, while downregulating genes belong to immune response, extracellular matrix, cholesterol signaling, and programmed cell death. Our results provide robust support for our hypothesis that inhibition of chromatin condensation can be sufficient to prevent rod death in rd10 mice. Full article
(This article belongs to the Special Issue Retinal Disorders: Cellular Mechanisms and Targeted Therapies)
Show Figures

Graphical abstract

21 pages, 744 KB  
Review
CitH3, a Druggable Biomarker for Human Diseases Associated with Acute NETosis and Chronic Immune Dysfunction
by Yuchen Chen, Zoe Ann Tetz, Xindi Zeng, Sophia Jihye Go, Wenlu Ouyang, Kyung Eun Lee, Tao Dong, Yongqing Li and Jianjie Ma
Pharmaceutics 2025, 17(7), 809; https://doi.org/10.3390/pharmaceutics17070809 - 23 Jun 2025
Cited by 3 | Viewed by 2275
Abstract
Neutrophils are essential components of innate immunity, executing a range of effector functions including phagocytosis, degranulation, and the release of neutrophil extracellular traps (NETs). A key hallmark of NET formation is the presence of citrullinated histone H3 (CitH3), produced by peptidylarginine deiminases (PAD2 [...] Read more.
Neutrophils are essential components of innate immunity, executing a range of effector functions including phagocytosis, degranulation, and the release of neutrophil extracellular traps (NETs). A key hallmark of NET formation is the presence of citrullinated histone H3 (CitH3), produced by peptidylarginine deiminases (PAD2 and PAD4) to facilitate chromatin decondensation. While NETs play critical antimicrobial roles, excessive or dysregulated NET formation, termed NETosis, can drive tissue injury, chronic inflammation, and organ dysfunction across a wide spectrum of diseases. Beyond its structural role within NETs, CitH3 acts as a damage-associated molecular pattern (DAMP), amplifying immune activation and pathological inflammation. Elevated CitH3 levels have been identified as biomarkers in sepsis, viral infections, ischemia–reperfusion injury, organ transplantation, diabetic wounds, autoimmune diseases, and cancer. Despite increasing recognition of CitH3’s pathogenic contributions, its therapeutic potential remains largely untapped. This review summarizes recent advances in understanding the role of CitH3 in NETosis and immune dysfunction, highlights emerging strategies targeting CitH3 therapeutically, and identifies critical knowledge gaps. Collectively, these insights position CitH3 as a promising druggable biomarker for the diagnosis, prognosis, and treatment of acute and chronic inflammatory diseases. Full article
Show Figures

Figure 1

27 pages, 6113 KB  
Article
Peptidylarginine Deiminase 4 Deficiency Suppresses Neutrophil Extracellular Trap Formation and Ameliorates Elastase-Induced Emphysema in Mouse Lung
by Megumi Katsumata, Jun Ikari, Akira Urano, Eiko Suzuki, Kazuto Kugou, Yoshinori Hasegawa, Koichiro Tatsumi and Takuji Suzuki
Int. J. Mol. Sci. 2025, 26(12), 5573; https://doi.org/10.3390/ijms26125573 - 11 Jun 2025
Cited by 1 | Viewed by 1695
Abstract
Neutrophil extracellular traps (NETs) are associated with the extracellular release of nuclear chromatin decorated with cytoplasmic proteins. Excessive release of NETs has been reported in chronic lung diseases, including chronic obstructive pulmonary disease (COPD). However, the role of NETs in the pathogenesis of [...] Read more.
Neutrophil extracellular traps (NETs) are associated with the extracellular release of nuclear chromatin decorated with cytoplasmic proteins. Excessive release of NETs has been reported in chronic lung diseases, including chronic obstructive pulmonary disease (COPD). However, the role of NETs in the pathogenesis of COPD remains unclear. Peptidylarginine deaminase 4 (PAD4) contributes to NET formation. Therefore, in an elastase (ELS)-induced emphysema mouse model, we examined the role of PAD4 using Padi4 gene knockout (KO) mice. First, we confirmed that ELS induced NET formation in the parenchyma of the lungs. PAD4 deficiency suppressed ELS-induced NET expression and tended to ameliorate the lung tissue injury. The cellular profile of bronchoalveolar lavage fluid (BALF) did not differ between the two groups. Additionally, PAD4 deficiency ameliorated emphysema and apoptosis in lung cells. Finally, we examined the effects of PAD4 on comprehensive gene expression signatures using RNA sequencing. Enrichment analysis of the transcriptomic data revealed that the expression of several genes associated with COPD pathogenesis was altered in the KO mice. Overall, the results suggest that PAD4 deficiency improves NET formation and emphysema in the lungs; this pathway can be a potential therapeutic target for the treatment of COPD. Full article
Show Figures

Figure 1

Back to TopTop