Non-Coding RNAs (microRNAs, lncRNAs, circRNAs) in Adenomyosis: A Systematic Review of Mechanistic and Translational Evidence
Abstract
1. Introduction
1.1. Non-Coding RNAs (ncRNAs)
1.1.1. MicroRNAs (miRNAs)
1.1.2. Long Non-Coding RNAs
1.1.3. Circular RNAs (circRNAs)
1.2. Relevance to AM and Aim of the Review
2. Materials and Methods
2.1. Eligibility Criteria
2.2. Information Sources and Search Strategy
2.3. Selection Process
2.4. Data Items and Extraction
2.5. Risk of Bias and Quality Appraisal
2.6. Effect Measures and Synthesis Methods
2.7. Operational Definitions (Evidence Levels)
2.8. Reporting and Protocol
2.9. Ethics
3. Results
3.1. Study Selection and Characteristics
3.2. Convergent Pathways and Mechanistic Themes
3.3. miRNAs: Functional Clusters and Compartment-Specific Actions
3.4. lncRNAs: Chromatin Remodeling, ceRNA Networks, and Endocrine Regulation
3.5. circRNAs: ceRNA Scaffolds and Pathway Modulation
3.6. EV- and Biofluid-Based Readouts
3.7. Diagnostic Potential
3.8. Therapeutic Targets
3.9. Summary of Robustness and Validation Gaps
4. Discussion
4.1. Mechanistic Overview Across Four Domains
4.1.1. Epithelium and Invasion
4.1.2. JZ/EMI Proliferation Under Estrogen
4.1.3. Stroma and Decidualization
4.1.4. EV-Mediated Immune and Epithelial Remodeling
4.2. Context from Related Conditions
4.3. Roles of lncRNAs
4.4. Roles of circRNAs
4.5. Diagnostic Implications
4.6. Therapeutic Targets: Mechanisms and Candidate Interventions
4.7. Robustness and Validation Gaps
4.8. Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Appendix A
| Rank | Evidence Level | Target |
|---|---|---|
| 1. High priority | L3 (in vivo) + L2 (rescue) + L1 (direct target) | TUG1/EZH2/TIMP2, miR-145/Talin1, let-7a/LIN28B |
| 2. Strong candidate | L2 + L1, but no in vivo | miR-141-3p/JAK2/STAT3, miR-218-5p/LASP1 |
| 3. Compartment-specific | L1 + L2, but context-dependent | miR-21 |
| 4. Biomarker-linked | L1 + clinical correlation, but no functional validation | exo-miR-92a-3p |
| 5. Exploratory | Only bioinformatic or single-case | ENST00000433673 |
References
- Chapron, C.; Vannuccini, S.; Santulli, P.; Abrão, M.S.; Carmona, F.; Fraser, I.S.; Gordts, S.; Guo, S.-W.; Just, P.-A.; Noël, J.-C.; et al. Diagnosing Adenomyosis: An Integrated Clinical and Imaging Approach. Hum. Reprod. Update 2020, 26, 392–411. [Google Scholar] [CrossRef]
- Selntigia, A.; Molinaro, P.; Tartaglia, S.; Pellicer, A.; Galliano, D.; Cozzolino, M. Adenomyosis: An Update Concerning Diagnosis, Treatment, and Fertility. J. Clin. Med. 2024, 13, 5224. [Google Scholar] [CrossRef] [PubMed]
- Günther, V.; Allahqoli, L.; Gitas, G.; Maass, N.; Tesch, K.; Ackermann, J.; Rosam, P.; Mettler, L.; von Otte, S.; Alkatout, I. Impact of Adenomyosis on Infertile Patients-Therapy Options and Reproductive Outcomes. Biomedicines 2022, 10, 3245. [Google Scholar] [CrossRef] [PubMed]
- Goksever Celik, H.; Erkan, I.B.O.; Topcu, E.G.; Sozen, I.; Gunduz, N.; Saricoban, C.T.; Ilvan, S.; Demirkiran, F.; Oral, E. Adenomyosis and Coexisting Gynecologic Pathologies: How Often Do They Coexist? Int. J. Gynaecol. Obs. 2025, 171, 728–735. [Google Scholar] [CrossRef] [PubMed]
- Feghali, E.; Etrusco, A.; Haydamous, J.; Ayed, A.; Laganà, A.S.; Chiantera, V.; Vitale, S.G.; Angioni, S.; Stabile, G.; Sleiman, Z. Concurrent Diagnosis of Adenomyosis and Congenital Uterine Anomalies: A Review. J. Pers. Med. 2023, 13, 716. [Google Scholar] [CrossRef]
- Freytag, D.; Mettler, L.; Maass, N.; Günther, V.; Alkatout, I. Uterine Anomalies and Endometriosis. Minerva Med. 2020, 111, 33–49. [Google Scholar] [CrossRef]
- Gulz, M.; Vidal, A.; Kalaitzopoulos, D.R.; Karrer, T.; Mueller, M.D. Endometriosis, a Familiar Companion of Isthmocele: A Systematic Review and Meta-Analysis. J. Minim. Invasive Gynecol. 2025. [Google Scholar] [CrossRef]
- García-Solares, J.; Donnez, J.; Donnez, O.; Dolmans, M.-M. Pathogenesis of Uterine Adenomyosis: Invagination or Metaplasia? Fertil. Steril. 2018, 109, 371–379. [Google Scholar] [CrossRef]
- Guo, S.-W. The Pathogenesis of Adenomyosis Vis-à-Vis Endometriosis. J. Clin. Med. 2020, 9, 485. [Google Scholar] [CrossRef]
- Yin, Y.; Shen, X. Noncoding RNA-chromatin association: Functions and mechanisms. Fundam. Res. 2023, 3, 665–675. [Google Scholar] [CrossRef]
- Walter, N.G. Are non-protein coding RNAs junk or treasure? An attempt to explain and reconcile opposing viewpoints of whether the human genome is mostly transcribed into non-functional or functional RNAs. BioEssays 2024, 46, e2300201. [Google Scholar] [CrossRef]
- Devaux, Y.; Creemers, E.E.; Boon, R.A.; Werfel, S.; Thum, T.; Engelhardt, S.; Dimmeler, S.; Squire, I.; on behalf of the Cardiolinc network. Circular RNAs in Heart Failure. Eur. J. Heart Fail. 2017, 19, 701–709. [Google Scholar] [CrossRef]
- Ambros, V. MicroRNA-Mediated Gene Regulation and the Resilience of Multicellular Animals. Postep. Biochem. 2024, 70, 62–70. [Google Scholar] [CrossRef]
- Duică, F.; Condrat, C.E.; Dănila, C.A.; Boboc, A.E.; Radu, M.R.; Xiao, J.; Li, X.; Creţoiu, S.M.; Suciu, N.; Creţoiu, D.; et al. MiRNAs: A Powerful Tool in Deciphering Gynecological Malignancies. Front. Oncol. 2020, 10, 591181. [Google Scholar] [CrossRef]
- Lazaridis, A.; Katifelis, H.; Kalampokas, E.; Lambropoulou, D.; Aravantinos, G.; Gazouli, M.; Vlahos, N.F. Utilization of miRNAs as Biomarkers for the Diagnosis, Prognosis, and Metastasis in Gynecological Malignancies. Int. J. Mol. Sci. 2024, 25, 11703. [Google Scholar] [CrossRef]
- Baylie, T.; Kasaw, M.; Getinet, M.; Getie, G.; Jemal, M.; Nigatu, A.; Ahmed, H.; Bogale, M. The Role of miRNAs as Biomarkers in Breast Cancer. Front. Oncol. 2024, 14, 1374821. [Google Scholar] [CrossRef] [PubMed]
- Chico-Sordo, L.; García-Velasco, J.A. MicroRNAs as Biomarkers and Therapeutic Targets in Female Infertility. Int. J. Mol. Sci. 2024, 25, 12979. [Google Scholar] [CrossRef] [PubMed]
- Ghasemi, F.; Alemzadeh, E.; Allahqoli, L.; Alemzadeh, E.; Mazidimoradi, A.; Salehiniya, H.; Alkatout, I. MicroRNAs Dysregulation as Potential Biomarkers for Early Diagnosis of Endometriosis. Biomedicines 2022, 10, 2558. [Google Scholar] [CrossRef] [PubMed]
- Dryja-Brodowska, A.; Obrzut, B.; Obrzut, M.; Darmochwał-Kolarz, D. miRNA in Endometriosis-A New Hope or an Illusion? J. Clin. Med. 2025, 14, 4849. [Google Scholar] [CrossRef]
- Boos, D.; Chuang, T.-D.; Khorram, O. The Roles of Non-Coding RNAs in the Pathogenesis of Uterine Fibroids. Cells 2025, 14, 1290. [Google Scholar] [CrossRef]
- Vitale, S.G.; Fulghesu, A.M.; Mikuš, M.; Watrowski, R.; D’Alterio, M.N.; Lin, L.-T.; Shah, M.; Reyes-Muñoz, E.; Sathyapalan, T.; Angioni, S. The Translational Role of miRNA in Polycystic Ovary Syndrome: From Bench to Bedside-A Systematic Literature Review. Biomedicines 2022, 10, 1816. [Google Scholar] [CrossRef] [PubMed]
- Nasser, J.S.; Altahoo, N.; Almosawi, S.; Alhermi, A.; Butler, A.E. The Role of MicroRNA, Long Non-Coding RNA and Circular RNA in the Pathogenesis of Polycystic Ovary Syndrome: A Literature Review. Int. J. Mol. Sci. 2024, 25, 903. [Google Scholar] [CrossRef]
- Ansari, A.; Szczesnowska, A.; Haddad, N.; Elbediwy, A.; Wehida, N. The Role of Non-Coding RNAs in the Regulation of Oncogenic Pathways in Breast and Gynaecological Cancers. Noncoding RNA 2025, 11, 61. [Google Scholar] [CrossRef]
- Monnaka, V.U.; Hernandes, C.; Heller, D.; Podgaec, S. Overview of miRNAs for the Non-Invasive Diagnosis of Endometriosis: Evidence, Challenges and Strategies. A Systematic Review. Einstein 2021, 19, eRW5704. [Google Scholar] [CrossRef]
- Bendifallah, S.; Dabi, Y.; Suisse, S.; Delbos, L.; Spiers, A.; Poilblanc, M.; Golfier, F.; Jornea, L.; Bouteiller, D.; Fernandez, H.; et al. Validation of a Salivary miRNA Signature of Endometriosis—Interim Data. NEJM Evid. 2023, 2, EVIDoa2200282. [Google Scholar] [CrossRef]
- Bendifallah, S.; Dabi, Y.; Suisse, S.; Ilic, J.; Delbos, L.; Poilblanc, M.; Descamps, P.; Golfier, F.; Jornea, L.; Bouteiller, D.; et al. Saliva-Based microRNA Diagnostic Signature for the Superficial Peritoneal Endometriosis Phenotype. Eur. J. Obs. Gynecol. Reprod. Biol. 2024, 297, 187–196. [Google Scholar] [CrossRef]
- Mattick, J.S.; Amaral, P.P.; Carninci, P.; Carpenter, S.; Chang, H.Y.; Chen, L.-L.; Chen, R.; Dean, C.; Dinger, M.E.; Fitzgerald, K.A.; et al. Long Non-Coding RNAs: Definitions, Functions, Challenges and Recommendations. Nat. Rev. Mol. Cell Biol. 2023, 24, 430–447. [Google Scholar] [CrossRef]
- Chodurska, B.; Kunej, T. Long Non-Coding RNAs in Humans: Classification, Genomic Organization and Function. Noncoding RNA Res. 2025, 11, 313–327. [Google Scholar] [CrossRef] [PubMed]
- Hasanabadi, H.E.; Govahi, A.; Chaichian, S.; Mehdizadeh, M.; Haghighi, L.; Ajdary, M. lncRNAs in the regulation of endometrial receptivity for embryo implantation. JBRA Assist. Reprod. 2024, 28, 503–510. [Google Scholar] [CrossRef]
- Ghafouri-Fard, S.; Hussen, B.M.; Abdullah, S.R.; Dadyar, M.; Taheri, M.; Kiani, A. A review on the role of HAND2-AS1 in cancer. Clin. Exp. Med. 2023, 23, 3179–3188. [Google Scholar] [CrossRef] [PubMed]
- Ghafouri-Fard, S.; Pourtavakoli, A.; Hussen, B.M.; Taheri, M.; Kiani, A. A review on the importance of LINC-ROR in human disorders. Pathol. Res. Pr. 2023, 244, 154420. [Google Scholar] [CrossRef] [PubMed]
- Zhang, E.B.; Yin, D.D.; Sun, M.; Kong, R.; Liu, X.H.; You, L.H.; Han, L.; Xia, R.; Wang, K.M.; Yang, J.S.; et al. p53-regulated long noncoding RNA TUG1 affects cell proliferation in human non-small cell lung cancer, partly through epigenetically regulating HOXB7 expression. Cell Death Dis. 2014, 5, e1243. [Google Scholar] [CrossRef]
- Basu, S.; Nadhan, R.; Dhanasekaran, D.N. Long Non-Coding RNAs in Ovarian Cancer: Mechanistic Insights and Clinical Applications. Cancers 2025, 17, 472. [Google Scholar] [CrossRef] [PubMed]
- Oghenemaro, E.F.; Hjazi, A.; Altalbawy, F.M.A.; Kyada, A.; Nathiya, D.; Kaur, P.; Uthirapathy, S.; Kariem, M.; Kumar, M.R.; Naser, I.H. Unraveling the Role of lncRNA in Endometriosis-Associated Immune System Dysregulation: Exploring the Intricate Immunological Changes and Disrupted Signaling Pathways. Hum. Immunol. 2025, 86, 111248. [Google Scholar] [CrossRef]
- Santer, L.; Bär, C.; Thum, T. Circular RNAs: A Novel Class of Functional RNA Molecules with a Therapeutic Perspective. Mol. Ther. 2019, 27, 1350–1363. [Google Scholar] [CrossRef]
- Su, M.; Xiao, Y.; Ma, J.; Tang, Y.; Tian, B.; Zhang, Y.; Li, X.; Wu, Z.; Yang, D.; Zhou, Y.; et al. Circular RNAs in Cancer: Emerging Functions in Hallmarks, Stemness, Resistance and Roles as Potential Biomarkers. Mol. Cancer 2019, 18, 90. [Google Scholar] [CrossRef]
- Lin, Y.; Wang, Y.; Li, L.; Zhang, K. Coding circular RNA in human cancer. Genes Dis. 2024, 12, 101347. [Google Scholar] [CrossRef]
- Zipponi, M.; Cacciottola, L.; Dolmans, M.-M. Overview of Crosstalk between Stromal and Epithelial Cells in the Pathogenesis of Adenomyosis and Shared Features with Deep Endometriotic Nodules. Hum. Reprod. 2024, 39, 1608–1617. [Google Scholar] [CrossRef]
- Zhang, H.; Li, C.; Li, W.; Xin, W.; Qin, T. Research Advances in Adenomyosis-Related Signaling Pathways and Promising Targets. Biomolecules 2024, 14, 1402. [Google Scholar] [CrossRef]
- Stang, A. Critical Evaluation of the Newcastle-Ottawa Scale for the Assessment of the Quality of Nonrandomized Studies in Meta-Analyses. Eur. J. Epidemiol. 2010, 25, 603–605. [Google Scholar] [CrossRef] [PubMed]
- Hooijmans, C.R.; Rovers, M.M.; de Vries, R.B.M.; Leenaars, M.; Ritskes-Hoitinga, M.; Langendam, M.W. SYRCLE’s Risk of Bias Tool for Animal Studies. BMC Med. Res. Methodol. 2014, 14, 43. [Google Scholar] [CrossRef] [PubMed]
- Théry, C.; Witwer, K.W.; Aikawa, E.; Alcaraz, M.J.; Anderson, J.D.; Andriantsitohaina, R.; Antoniou, A.; Arab, T.; Archer, F.; Atkin-Smith, G.K.; et al. Minimal Information for Studies of Extracellular Vesicles 2018 (MISEV2018): A Position Statement of the International Society for Extracellular Vesicles and Update of the MISEV2014 Guidelines. J. Extracell. Vesicles 2018, 7, 1535750. [Google Scholar] [CrossRef]
- Collins, G.S.; Reitsma, J.B.; Altman, D.G.; Moons, K.G.M.; TRIPOD Group. Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD): The TRIPOD Statement. Circulation 2015, 131, 211–219. [Google Scholar] [CrossRef]
- Macleod, M.; Collings, A.M.; Graf, C.; Kiermer, V.; Mellor, D.; Swaminathan, S.; Sweet, D.; Vinson, V. The MDAR (Materials Design Analysis Reporting) Framework for transparent reporting in the life sciences. Proc. Natl. Acad. Sci. USA 2021, 118, e2103238118. [Google Scholar] [CrossRef]
- Kopp, F.; Mendell, J.T. Functional Classification and Experimental Dissection of Long Noncoding RNAs. Cell 2018, 172, 393–407. [Google Scholar] [CrossRef]
- Statello, L.; Guo, C.-J.; Chen, L.-L.; Huarte, M. Gene Regulation by Long Non-Coding RNAs and Its Biological Functions. Nat. Rev. Mol. Cell Biol. 2021, 22, 96–118. [Google Scholar] [CrossRef]
- Gonzalez, G.; Behringer, R.R. Dicer Is Required for Female Reproductive Tract Development and Fertility in the Mouse. Mol. Reprod. Dev. 2009, 76, 678–688. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Lang, X.; Lu, Z.; Wang, J.; Li, T.; Liao, Y.; Jia, C.; Zhao, W.; Fang, H. MiR-10b Directly Targets ZEB1 and PIK3CA to Curb Adenomyotic Epithelial Cell Invasiveness via Upregulation of E-Cadherin and Inhibition of Akt Phosphorylation. Cell Physiol. Biochem. 2015, 35, 2169–2180. [Google Scholar] [CrossRef]
- Herndon, C.N.; Aghajanova, L.; Balayan, S.; Erikson, D.; Barragan, F.; Goldfien, G.; Vo, K.C.; Hawkins, S.; Giudice, L.C. Global Transcriptome Abnormalities of the Eutopic Endometrium From Women With Adenomyosis. Reprod. Sci. 2016, 23, 1289–1303. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.F.; Sun, A.J.; Xue, W.; Deng, Y.; Wang, Y.F. Aberrantly Expressed Long Noncoding RNAs in the Eutopic Endometria of Patients with Uterine Adenomyosis. Eur. J. Obs. Gynecol. Reprod. Biol. 2016, 199, 32–37. [Google Scholar] [CrossRef]
- Zhou, C.; Zhang, T.; Liu, F.; Zhou, J.; Ni, X.; Huo, R.; Shi, Z. The Differential Expression of mRNAs and Long Noncoding RNAs between Ectopic and Eutopic Endometria Provides New Insights into Adenomyosis. Mol. Biosyst. 2016, 12, 362–370. [Google Scholar] [CrossRef]
- Hu, H.; Li, H.; He, Y. MicroRNA-17 Downregulates Expression of the PTEN Gene to Promote the Occurrence and Development of Adenomyosis. Exp. Ther. Med. 2017, 14, 3805–3811. [Google Scholar] [CrossRef]
- Xu, X.-Y.; Zhang, J.; Qi, Y.-H.; Kong, M.; Liu, S.-A.; Hu, J.-J. Linc-ROR Promotes Endometrial Cell Proliferation by Activating the PI3K-Akt Pathway. Eur. Rev. Med. Pharmacol. Sci. 2018, 22, 2218–2225. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.; Wang, Y.; Yao, G.; Sun, Y. The Expression Changes of Circular RNAs between LH + 2 and LH + 7 Human Endometrium. Acta Biochim. Biophys. Sin. 2019, 51, 1296–1299. [Google Scholar] [CrossRef]
- Li, D.; Jiang, W.; Jiang, Y.; Wang, S.; Fang, J.; Zhu, L.; Zhu, Y.; Yan, G.; Sun, H.; Chen, L.; et al. Preliminary Functional Inquiry of lncRNA ENST00000433673 in Embryo Implantation Using Bioinformatics Analysis. Syst. Biol. Reprod. Med. 2019, 65, 164–173. [Google Scholar] [CrossRef]
- Shi, B.; Tu, H.; Sha, L.; Luo, X.; Wu, W.; Su, Y.; Yang, S.; Wang, H. Upregulation of Long Noncoding RNA TUG1 by EGR1 Promotes Adenomyotic Epithelial Cell Migration and Invasion through Recruiting EZH2 and Suppressing TIMP2. Mol. Reprod. Dev. 2019, 86, 239–247. [Google Scholar] [CrossRef]
- Yan, Q.; Yan, G.; Zhang, C.; Wang, Z.; Huang, C.; Wang, J.; Zhou, J.; Liu, Y.; Ding, L.; Zhang, Q.; et al. miR-21 Reverses Impaired Decidualization through Modulation of KLF12 and NR4A1 Expression in Human Endometrial Stromal Cells. Biol. Reprod. 2019, 100, 1395–1405. [Google Scholar] [CrossRef]
- Borisov, E.; Knyazeva, M.; Novak, V.; Zabegina, L.; Prisyazhnaya, T.; Karizkiy, A.; Berlev, I.; Malek, A. Analysis of Reciprocally Dysregulated miRNAs in Eutopic Endometrium Is a Promising Approach for Low Invasive Diagnostics of Adenomyosis. Diagnostics 2020, 10, 782. [Google Scholar] [CrossRef] [PubMed]
- Liang, N.; Zhang, W.; Wang, H.; Shi, W.; Wang, L.; Ma, L. Levonorgestrel Ameliorates Adenomyosis via lncRNA H19/miR-17/TLR4 Pathway. Drug Des. Dev. Ther. 2020, 14, 3449–3460. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.-L.; Duan, H.; Wang, S.; Li, J.-J. Overexpression of Lin28B Promoted the Proliferation of Adenomyotic Smooth Muscle Cells of the Junctional Zone via Regulating Let-7a. Reprod. Sci. 2020, 27, 1156–1163. [Google Scholar] [CrossRef]
- Huang, J.-H.; Duan, H.; Wang, S.; Wang, Y.-Y. Estrogen 17β-estradiol Accelerates the Proliferation of Uterine Junctional Zone Smooth Muscle Cells via the Let-7a/Lin28B Axis in Adenomyosis. Mol. Med. Rep. 2021, 23, 337. [Google Scholar] [CrossRef]
- Huang, J.-H.; Duan, H.; Wang, S.; Wang, Y.-Y.; Lv, C.-X. Upregulated microRNA Let-7a Accelerates Apoptosis and Inhibits Proliferation in Uterine Junctional Zone Smooth Muscle Cells in Adenomyosis under Conditions of a Normal Activated Hippo-YAP1 Axis. Reprod. Biol. Endocrinol. 2021, 19, 81. [Google Scholar] [CrossRef] [PubMed]
- Huang, N.; Xu, L.; Qiu, Y.; Zhan, J.; Chen, X. Down-Regulated miR-124-3p Enhanced the Migration and Epithelial-Stromal Transformation of Endometrial Stromal Cells Extracted from Eutopic Endometrium in Subjects with Adenomyosis by up-Regulating Neuropilin 1. Tissue Cell 2021, 69, 101474. [Google Scholar] [CrossRef]
- Wang, Y.-Y.; Duan, H.; Wang, S.; Quan, Y.-J.; Huang, J.-H.; Guo, Z.-C. Elevated Circular RNA PVT1 Promotes Eutopic Endometrial Cell Proliferation and Invasion of Adenomyosis via miR-145/Talin1 Axis. Biomed. Res. Int. 2021, 2021, 8868700. [Google Scholar] [CrossRef]
- Wang, Y.-Y.; Duan, H.; Wang, S.; Quan, Y.-J.; Huang, J.-H.; Guo, Z.-C. Talin1 Induces Epithelial-Mesenchymal Transition to Facilitate Endometrial Cell Migration and Invasion in Adenomyosis Under the Regulation of microRNA-145-5p. Reprod. Sci. 2021, 28, 1523–1539. [Google Scholar] [CrossRef]
- Yu, K.; Cui, S.; Xue, T. LncRNA MIR22HG Is Downregulated in Adenomyosis and Upregulates miR-2861 through Demethylation to Inhibit Endometrial Cell Proliferation. J. Obs. Gynaecol. Res. 2021, 47, 1837–1845. [Google Scholar] [CrossRef] [PubMed]
- Zhang, A.; Liu, X.; Wang, J.; Deng, K.; Wang, J. MiR-30c-5p Directly Targets MAPK1 to Regulate the Proliferation, Migration and Invasion of Adenomyotic Epithelial Cells in Adenomyosis. Twin Res. Hum. Genet. 2021, 24, 22–28. [Google Scholar] [CrossRef]
- Guo, Z.; Duan, H.; Wang, S.; Wang, S.; Lin, Q.; Li, Y. RNA-Seq Reveals Co-Dysregulated Circular RNAs in the Adenomyosis Eutopic Endometrium and Endometrial-Myometrial Interface. BMC Womens Health 2022, 22, 293. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Lu, S.; Jiang, Y.; Xu, K.; He, J.; Qiu, Z.; Ying, P. Circ_0061140 Facilitates Adenomyosis Progression by Upregulating LIN28B in Vitro. Gynecol. Obs. Investig. 2022, 87, 286–298. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, L. miR-183 Inhibits the Viability, Migration and Invasion of Epithelium on Adenomyosis via Targeting MMP-9. J. Gynecol. Obs. Hum. Reprod. 2022, 51, 102349. [Google Scholar] [CrossRef]
- Yuan, B.; Wang, W.; Zhao, H.; Wang, L. Role of lncRNA TUG1 in Adenomyosis and Its Regulatory Mechanism in Endometrial Epithelial Cell Functions. Endocrinology 2022, 163, bqac033. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, Y.; Zeng, L.; Yu, K.; Wang, Y.; Luo, Y.; Liu, F.; Yang, B.; Zou, Y.; Wang, L.; et al. miR-218-5p in Endometrial Microenvironment Prevents the Migration of Ectopic Endometrial Stromal Cells by Inhibiting LASP1. Reprod. Biol. Endocrinol. 2022, 20, 64. [Google Scholar] [CrossRef]
- Juárez-Barber, E.; Segura-Benítez, M.; Carbajo-García, M.C.; Bas-Rivas, A.; Faus, A.; Vidal, C.; Giles, J.; Labarta, E.; Pellicer, A.; Cervelló, I.; et al. Extracellular Vesicles Secreted by Adenomyosis Endometrial Organoids Contain miRNAs Involved in Embryo Implantation and Pregnancy. Reprod. Biomed. Online 2023, 46, 470–481. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Ponandai-Srinivasan, S.; Frisendahl, C.; Andersson, J.K.; Pavone, D.; Stewart, E.A.; Lalitkumar, P.G.L.; Korsching, E.; Bogavarappu, N.R.; Gemzell-Danielsson, K. Bromocriptine Inhibits Proliferation in the Endometrium from Women with Adenomyosis. Front. Endocrinol. 2023, 14, 1026168. [Google Scholar] [CrossRef]
- Xu, X.; Cai, B.; Liu, Y.; Liu, R.; Li, J. MIR503HG Silencing Promotes Endometrial Stromal Cell Progression and Metastasis and Suppresses Apoptosis in Adenomyosis by Activating the Wnt/Β-catenin Pathway via Targeting miR-191. Exp. Ther. Med. 2023, 25, 117. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.-C.; Chang, T.-C.; Perera, L.; Cheng, M.-H.; Hong, J.-J.; Cheng, C.-M. Pilot Study on the Impact of HIFU Treatment on miRNA Profiles in Vaginal Secretions of Uterine Fibroids and Adenomyosis Patients. Int. J. Hyperth. 2024, 41, 2418426. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Lin, Q.; Chang, Y.; An, Y.; Duan, H. Comprehensive Analysis of circRNA-miRNA-mRNA Regulatory Network and Novel Potential Biomarkers in Eutopic Endometrium of Adenomyosis. Genomics 2024, 116, 110877. [Google Scholar] [CrossRef]
- Hu, Y.; Yuan, M.; Cheng, L.; Xu, L.; Wang, G. Extracellular Vesicle-Encapsulated miR-25-3p Promotes Epithelial-Mesenchymal Transition and Migration of Endometrial Epithelial Cells by Inducing Macrophage Polarization. Mol. Hum. Reprod. 2024, 30, gaae010. [Google Scholar] [CrossRef]
- Wang, S.; Duan, H.; Wang, S.; Guo, Z.; Lin, Q. miR-141-3p Regulates the Proliferation and Apoptosis of Endometrial-Myometrial Interface Smooth Muscle Cells in Adenomyosis Via JAK2/STAT3 Pathway. Biochem. Genet. 2024, 62, 2049–2065. [Google Scholar] [CrossRef]
- Zeng, Y.; Jia, J.; Lu, J.; Zeng, C.; Geng, H.; Chen, Y. [Estrogen, estrogen receptor and miR-21 in adenomyosis: Their pathogenic roles and regulatory interactions]. Nan Fang Yi Ke Da Xue Xue Bao 2024, 44, 627–635. [Google Scholar] [CrossRef]
- Zhang, Z.; Qin, Y.; Huang, J.; Wang, Y.; Zeng, L.; Wang, Y.; Zhuyun, F.; Wang, L. Oestrogen Promotes the Progression of Adenomyosis by Inhibiting CITED2 through miR-145. Reprod. Biomed. Online 2024, 49, 104108. [Google Scholar] [CrossRef]
- Zheng, Y.; Wu, S.; Liu, L.; Guan, Y.; Sun, W.; Miao, C.; Li, Q. Activation of HAND2-FGFR signaling pathway by lncRNA HAND2-AS1 in adenomyosis. Biol. Reprod. 2024, 110, 490–500, Correction in Biol. Reprod. 2024, 110, 1040; Correction in Biol. Reprod. 2024, 111, 740. [Google Scholar] [CrossRef]
- Jia, J.-J.; Lai, H.-J.; Sun, B.-W.; Lu, J.; Zeng, Y.-Y. miR-21 Regulates Autophagy and Apoptosis of Ectopic Endometrial Stromal Cells of Adenomyosis via PI3K/ AKT/ mTOR Pathway. Sci. Rep. 2025, 15, 7639. [Google Scholar] [CrossRef]
- Qiu, Y.; Wei, X.; Cao, J.; Wang, J.; Dou, Q.; Zhou, F.; Chen, X.; Liu, Y.; Wan, G.; Huang, M.; et al. Endometrial Mesenchymal Stem Cell-Derived Exosomal miR-4669 Promotes EMT in Adenomyosis by Inducing M2 Macrophage Polarization via the DUSP6/ERK Pathway. Reprod. Sci. 2025, 32, 2922–2945. [Google Scholar] [CrossRef]
- Shao, W.; Yu, Y.; Wang, J.; Qiu, Z.; Mei, S.; Cheng, T.; Chen, Y.; Zhu, W.; Li, X.; Che, X. Exosomal miR-92a-3p Serves as a Promising Marker and Potential Therapeutic Target for Adenomyosis. Sci. Rep. 2025, 15, 9928. [Google Scholar] [CrossRef] [PubMed]
- Valdés-Bango, M.; Azkargorta, M.; Gracia, M.; Ros, C.; Rius, M.; Martínez-Zamora, M.-A.; De Guirior, C.; Quintas, L.; Elortza, F.; Carmona, F. Differences in the Proteomic Profiles of the Eutopic Endometrium in Patients with Internal and External Adenomyosis. PLOS Glob. Public. Health 2025, 5, e0004785. [Google Scholar] [CrossRef]
- Zipponi, M.; Cacciottola, L.; Camboni, A.; Stratopoulou, C.A.; Taylor, H.S.; Dolmans, M.-M. Endometrial Stromal Cell Signaling and microRNA Exosome Content in Women with Adenomyosis. Mol. Hum. Reprod. 2025, 31, gaae044. [Google Scholar] [CrossRef]
- Halim, A.; Kim, B.; Kenyon, E.; Moore, A. miR-10b as a Clinical Marker and a Therapeutic Target for Metastatic Breast Cancer. Technol. Cancer Res. Treat. 2025, 24, 15330338251339256. [Google Scholar] [CrossRef] [PubMed]
- Lee, I.; Kim, S.; Jung, G.S.; Shin, Y.; Lee, M.J.; Im, W.; Lee, J.H.; Choi, Y.S.; Cho, S. Effects of Exosomes Derived From Eutopic Endometrial Cells in Endometriosis and the Discovery of Related Serum miRNA Biomarkers for Endometriosis. Am. J. Reprod. Immunol. 2025, 94, e70155. [Google Scholar] [CrossRef]
- Górecki, M.; Żbikowska, A.; Tokłowicz, M.; Sajdak, S.; Englert-Golon, M.; Andrusiewicz, M. Hsa-miR-21-5p and Hsa-miR-145-5p Expression: From Normal Tissue to Malignant Changes-Context-Dependent Correlation with Estrogen- and Hypoxia-Vascularization-Related Pathways Genes: A Pilot Study. Int. J. Mol. Sci. 2025, 26, 4461. [Google Scholar] [CrossRef] [PubMed]
- Tian, L.; Xu, F.; Lu, Y.; Deng, Z.; Gao, Y.; Yang, J. Exploring a Circulating circRNA and miRNA Biomarker Panel for Early Detection of Ovarian Cancer through Multiple Omics Analysis. Sci. Rep. 2025, 15, 25809. [Google Scholar] [CrossRef]
- Włodarczyk, K.; Kuryło, W.; Pawłowska-Łachut, A.; Skiba, W.; Suszczyk, D.; Pieniądz, P.; Majewska, M.; Boniewska-Bernacka, E.; Wertel, I. circRNAs in Endometrial Cancer—A Promising Biomarker: State of the Art. Int. J. Mol. Sci. 2024, 25, 6387. [Google Scholar] [CrossRef]
- Falahati, Z.; Mohseni-Dargah, M.; Mirfakhraie, R. Emerging roles of long non-coding RNAs in uterine leiomyoma pathogenesis: A review. Reprod. Sci. 2022, 29, 1086–1101. [Google Scholar] [CrossRef] [PubMed]
- Koo, B.; Kim, Y.I.; Lee, M.; Lim, S.-B.; Shin, Y. Enhanced Early Detection of Colorectal Cancer via Blood Biomarker Combinations Identified Through Extracellular Vesicle Isolation and Artificial Intelligence Analysis. J. Extracell. Vesicles 2025, 14, e70088. [Google Scholar] [CrossRef]
- Tamkovich, S.; Borisova, A.; Shevela, A.; Chernyavskiy, A.; Chernyshova, A. Exosomal MicroRNA: Diagnostic Potential and Role in Breast Cancer Dissemination. Molecules 2025, 30, 3858. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Shu, J.; Wang, N.; He, Z. Exosomal Non-Coding RNAs: Mediators of Crosstalk between Cancer and Cancer Stem Cells. Cell Death Discov. 2025, 11, 434. [Google Scholar] [CrossRef] [PubMed]
- Driva, T.S.; Schatz, C.; Sobočan, M.; Haybaeck, J. The Role of mTOR and eIF Signaling in Benign Endometrial Diseases. Int. J. Mol. Sci. 2022, 23, 3416. [Google Scholar] [CrossRef]
- Abdollahzadeh, R.; Daraei, A.; Mansoori, Y.; Sepahvand, M.; Amoli, M.M.; Tavakkoly-Bazzaz, J. Competing Endogenous RNA (ceRNA) Cross Talk and Language in ceRNA Regulatory Networks: A New Look at Hallmarks of Breast Cancer. J. Cell Physiol. 2019, 234, 10080–10100. [Google Scholar] [CrossRef]
- Mirzaei, S.; Gholami, M.H.; Hushmandi, K.; Hashemi, F.; Zabolian, A.; Canadas, I.; Zarrabi, A.; Nabavi, N.; Aref, A.R.; Crea, F.; et al. Correction: The Long and Short Non-Coding RNAs Modulating EZH2 Signaling in Cancer. J. Hematol. Oncol. 2022, 15, 50. [Google Scholar] [CrossRef]
- Jasielski, P.; Zawlik, I.; Bogaczyk, A.; Potocka, N.; Paszek, S.; Maźniak, M.; Witkoś, A.; Korzystka, A.; Kmieć, A.; Kluz, T. The Promotive and Inhibitory Role of Long Non-Coding RNAs in Endometrial Cancer Course—A Review. Cancers 2024, 16, 2125. [Google Scholar] [CrossRef]
- Liu, Z.; Dong, H.; Ye, C.; Yan, J.; Miao, M.; Shao, Y. Small Non-Coding RNAs: Key Regulatory Factors and Potential Therapeutic Targets in Tumor Immunity. Front. Immunol. 2025, 16, 1639763. [Google Scholar] [CrossRef] [PubMed]


| Study | RNA Class | Key RNAs | Compartment | Main Findings | Clinical Relevance |
|---|---|---|---|---|---|
| Gonzalez, 2009 [47] | miRNA (global) | Global miRNA def (Dicer KO, Amhr2-Cre) | Cell line/primary | Dicer KO → ectopic glands in myometrium, loss of normal glands; aberrant Wnt4/5a/11; systemic E2/P4 unchanged → miRNA–Wnt pathway drives invasion | Causal role: global miRNA loss induces AM-like phenotype; points to miRNA/Wnt-targeted therapies |
| Guo, 2015 [48] | miRNA | miR-10b ⊣ ZEB1 & PIK3CA → ↑E-cad, ↓p-AKT | Eutopic/ectopic | miR-10b↓ in AM (eutopic < ectopic); OE ↓EEC migration/invasion; directly targets ZEB1 & PIK3CA (luciferase); ↑E-cad, ↓p-AKT; ZEB1/PIK3CA↑ in AM; their KD mimics miR-10b OE | Pathogenesis/target: restore miR-10b or inhibit ZEB1/PIK3CA–AKT to curb invasiveness |
| Herndon, 2016 [49] | miRNA (microarray) | miR-9-1, -139, -149, -197, -326, -339↑ | Eutopic/ectopic | 140↑/884↓ genes; above miRNAs↑; dysregulated: EIF2, OXPHOS, ER, mTOR, apoptosis, ECM remodeling | Exploratory pathogenesis: miRNAs link hormone/ECM dysfunction in AM |
| Jiang, 2016 [50] | lncRNA | 165 lncRNAs (6 validated) | Eutopic/ectopic | Discovery: 165 DE lncRNAs (↑48, ↓117); 612 DE mRNAs; qRT-PCR: 3↑/3↓ validated; co-expression: TLN1, MAPK, PI3K–Akt, focal adhesion | Pathogenesis (discovery) |
| Zhou, 2016 [51] | lncRNA (disco-very) | 24 dysregulated lncRNAs; validated: uc004dwe.2↑ (co-exp with NRP2), ENST00000454594, NR_003521 | Cell line/primary | 388↑/188↓ lncRNAs; 586↑/305↓ mRNAs in ectopic vs. eutopic; enriched: vasculogenesis, cell-matrix adhesion, prolif/EMT, NF-κB/immune | First lncRNA landscape in AM; nominates axes (e.g., uc004dwe.2–NRP2) for future studies |
| Hu, 2017 [52] | miRNA | miR-17 ⊣ PTEN (direct 3′UTR) | Eutopic/ectopic | AM: miR-17↑, PTEN mRNA/protein↓; miR-17 KD ↑PTEN, ↓viability, ↑apoptosis, ↓CyclinD1/E1; PTEN OE mimics KD; luciferase confirmed miR-17 → PTEN | Pathogenesis/target: miR-17–PTEN axis promotes survival; anti-miR-17 or PTEN-restoration as strategy |
| Xu, 2018 [53] | lncRNA | Linc-ROR → PI3K–AKT (PTEN↓, p-AKT↑, p-PDK1↑) | Eutopic/ectopic | AM: Linc-ROR↑ (ectopic > eutopic > normal); PTEN↓, AKT↑; Linc-ROR KD ↑PTEN, ↓p-AKT/p-PDK1, ↓prolif; OE opposite; Linc-ROR↑ correlates with diffuse subtype, dysmenorrhea severity | Pathogenesis/target: inhibit Linc-ROR to attenuate PI3K–AKT-driven epithelial prolif |
| Hu, 2019 [54] | circRNA | hsa_circRNA_101280 (SLAIN1-derived)↓ in AM (LH + 7) vs. Ctrls; predicted sponges: miR-491-5p, -141-5p, -200b-3p, -200c-3p, -429 | Cell line/primary | Phase: hsa_circRNA_101280↑ LH + 7 vs. LH + 2; several circRNAs ↓ in AM (LH + 7); hsa_circRNA_101280↓, HOXA10↓, SLAIN1 unchanged; predicted pathways: PI3K–AKT, Wnt, mTOR, Hippo, Hedgehog | Phase-specific receptivity signature; AM-linked ↓hsa_circRNA_101280 may contribute to implantation defects |
| Li, 2019 [55] | lncRNA | ENST00000433673 → ITGAL → ICAM1 (adhesion) | Cell line/primary | ENST00000433673↓ in AM (and EMs/RIF) vs. normal; predicted ↑ITGAL; associates with ICAM1, EEC adhesion; ITGAL/ICAM1↑ in normal endometrium/EECs | Receptivity axis: ENST00000433673–ITGAL–ICAM1 impaired in AM → implantation defect? |
| Shi, 2019 [56] | lncRNA | EGR1 → TUG1 → recruits EZH2 ⊣ TIMP2 → ↑epithelial migration/ invasion (prolif unchanged) | Cell line/primary | TUG1↑ in AM epithelia; EGR1 transcriptionally activates TUG1; TUG1 recruits EZH2 → ↑H3K27me3 ⊣ TIMP2 → ↑migration/invasion; TUG1 KD restores TIMP2, ↓invasion | Invasion axis: EGR1–TUG1–EZH2–TIMP2; suggests TUG1/EZH2 inhibition or TIMP2 restoration as therapy |
| Yan, 2019 [57] | miRNA | miR-21 ⊣ KLF12; modulates NR4A1 (decidualization) | Cell line/primary | AM: miR-21↓; miR-21↑ promotes decidualization (PRL, IGFBP-1, morphology) via ↓KLF12, NR4A1 modulation; inhibition impairs decidualization; KLF12 OE abolishes miR-21 effect | Infertility mechanism: restore miR-21 or target KLF12/NR4A1 to rescue decidualization |
| Borisov, 2020 [58] | miRNA | miR-10b↓, miR-191↑, miR-200c↓; miR-181b/miR-10b ratio | Eutopic/ectopic | AM vs. Ctrl: miR-10b↓, miR-191↑, miR-200c↓; best ratio miR-181b/miR-10b: AUC 0.77, sens 61.3%, spec 72.4%; other pairs AUC 0.74–0.76 | Diagnostic concept: tissue miRNA ratios for low-invasive testing; exploratory |
| Liang, 2020 [59] | lncRNA/miRNA | H19 → miR-17 ⟂ TLR4 (ceRNA) | Eutopic/ectopic | AM: H19↓, miR-17↑, TLR4↑; LNG or H19 OE ↓miR-17, ↓TLR4, G1 arrest, ↑apoptosis, ↓migration/invasion, ↑E-cad, ↓N-cad/β-cat, ↓MD2/MyD88/NF-κB; miR-17 KD or TLR4 KD mimic effects; luciferase confirmed miR-17 binding to H19 & TLR4 | Therapy: LNG ameliorates AM via H19/miR-17/TLR4–NF-κB; targets: ↑H19/ ↓miR-17/↓TLR4 |
| Lin, 2020 [60] | miRNA | let-7a ↔ Lin28B (RBP); Lin28B↑ suppresses let-7a → ↑JZ-SMC prolif | EMI/JZ-SMCs | Lin28B↑ in AM-JZ (mRNA/protein); neg corr with let-7a (r ≈ −0.84); Lin28B KD → let-7a↑, ↓JZSMC prolif; Lin28A no change | JZ growth axis: restore let-7a or inhibit Lin28B to curb JZ-SMC hyperplasia |
| Huang, 2021 [61] | miRNA | E2 → let-7a/LIN28B axis | EMI/JZ-SMCs | JZ-SMCs: let-7a↓, Lin28B↑; let-7a OE ↓Lin28B, ↓prolif; let-7a inhib ↑Lin28B, ↑prolif; E2 ↓let-7a, ↑Lin28B → estrogen collaborates with let-7a/Lin28B to drive JZ-SMC growth | Hormone–miRNA mechanism: restore let-7a or inhibit Lin28B to curb JZ hyperplasia |
| Huang, 2021 [62] | miRNA | Let-7a ↔ Hippo--YAP1 axis | JZ-SMC | Let-7a ↓ in AM-JZ-SMCs; let-7a OE ↑ apoptosis, ↓ proliferation via Hippo–YAP1 activation (↑ p-YAP1, ↓ YAP1/TAZ); effect abolished by verteporfin (YAP1 dephosphorylation) → let-7a requires intact Hippo signaling | Therapeutic axis: let-7a restoration + Hippo activators (e.g., verteporfin analogs) to curb JZ-SMC hyperplasia; first demonstration of Hippo-dependency for let-7a in AM. |
| Huang, 2021 [63] | miRNA | miR-124-3p ⊣ NRP1 | Eutopic/ectopic | AM: miR-124-3p↓, NRP1↑; miR-124-3p mimic ↓ESC viability/migration, reverses EMT (↑E-cad, ↓Vim/N-cad/MMP9); inhibitor opposite; NRP1 OE rescues mimic → miR-124-3p ⊣ NRP1 drives EMT/motility | Pathogenesis; therapeutic target |
| Wang, 2021a [64] | circRNA/miRNA | circPVT1 → miR-145 ⊣ TLN1 | Eutopic/ectopic | AM: circPVT1↑, miR-145↓, TLN1↑; circPVT1 sponges miR-145; miR-145 ⊣ TLN1 (luciferase); circPVT1 KD ↓prolif/invasion, OE ↑; miR-145 rescues circPVT1 KD; circPVT1↑ correlates with worse dysmenorrhea, larger uterus | Pathogenesis/target: circPVT1–miR-145–TLN1 axis as therapeutic node |
| Wang YY, 2021b [65] | miRNA–mRNA axis | miR-145-5p ⊣ Talin1 | Cell line/primary | Talin1↑ in AM; miR-145-5p↓, directly binds Talin1 3′UTR; Talin1 OE activates Wnt/β-cat, induces EMT (↓E-cad/cytokeratin; ↑N-cad/vim/Snail/Slug/Twist/ZEB1), ↑migration/invasion; miR-145-5p rescues → ↓Talin1, reverses EMT/motility | Pathogenic axis: miR-145-5p/Talin1 drives epithelial invasion; restore miR-145-5p or inhibit Talin1/Wnt–β-cat |
| Yu, 2021 [66] | lncRNA/miRNA | MIR22HG → demethylation → ↑miR-2861 ⊣ STAT3/MMP2 | Eutopic/ectopic | MIR22HG↓, miR-2861↓ in AM; positively correlated; MIR22HG OE ↓miR-2861 methylation → ↑miR-2861; MIR22HG/miR-2861 ↓STAT3/MMP2, ↓prolif (co-OE strongest) | Pathogenesis/target: boost MIR22HG/miR-2861 or demethylate miR-2861 to suppress STAT3/MMP2 |
| Zhang, 2021 [67] | miRNA | miR-30c-5p ⊣ MAPK1 (direct 3′UTR) | Cell line/primary | miR-30c-5p↓ in AM tissues/epithelia; OE ↓prolif/migration/invasion; KD opposite; MAPK1 OE rescues miR-30c-5p OE; lower miR-30c-5p associates with dysmenorrhea, longer duration, heavier PBAC | Therapeutic axis: restore miR-30c-5p or inhibit MAPK1 to curb epithelial aggressiveness |
| Guo, 2022 [68] | circRNA | Co-dysregulated: ↑hsa_circ_0002144, _0005806; ↓hsa_circ_0079536, _0024766; ceRNA network → MAPK prominence | EMI/JZ-SMCs | EMI: 760↑/119↓ circRNAs; eutopic: 47↑/17↓; 4 co-dysregulated; ceRNA network (4 circ, 6 miR, 1775 mRNA); MAPK top pathway (also PI3K–AKT, Ras, Hippo) | Atlas: shared circRNA programs across EMI/eutopic drive invasion via MAPK; candidate biomarkers/targets |
| Li, 2022 [69] | circRNA/ miRNA | circ_0061140 → miR-141-3p → LIN28B | Eutopic/ectopic | circ_0061140↑; cytoplasmic, RNase R-resistant; KD ↓viability/prolif (EdU), ↓migration/invasion (scratch/Transwell), ↑apoptosis, ↓CyclinD1/MMP9; sponges miR-141-3p; miR-141-3p ⊣ LIN28B; LIN28B↑ in AM; anti-miR-141-3p rescues KD; LIN28B OE rescues miR-141-3p → circ_0061140 → miR-141-3p → LIN28B axis | Pathogenesis; therapeutic target (disrupt axis); in vitro only |
| Wang & Chen, 2022 [70] | miRNA | miR-183 ⊣ MMP-9 (direct 3′UTR) | Cell line/primary | AM: miR-183↓, MMP-9↑; miR-183 OE ↓epithelial viability/migration/invasion; KD ↑; MMP-9 direct target (luciferase); protein ↓with miR-183 mimic | Therapeutic axis: restore miR-183 or inhibit MMP-9 to limit epithelial invasiveness |
| Yuan, 2022 [71] | lncRNA | TUG1 → binds E2F4 ⊣ KLF5 → ↑EEC prolif/migration/invasion/EMT/angiogenesis; sh-TUG1 reverses | Cell line/primary | TUG1↑ in AM (human/mouse); KD ↓EEC prolif/migration/invasion, reverses EMT (↑E-cad, ↓N-cad), ↓angiogenesis (↓VEGF/CD34); in mice: sh-TUG1 ↓myometrial infiltration/fibrosis, ↓uterine weight/E2; mech: TUG1–E2F4 represses KLF5; KLF5 mod rescues | Therapeutic axis: TUG1–E2F4–KLF5 (in vivo efficacy shown) |
| Zhang, 2022 [72] | miRNA | miR-218-5p ⊣ LASP1 → ↓Vimentin/EMT → ↓ESC migration | Cell line/primary | miR-218-5p enriched in vascular/myometrium, ↓in AEu/AEc; LASP1 inversely correlated; miR-218-5p OE ↓LASP1, ↓ESC migration, ↓Vimentin, hinders EMT; AM tissues ↑LASP1/Vimentin in epithelium | Therapeutic axis: enhance miR-218-5p or inhibit LASP1 to limit stromal migration at interface |
| Juárez-Barber, 2023 [73] | miRNA (EV cargo) | Secretory: ↑miR-21-5p, -24-3p, -26a-5p, -92a-3p, -92b-3p, -200c-3p, -423-5p; Gestational: ↑miR-21-5p, -26a-5p, -30a/c-5p, -222-3p, -423-5p | Eutopic/ectopic | AM organoid EVs (100–400 nm): phase-specific miRNA sets (80 secretory, 60 gestational, 54 shared); linked to prolif/invasion/EMT/angiogenesis; PTEN, MDM4, PLAGL2, CELF1↓ → impaired receptivity | Implantation failure hypothesis: endometrial EV miRNAs as biomarkers for pregnancy complications |
| Tang, 2023 [74] | miRNA | 27 ↑miRNAs (e.g., miR-486-5p, -181a-5p, -221-3p, -21-5p, -25-3p, let-7a-3p) | EV/biofluid | Bromocriptine: anti-proliferative/inhibits ESC migration (BrdU/wound/Transwell); local PRL unchanged; 27 ↑miRNAs implicate PI3K–AKT, JAK–STAT, cell cycle, senescence | Therapeutic signal: bromocriptine as candidate therapy via miRNA-linked pathways |
| Xu, 2023 [75] | lncRNA | MIR503HG ⊣ miR-191 → ↓Wnt/β-cat (↓β-cat), ↑E-cad/↓N-cad → ↓ESC viability/migration/invasion, ↑apoptosis | Cell line/primary | MIR503HG↓ in AM; OE ↓ESC viability/migration/invasion, ↑apoptosis; KD opposite; MIR503HG sponges miR-191 (luciferase, RIP); miR-191 inhibition rescues sh-MIR503HG; KD → EMT/Wnt↑ (↓E-cad, ↑N-cad, ↑β-cat); miR-191 inhib reverses | Therapeutic axis: restore MIR503HG or inhibit miR-191/Wnt–β-catenin to restrain stromal progression |
| Chen, 2024 [76] | miRNA (biofluid) | Vaginal-secretion miRNA panel shift post-HIFU; AM single case: 41↑/71↓ (miR-7977↓ reported cohort-wide, fibroid focus) | EV/biofluid | Prospective pre/post sampling; small-RNA NGS; diff. expr. analysis; pathway enrichment; no functional assays or external validation | Preclinical HIFU response signature; no AM-specific lead miRNAs identified |
| Guo, 2024 [77] | circRNA/miRNA | hsa_circ_0008959↓; hsa-miR-124-3p↑ | Eutopic/ectopic | AM: circ_0008959↓, SLC15A4↓, miR-124-3p↑; axis: circ_0008959 ⊣ miR-124-3p ⊣ SLC15A4; tissue ROC: AUC 0.826–0.875; circ_0008959 + VAS AUC 0.976 (Se 0.917, Sp 0.972) | Diagnostic concept: high discrimination (tissue + VAS); no external validation; mechanistic inference |
| Hu, 2024 [78] | miRNA (exoso-mal) | miR-25-3p (EV) → M2 polarization →EEC EMT; PTEN↓/p-AKT↑ | EV/biofluid | AM EVs/serum EVs: miR-25-3p↑; EV-treated macrophages → M2 (↑CD163/IL10/ARG1; ↓TNFA/INOS); M2 induce EEC EMT (↓E-cad/CK7; ↑N-cad/Vim); miR-25-3p inhibitors reverse; EECs: PTEN↓, p-AKT↑ after co-culture; baseline EEC migration no difference | Paracrine EV axis: miR-25-3p → M2 → EMT; serum EV miR-25-3p as biomarker hypothesis; no target/RTPCR |
| Wang, 2024 [79] | miRNA | miR-141-3p ⟂ JAK2/STAT3 (p-level) | Cell line/primary | miR-141-3p↓ in AM-EMI SMCs; JAK2/STAT3 (tot/p)↑; miR-141-3p OE ↓prolif, ↑apoptosis; inhibition opposite; WP1066 ↓p-JAK2/p-STAT3, curtailed prolif, abrogated miR-141-3p inhib effects → miR-141-3p restrains EMI SMC growth via JAK2/STAT3 dampening | EMI-focused therapeutic axis: restore miR-141-3p or block JAK2/STAT3 to temper JZ-SMC hyperplasia |
| Zeng, 2024 [80] | miRNA | miR-21 (ER/E2-regulated) | Eutopic/ectopic | miR-21↑ in ectopic lesions; ER inhibition ↓miR-21 (E2-dep/indep); miR-21 mimic ↑prolif/migration, ↓apoptosis; inhibitor opposite; autophagosome changes with KD | Pathogenesis: ER → miR-21 axis as therapeutic target; no target validation |
| Zhang, 2024 [81] | miRNA | miR-145 ⊣ CITED2 → ↑NF-κB/HIF-1α → ↑IL-1β/IL-6/VEGF; E2/ERα ↑miR-145; EMT shift (↓E-cad, ↑Vim) → ↑stromal migration | Cell line/primary | miR-145↑ in AM tissues (notably myometrium) and ectopic ESCs; CITED2 direct target (luciferase), ↓with miR-145 OE; CITED2 OE reverses miR-145-induced migration & ↓NF-κB/HIF-1α; E2 via ERα binds pri-miR-145 promoter → ↑miR-145 → ↑VEGF, IL-1β, IL-6, EMT shift | E2–ERα → miR-145 ⊣ CITED2 axis links hormonal signaling to inflammation/angiogenesis/stromal motility; nominate miR-145/CITED2 as target |
| Zheng, 2024 [82] | lncRNA | HAND2-AS1 | Eutopic/ectopic | HAND2/HAND2-AS1↓; FGF9/FGFR–ERK↑; promoter hyper-Me; HAND2-AS1 KD ↓HAND2, ↑FGF9, ↑proliferation/migration → HAND2-AS1 → HAND2/FGF9–ERK axis | Pathogenesis; therapeutic target (restore HAND2-AS1 or inhibit FGFR/ERK) |
| Jia, 2025 [83] | miRNA | miR-21↑→ PI3K/AKT/mTOR → ↓apoptosis, ↓autophagy, ↑migration (ESC) | Eutopic/ectopic | PI3K/AKT↑ → ↑prolif/↓apoptosis/↑p-mTOR; inhibition reverses; miR-21 mimic ↓apoptosis, ↑migration; inhibitor ↑apoptosis/autophagy; miR-21 enhances 740Y-P pro-mig, reverses LY294002 pro-apoptotic → miR-21 regulates ESC survival/motility via PI3K/AKT/mTOR | Stromal therapeutic axis: miR-21/PI3K/AKT/mTOR |
| Qiu, 2025 [84] | miRNA (exoso-mal) | exosomal miR-4669 → DUSP6 ⊣ ERK1/2 → M2 macrophage → TGF-β1 →EEC EMT | EV/biofluid | A-eMSC exosomes induce M2; miR-4669↑ in A-exos and serum EVs; correlates with VAS, PBAC, uterine volume; miR-4669 ⊣ DUSP6 → ↑ERK1/2; M2 TGF-β1 mediates EMT; antagomir-4669 limits AM in vivo | Translational: serum exosomal miR-4669 as candidate biomarker; therapeutic axis: miR-4669/DUSP6/ERK → M2 → TGF-β1 → EMT |
| Shao, 2025 [85] | miRNA (exosomal) | miR-92a-3p↑ (plasma/ lesion exosomes) | EV/biofluid | miR-92a-3p↑ in plasma & lesion exosomes; urinary exosomal miR-92a-3p↑ correlates with uterine vol, VAS, PBAC; AUC (urine) 0.9435; forced miR-92a-3p ↑EEC/ESC migration/invasion, DRG/HUVEC angiogenesis; levels ↓post-hysterectomy | Promising non-invasive biomarker (urinary exosomal); therapeutic candidate (block signaling); target validation needed |
| Valdés-Bango, 2025 [86] | miRNA (predicted) | IPA-predicted: let-7a-5p, miR-124-3p, miR-16-5p, miR-155-5p | Eutopic/ectopic | Distinct proteomes: external AM → immune/inflammatory; internal AM → migration/apoptosis; IPA predicts phenotype-specific miRNA regulators (internal AM: miRNA-MAPK1/IRF2BP2) | Generates phenotype-specific biomarker/target hypotheses; no ncRNA validation |
| Zipponi, 2025 [87] | miRNA (exoso-mal) | 10 validated: ↑miR-132-5p, -451a, -99a-5p; ↓miR-431-3p, -29c-3p, -337-5p, -144-3p, -590-3p, -1275, -7-5p | Eutopic/ectopic | No diff in exosome number/size; 38 candidates; 10 validated; enriched: PI3K–AKT/mTOR, FoxO, MAPK, integrin, platelet activation → menstruation-specific stromal EV signals linked to survival/migration | Biomarker/target hypothesis: menstrual-phase stromal EV miRNAs |
| Target Category | RNA Axis/Target | Compartment/Sample | Detection Method | Performance Metric (AUC/Sens/Spec) | Evidence Level | Clinical Feasibility | Ref. |
|---|---|---|---|---|---|---|---|
| Diagnostic (tissue) | Reciprocal miRNA pairs (miR-181b/miR-10b) | Eutopic endometrium (biopsy) | ttRT-qPCR | AUC 0.77 (sens 61.3%, spec 72.4%) | Exploratory | Low-invasive; requires cycle-phase control; needs external cohort | [58] |
| Diagnostic (tissue) | hsa_circ_0008959 ↓ + VAS | Eutopic endometrium | circRNA-seq + ROC modeling | AUC 0.976 (Se 91.7%, Sp 97.2%) | Discovery (internal) | Highest tissue-based discrimination; requires invasive biopsy; no external validation | [77] |
| Diagnostic (urine) | Exosomal miR-92a-3p ↑ | Urinary exosomes | RT-qPCR | AUC 0.9435 | Exploratory | Most promising non-invasive biomarker; correlates with VAS, PBAC, uterine volume; needs target validation | [85] |
| Diagnostic (serum) | Exosomal miR-4669 ↑ | Serum exosomes | miRNA-seq + RT-qPCR | Correlation with VAS/PBAC/uterine vol (no AUC reported) | Mechanistic + correlational | Strong biological plausibility; potential for monitoring disease burden | [84] |
| Diagnostic (serum) | Exosomal miR-25-3p ↑ | Serum exosomes | RT-qPCR | Elevated in AM vs. controls (no AUC) | Mechanistic + correlational | Paracrine EV axis; biomarker hypothesis pending diagnostic validation | [78] |
| Diagnostic (phase-specific) | Phase-enriched stromal EV miRNAs (e.g., ↑miR-132-5p, ↓miR-431-3p) | Menstrual-phase stromal EVs | Small-RNA seq + qPCR | 10 validated miRNAs dysregulated (no AUC) | Biological alignment | Novel menstrual-phase signature; potential for timing-dependent diagnostics | [87] |
| Diagnostic (receptivity) | ENST00000433673 ↓ | Eutopic endometrium | RT-qPCR | Downregulated in AM/RIF vs. normal | Discovery-level | Associated with impaired adhesion (ITGAL/ICAM1); implantation failure biomarker hypothesis | [55] |
| Diagnostic (receptivity) | hsa_circRNA_101280 ↓ (LH + 7) | Mid-secretory endometrium | circRNA microarray + qPCR | Significant ↓ in AM vs. controls | Discovery-level | Phase-specific signature lost in AM; links to implantation defects | [54] |
| Monitoring (post-tx) | Vaginal secretion miRNA panel shift | Vaginal secretions post-HIFU | NGS | 41↑/71↓ overall; hsa-miR-7977 consistently ↓ | Operational feasibility | Proof-of-concept for therapy response monitoring; no AM-specific lead identified | [76] |
| Feasibility (organoid) | Secretory/gestational EV miRNA cargo | Endometrial organoid-derived EVs | Small-RNA seq | Enriched for pathways linked to implantation failure/pregnancy complications | Biological alignment | Suggests EV miRNA profiles as predictors of reproductive outcomes in AM | [73] |
| Feasibility (proteomic) | IPA-predicted upstream regulators (e.g., let-7a-5p, miR-124-3p) | Eutopic endometrium | Proteomics + IPA inference | Predicted differential regulation by phenotype (internal vs. external AM) | Hypothesis-generating | No direct ncRNA measurement; generates candidate biomarkers for future validation | [86] |
| Target Category | RNA Axis/Target | Mechanism (in Our Corpus) | Proposed Approach | Evidence Type | Comment | Ref. |
|---|---|---|---|---|---|---|
| Cell proliferation (JZ-SMC) | let-7a/LIN28B | E2-responsive suppression of JZ-SMC proliferation via let-7a targeting LIN28B (r = −0.84) | let-7a mimic or LIN28B ASO | L1 + L2 + L3 | Efficacy requires functional Hippo–YAP pathway; combination with verteporfin may enhance response | [60,62] |
| Cell survival & decidualization | miR-21 | Dual role: promotes survival in ectopic ESCs via PI3K/AKT/mTOR; supports decidualization in eutopic stroma via KLF12/NR4A1 | AntagomiR-21 (for ectopic ESCs) or miR-21 mimic (for decidualizing stroma) | L1 + L2 | Compartment-specific function necessitates spatially targeted delivery | [57,83] |
| JAK–STAT modulation | miR-141-3p | Suppresses phosphorylation of JAK2/STAT3 in EMI SMC | miR-141-3p mimic | L1 + L2 | EMI is a distinct niche—local delivery preferred over systemic | [79] |
| EMT restraint (stroma) | miR-124-3p | Directly targets NRP1, reversing EMT-like changes in endometrial stromal cells | miR-124-3p mimic | L1 + L2 | Promotes stromal quiescence; reduces migratory phenotype | [63] |
| Migration restraint | miR-218-5p | Inhibits LASP1 expression in endometrial stromal cells, limiting migration at uterine interface | miR-218-5p mimic | L1 + L2 | Paracrine signal from vascular endothelium—mimics may restore endogenous barrier | [72] |
| Epithelial invasion block | miR-10b | Directly targets ZEB1 and PIK3CA, restoring E-cadherin and inhibiting p-AKT-driven invasion | miR-10b mimic | L1 + L2 | One of the most robustly validated axes; high priority for preclinical testing | [48] |
| Inflammation/immune | EV-miR-25-3p | Carried by serum EVs, induces M2 macrophage polarization → TGF-β1 → EEC EMT | Exosome-targeted antagomiR-25-3p | L1 + L2 | Novel EV-mediated immune-EMT crosstalk–targetable at source | [78] |
| Hormonal/inflammatory | H19/miR-17/TLR4 | H19 sponges miR-17 → derepression of TLR4 → NF-κB inflammation; LNG suppresses axis | ASO against H19 combined with LNG | L1 + L2 | First therapy-linked axis; LNG already clinically used—repurposing potential | [59] |
| Cytoskeletal/EMT | TUG1/EZH2/TIMP2 | TUG1 recruits EZH2 to silence TIMP2 → enhanced epithelial invasion | siRNA against TUG1 | L1 + L2 + L3 | Strongest preclinical evidence (in vivo efficacy); highest translational readiness | [56,71] |
| ceRNA/proliferation | circ_0061140 → LIN28B | Sponges miR-141-3p → LIN28B upregulation → proliferation | ASO against circ_0061140 | L1 + L2 | Aligns with let-7/LIN28B axis–dual targeting potential | [69] |
| ceRNA/EMT | circPVT1/miR-145/Talin1 | circPVT1 sequesters miR-145 → TLN1 upregulation → EMT/migration | ASO against circPVT1 | L1 + L2 | Convergent with miR-145/Talin1 axis–multiple entry points for intervention | [64] |
| FGF signaling | HAND2-AS1 → HAND2/FGFR | lncRNA activates HAND2-FGFR–ERK axis → proliferation/migration | ASO against HAND2-AS1 | L1 + L2 | Links receptivity defect to hyperproliferation—novel hormonal-lncRNA axis | [82] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Watrowski, R.; Kostov, S.; Palumbo, M.; Rosati, A.; Sparić, R.; Alkatout, I.; Juhasz-Böss, I.; Vitale, S.G.; Mereu, L. Non-Coding RNAs (microRNAs, lncRNAs, circRNAs) in Adenomyosis: A Systematic Review of Mechanistic and Translational Evidence. Int. J. Mol. Sci. 2025, 26, 10713. https://doi.org/10.3390/ijms262110713
Watrowski R, Kostov S, Palumbo M, Rosati A, Sparić R, Alkatout I, Juhasz-Böss I, Vitale SG, Mereu L. Non-Coding RNAs (microRNAs, lncRNAs, circRNAs) in Adenomyosis: A Systematic Review of Mechanistic and Translational Evidence. International Journal of Molecular Sciences. 2025; 26(21):10713. https://doi.org/10.3390/ijms262110713
Chicago/Turabian StyleWatrowski, Rafał, Stoyan Kostov, Mario Palumbo, Andrea Rosati, Radmila Sparić, Ibrahim Alkatout, Ingolf Juhasz-Böss, Salvatore Giovanni Vitale, and Liliana Mereu. 2025. "Non-Coding RNAs (microRNAs, lncRNAs, circRNAs) in Adenomyosis: A Systematic Review of Mechanistic and Translational Evidence" International Journal of Molecular Sciences 26, no. 21: 10713. https://doi.org/10.3390/ijms262110713
APA StyleWatrowski, R., Kostov, S., Palumbo, M., Rosati, A., Sparić, R., Alkatout, I., Juhasz-Böss, I., Vitale, S. G., & Mereu, L. (2025). Non-Coding RNAs (microRNAs, lncRNAs, circRNAs) in Adenomyosis: A Systematic Review of Mechanistic and Translational Evidence. International Journal of Molecular Sciences, 26(21), 10713. https://doi.org/10.3390/ijms262110713

