Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (110)

Search Parameters:
Keywords = extinction coefficient ratio

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 4003 KiB  
Article
Exploring Layered Ruddlesden-Popper Structures for High-Performance Energy Devices
by Ahmad Hussain, Sumaira Zafar, Nawishta Jabeen, Muhammad Usman Khan, Imtiaz Ahmad Khan and Mahmoud M. Hessien
Inorganics 2025, 13(6), 203; https://doi.org/10.3390/inorganics13060203 - 17 Jun 2025
Viewed by 500
Abstract
This study presents comprehensive DFT calculations to determine the structural, electronic, mechanical, and optical properties of the Ruddlesden–Popper Phase family member, La2XO4, which has an orthorhombic crystal structure with a Cmce space group. Ultrasoft pseudopotential plane wave and PBE-GGA [...] Read more.
This study presents comprehensive DFT calculations to determine the structural, electronic, mechanical, and optical properties of the Ruddlesden–Popper Phase family member, La2XO4, which has an orthorhombic crystal structure with a Cmce space group. Ultrasoft pseudopotential plane wave and PBE-GGA approaches have been implemented using the CASTEP tool. The exchange–correlation approximation calculations show that the La2XO4 (where X = Ni, Fe, Ba, and Pb) compounds possess no band gap. The results indicate that the compounds are metallic, which are ideal for supercapacitor (SC) applications. The compound’s optical conductivity, dielectric function, extinction coefficients, absorption refractive index, loss function, and reflectivity are also analyzed for SC applications. UV spectra of the compounds observed high absorption coefficient (105 cm−1), dielectric function (9–10), optical conductivity (7 fs−1), and refractive index (4) values. Furthermore, as B/G > 1.75, the mechanical (elastic) properties have shown ductile behavior and mechanical stability. Using the Born stability criteria, the mechanical stability of the compounds is examined. All of the compounds are ductile, according to Pugh’s and Frantesvich ratios. Finally, time-simulations-dependent temperature stability plots for the compounds are computed by employing dynamical stability with norm-conserved pseudopotential, which confirm their potential for SC applications. Full article
Show Figures

Graphical abstract

45 pages, 9840 KiB  
Article
A 1.8 m Class Pathfinder Raman LIDAR for the Northern Site of the Cherenkov Telescope Array Observatory—Performance
by Pedro José Bauzá-Ruiz, Oscar Blanch, Paolo G. Calisse, Anna Campoy-Ordaz, Sidika Merve Çolak, Michele Doro, Lluis Font, Markus Gaug, Roger Grau, Darko Kolar, Camilla Maggio, Manel Martinez, Samo Stanič, Santiago Ubach, Marko Zavrtanik and Miha Živec
Remote Sens. 2025, 17(11), 1815; https://doi.org/10.3390/rs17111815 - 22 May 2025
Viewed by 669
Abstract
The Barcelona Raman LIDAR (BRL) will provide continuous monitoring of the aerosol extinction profile along the line of sight of the Cherenkov Telescope Array Observatory (CTAO). It will be located at its Northern site (CTAO-N) on the Observatorio del Roque de Los Muchachos. [...] Read more.
The Barcelona Raman LIDAR (BRL) will provide continuous monitoring of the aerosol extinction profile along the line of sight of the Cherenkov Telescope Array Observatory (CTAO). It will be located at its Northern site (CTAO-N) on the Observatorio del Roque de Los Muchachos. This article presents the performance of the pathfinder Barcelona Raman LIDAR (pBRL), a prototype instrument for the final BRL. Power budget simulations were carried out for the pBRL operating under various conditions, including clear nights, moon conditions, and dust intrusions. The LIDAR PreProcessing (LPP) software suite is presented, which includes several new statistical methods for background subtraction, signal gluing, ground layer and cloud detection and inversion, based on two elastic and one Raman lines. Preliminary test campaigns were conducted, first close to Barcelona and later at CTAO-N, albeit during moonlit nights only. The pBRL, under these non-optimal conditions, achieves maximum ranges up to about 35 km, range resolution of about 50 m for strongly absorbing dust layers, and 500 m for optically thin clouds with the Raman channel only, leading to similar resolutions for the LIDAR ratios and Ångström exponents. Given the reasonable agreement between the extinction coefficients obtained from the Raman and elastic lines independently, an accuracy of aerosol optical depth retrieval in the order of 0.05 can be assumed with the current setup. The results show that the pBRL can provide valuable scientific results on aerosol characteristics and structure, although not all performance requirements could be validated under the conditions found at the two test sites. Several moderate hardware improvements are planned for its final upgraded version, such as gated PMTs for the elastic channels and a reduced-power laser with a higher repetition rate, to ensure that the data acquisition system is not saturated and therefore not affected by residual ringing. Full article
(This article belongs to the Special Issue Remote Sensing: 15th Anniversary)
Show Figures

Figure 1

14 pages, 4108 KiB  
Technical Note
Extinction Coefficient Inversion Algorithm with New Boundary Value Estimation for Horizontal Scanning Lidar
by Le Chen, Zhibin Yu, Shihai Wang, Chunhui He, Mingguang Zhao, Aiming Liu and Zhangjun Wang
Remote Sens. 2025, 17(10), 1736; https://doi.org/10.3390/rs17101736 - 15 May 2025
Viewed by 481
Abstract
Lidar has been used for many years to study the optical properties of aerosols, but estimating the boundary values requires solving the lidar elastic scattering equation, which remains a challenge. The boundary values are often determined by fitting to uniform regions of the [...] Read more.
Lidar has been used for many years to study the optical properties of aerosols, but estimating the boundary values requires solving the lidar elastic scattering equation, which remains a challenge. The boundary values are often determined by fitting to uniform regions of the atmosphere. This method typically excludes low signal-to-noise ratio (SNR) signals because it classifies them as non-uniform, reducing the effective detection range of the lidar. On the other hand, directly fitting low SNR signals to estimate the boundary values can introduce significant errors. The method is based on maximizing the lidar detection distance and determines the boundary value using a new estimation algorithm with the averaging of multiple fitted results in the low SNR region to reduce the impact of noise. Simulations demonstrate that the new method reduces the relative error in the boundary value estimation by approximately 5% and improves the accuracy of the extinction coefficient profile inversion compared with the method of directly fitting all-sample signals. Field comparison experiments with forward-scattering sensors further verify that the algorithm improves the retrieval accuracy by 17.3% under extremely low signal-to-noise ratio (SNR) conditions, while performing comparably to the traditional method in high SNR homogeneous atmospheres. Additionally, based on the scanned lidar signals, the algorithm can provide detailed information on the spatial distribution of sea fog and offer valuable insights for an in-depth understanding of the physical evolution of sea fog. Full article
(This article belongs to the Special Issue Remote Sensing of Clouds and Aerosols: Techniques and Applications)
Show Figures

Figure 1

17 pages, 4399 KiB  
Technical Note
Research on Effective Radius Retrievals of Aerosol Particles Based on Dual-Wavelength Lidar
by Zuokun Lv, Dong Liu, Jietai Mao, Zhenzhu Wang, Decheng Wu, Shuai Zhang, Zhiqiang Kuang, Qibing Shi and Yingjian Wang
Remote Sens. 2025, 17(8), 1383; https://doi.org/10.3390/rs17081383 - 13 Apr 2025
Viewed by 444
Abstract
In this study, the effective radius of aerosol particles was experimentally retrieved using a self-developed dual-wavelength atmospheric aerosol lidar. A single-valued lookup table was first established, based on the OPAC database and the Gamma size distribution model, to define the relationship between the [...] Read more.
In this study, the effective radius of aerosol particles was experimentally retrieved using a self-developed dual-wavelength atmospheric aerosol lidar. A single-valued lookup table was first established, based on the OPAC database and the Gamma size distribution model, to define the relationship between the extinction coefficient ratio and the effective radius of atmospheric aerosol particles. The extinction coefficients corresponding to the 355 nm and 1064 nm wavelengths were then calculated using the echo signals retrieved horizontally by the lidar, in conjunction with the Mie scattering lidar equation. Subsequently, the lookup table was used to retrieve the real-time effective radius of aerosol particles by inputting the extinction coefficient ratio of the two wavelengths. Finally, the retrieval results were compared with the effective radii measured by an optical particle spectrometer, which had been corrected for relative humidity. An analysis over six months showed a coefficient of determination (R2) greater than 0.83. The results demonstrated that the dual-wavelength lidar exhibits a stable performance, the retrieval method is valid, and the detection results are accurate and reliable. Full article
Show Figures

Graphical abstract

10 pages, 2399 KiB  
Article
Enhanced Optoelectronic Response of TiO2 Photodetector Sensitized via CuInSe2 Quantum Dots
by Yanxu Zhang, Kexin Yu, Jin Zhao, Shuaiqi Xu, Mengqi Lv, Qiuling Zhao, Xue Du, Maorong Wang and Xia Wang
Nanomaterials 2025, 15(7), 522; https://doi.org/10.3390/nano15070522 - 30 Mar 2025
Viewed by 521
Abstract
Colloidal copper-based chalcogenide quantum dots (QDs), particularly lead-free CuInSe2 systems, have emerged as promising photosensitizers for optoelectronic de-vices due to their high extinction coefficients and solution processability. In this work, we demonstrate a TiO2 photodetector enhanced through interfacial engineering with the [...] Read more.
Colloidal copper-based chalcogenide quantum dots (QDs), particularly lead-free CuInSe2 systems, have emerged as promising photosensitizers for optoelectronic de-vices due to their high extinction coefficients and solution processability. In this work, we demonstrate a TiO2 photodetector enhanced through interfacial engineering with the size of 9.88 ± 2.49 nm CuInSe2 QDs, synthesized via controlled thermal injection. The optimized device architecture combines a 160 nm TiO2 active layer with 60 μm horizontal channel electrodes, achieving high performance metrics. The QD-sensitized device demonstrates an impressive switching ratio of approximately 105 in the 405 nm wavelength, a significant 34-times increase in responsivity at a 2 V bias, and a detection rate of 4.17 × 108 Jones. Due to the limitations imposed by the TiO2 bandgap, the TiO2 photodetector exhibits a negligible increase in photocurrent at 565 nm. The engineered type-II heterostructure enables responsivity enhancement across an extended spectral range through sensitization while maintaining equivalent performance characteristics at both 405 nm and 565 nm wavelengths. Furthermore, the sensitized architecture demonstrates superior response kinetics, enhanced specific detectivity, and exceptional operational stability, establishing a universal design framework for broadband photodetection systems. Full article
Show Figures

Figure 1

14 pages, 5457 KiB  
Article
Wafer-Scale Experimental Determination of Coupling and Loss for Photonic Integrated Circuit Design Optimisation
by Daniel Schmid, René Eisermann, Anna Peczek, Georg Winzer, Lars Zimmermann and Stephan Krenek
Photonics 2025, 12(3), 234; https://doi.org/10.3390/photonics12030234 - 5 Mar 2025
Viewed by 2159
Abstract
We investigate integrated silicon ring resonators with regard to the influence of design parameters and intra-wafer variations. First, we show the effect of different ring radii and gaps between ring and bus waveguide on optical properties (peak width, finesse, Q factor, and extinction [...] Read more.
We investigate integrated silicon ring resonators with regard to the influence of design parameters and intra-wafer variations. First, we show the effect of different ring radii and gaps between ring and bus waveguide on optical properties (peak width, finesse, Q factor, and extinction ratio), from which we calculate the resonators’ coupling and loss coefficients. The dependence on the gap of these properties is discussed at the wafer scale. Second, by incorporating the spectra of 2242 resonators from 59 nominally identical dies on a 200 mm wafer, we show how these properties depend on the resonators’ position on the wafer. Third, we demonstrate how curve fitting of loss and coupling coefficients as a function of the gaps can be used to estimate the optimal gap that realizes critical coupling with a significantly reduced number of manufactured test structures needed to find optimal design parameters. Full article
Show Figures

Figure 1

33 pages, 6353 KiB  
Article
Improved Method for the Retrieval of Extinction Coefficient Profile by Regularization Techniques
by Richard Matthias Herrmann, Christoph Ritter, Christine Böckmann and Sandra Graßl
Remote Sens. 2025, 17(5), 841; https://doi.org/10.3390/rs17050841 - 27 Feb 2025
Viewed by 655
Abstract
In this work, we revise the retrieval of extinction coefficient profiles from Raman Lidar. This is an ill-posed problem, and we show that methods like Levenberg–Marquardt or Tikhonov–Phillips can be applied. We test these methods for a synthetic Lidar profile (known solution) with [...] Read more.
In this work, we revise the retrieval of extinction coefficient profiles from Raman Lidar. This is an ill-posed problem, and we show that methods like Levenberg–Marquardt or Tikhonov–Phillips can be applied. We test these methods for a synthetic Lidar profile (known solution) with different noise realizations. Further, we apply these methods to three different cases of data from the Arctic: under daylight (Arctic Haze), under daylight with a high and vertically extended aerosol layer, and at nighttime with high extinction. We show that our methods work and allow a trustful derivation of extinction up to clearly higher altitudes (at about half a signal-to-noise ratio) compared with the traditional, non-regularized Ansmann solution. However, these new methods are not trivial and require a choice of parameters, which depend on the noise of the data. As the Lidar signal quality quickly decreases with range, a separation of the profile into several sub-intervals seems beneficial. Full article
Show Figures

Figure 1

16 pages, 3737 KiB  
Article
Evaluation and Characterization of High-Uniformity SiNx Thin Film with Controllable Refractive Index by Home-Made Cat-CVD Based on Orthogonal Experiments
by Caifang Li, Minghui Li, Jinsong Shi, Haibin Huang and Zhimei Li
Molecules 2025, 30(5), 1091; https://doi.org/10.3390/molecules30051091 - 27 Feb 2025
Viewed by 942
Abstract
Silicon nitride (SiNx) thin film is a promising coating with great physiochemical and optical properties. However, the preparation of films with good comprehensive properties still faces challenges. This study focused on developing a method for the preparation of uniform SiNx [...] Read more.
Silicon nitride (SiNx) thin film is a promising coating with great physiochemical and optical properties. However, the preparation of films with good comprehensive properties still faces challenges. This study focused on developing a method for the preparation of uniform SiNx thin film with a controllable refractive index using home-made catalytic chemical vapor deposition (Cat-CVD) equipment. Orthogonal experimental design was employed to investigate the effects of four key influence factors, including reaction pressure, the ratio of SiH4 to NH3, the ratio of SiH4 to H2, and substrate temperature. The response parameters evaluated were the refractive index, extinction coefficient, uniformity, and deposition rate of SiNx thin film. Compared with the single-factor variable tests, an orthogonal experiment could obtain the optimal preparation process of the SiNx thin film with the best comprehensive quality through the least number of experiments. At the same time, the microstructures of SiNx thin film were analyzed by various characterization methods, including Fourier-transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM), to research the relationship between preparation factors and the properties of SiNx thin film. This paper provides the theoretical guidance for fine-regulating the properties of SiNx thin film in practical applications. Full article
Show Figures

Figure 1

22 pages, 6110 KiB  
Article
Air–Ice–Water Temperature and Radiation Transfer via Different Surface Coverings in Ice-Covered Qinghai Lake of the Tibetan Plateau
by Ruijia Niu, Lijuan Wen, Chan Wang, Hong Tang and Matti Leppäranta
Water 2025, 17(2), 142; https://doi.org/10.3390/w17020142 - 8 Jan 2025
Viewed by 940
Abstract
There are numerous lakes in the Tibetan Plateau (TP) that significantly impact regional climate and aquatic ecosystems, which often freeze seasonally owing to the high altitude. However, the special warming mechanisms of lake water under ice during the frozen period are poorly understood, [...] Read more.
There are numerous lakes in the Tibetan Plateau (TP) that significantly impact regional climate and aquatic ecosystems, which often freeze seasonally owing to the high altitude. However, the special warming mechanisms of lake water under ice during the frozen period are poorly understood, particularly in terms of solar radiation penetration through lake ice. The limited understanding of these processes has posed challenges to advancing lake models and improving the understanding of air–lake energy exchange during the ice-covered period. To address this, a field experiment was conducted at Qinghai Lake, the largest lake in China, in February 2022 to systematically examine thermal conditions and radiation transfer across air–ice–water interfaces. High-resolution remote sensing technologies (ultrasonic instrument and acoustic Doppler devices) were used to observe the lake surface changes, and MODIS imagery was also used to validate differences in lake surface conditions. Results showed that the water temperature under the ice warmed steadily before the ice melted. The observation period was divided into three stages based on surface condition: snow stage, sand stage, and bare ice stage. In the snow and sand stages, the lake water temperature was lower due to reduced solar radiation penetration caused by high surface reflectance (61% for 2 cm of snow) and strong absorption by 8 cm of sand (absorption-to-transmission ratio of 0.96). In contrast, during the bare ice stage, a low reflectance rate (17%) and medium absorption-to-transmission ratio (0.86) allowed 11% of solar radiation to penetrate the ice, reaching 11.70 W·m−2, which increased the water temperature across the under-ice layer, with an extinction coefficient for lake water of 0.39 (±0.03) m−1. Surface coverings also significantly influenced ice temperature. During the bare ice stage, the ice exhibited the lowest average temperature and the greatest diurnal variations. This was attributed to the highest daytime radiation absorption, as indicated by a light extinction coefficient of 5.36 (±0.17) m−1, combined with the absence of insulation properties at night. This study enhances understanding of the characteristics of water/ice temperature and air–ice–water solar radiation transfer through effects of different ice coverings (snow, sand, and ice) in Qinghai Lake and provides key optical radiation parameters and in situ observations for the refinement of TP lake models, especially in the ice-covered period. Full article
(This article belongs to the Special Issue Ice and Snow Properties and Their Applications)
Show Figures

Figure 1

7 pages, 1637 KiB  
Proceeding Paper
Bioinformatics Approaches for Molecular Characterization of CT670 Hypothetical Protein of Chlamydia pneumoniae
by Abu Saim Mohammad Saikat, Tazin Afrose, Umme Saoda, Kazi Nur Uddin, Mir Monir Hossain and Md. Lutful Kabir
Chem. Proc. 2024, 16(1), 10; https://doi.org/10.3390/ecsoc-28-20207 - 14 Nov 2024
Viewed by 597
Abstract
Researchers have linked Chlamydia pneumoniae (C. pneumoniae), a type of bacteria that cannot survive outside of cells and is resistant to Gram staining, to many autoimmune diseases. People hypothesized that C. pneumoniae had a harmful function due to its tendency to [...] Read more.
Researchers have linked Chlamydia pneumoniae (C. pneumoniae), a type of bacteria that cannot survive outside of cells and is resistant to Gram staining, to many autoimmune diseases. People hypothesized that C. pneumoniae had a harmful function due to its tendency to inhabit human endothelium and epithelial tissue. This study implemented multiple bioinformatics tools and databases to understand the possible function of the CT670 hypothetical protein of C. pneumoniae. The physicochemical parameters showed the protein’s half-life in different media. These parameters also displayed the protein’s theoretical isoelectric point, aliphatic index, GRAVY value, extinction coefficient, instability index, and the amino acids and atoms that it comprises. Amino acid composition measured the percentage of amino acids present in the selected protein, with glutamate demonstrated as the greatest proportion. Moreover, hydrogen was the most abundant ratio in terms of the atomic composition of the protein, followed by carbon, oxygen, nitrogen, and sulfur. The PPI networks reveal its potential primary and secondary interactions with other proteins. We modeled and assessed the secondary and tertiary structures to understand the nature of the selected protein. Computational functional analysis predicted that the protein would be a chaperone effector. By designing and developing drugs and vaccines, we can use this protein as a target for further analysis to combat diseases caused by C. pneumoniae. Full article
Show Figures

Figure 1

10 pages, 3690 KiB  
Article
Design of Magnetic Fluid-Enhanced Optical Fiber Polarization Filter
by Haixu Chen, Lianzhen Zhang and Xin Ding
Micromachines 2024, 15(11), 1364; https://doi.org/10.3390/mi15111364 - 11 Nov 2024
Cited by 2 | Viewed by 1063
Abstract
In this paper, we demonstrated a method of filling the air holes of a photonic crystal fiber (PCF), coated with gold film, with magnetic fluid (MF) to enhance the Surface Plasmon Resonance (SPR). The simulation results show that at the wavelength of 1260–1675 [...] Read more.
In this paper, we demonstrated a method of filling the air holes of a photonic crystal fiber (PCF), coated with gold film, with magnetic fluid (MF) to enhance the Surface Plasmon Resonance (SPR). The simulation results show that at the wavelength of 1260–1675 nm, the minimum loss coefficient of the y-polarization mode is 4.7 times that before filling with MF, and the x-polarization mode is 0.45 times greater. Then, based on this method, we designed a polarizing filter with a core diameter of 9 µm. The numerical simulation results indicate that it not only maintains the same core diameter as the single-mode fiber, but also has a larger bandwidth and a higher extinction ratio (ER). Additionally, we can optimize its ER at a specific wavelength by adjusting the magnetic field. Full article
(This article belongs to the Special Issue Photonic and Optoelectronic Devices and Systems, Second Edition)
Show Figures

Figure 1

17 pages, 12981 KiB  
Article
Vertical Distribution of Water Vapor During Haze Processes in Northeast China Based on Raman Lidar Measurements
by Tianpei Zhang, Zhenping Yin, Yubin Wei, Yaru Dai, Longlong Wang, Xiangyu Dong, Yuan Gao, Lude Wei, Qixiong Zhang, Di Hu and Yifan Zhou
Remote Sens. 2024, 16(19), 3713; https://doi.org/10.3390/rs16193713 - 6 Oct 2024
Cited by 1 | Viewed by 1276
Abstract
Haze refers to an atmospheric phenomenon with extremely low visibility, which has significant impacts on human health and safety. Water vapor alters the scattering properties of atmospheric particulate matter, thus affecting visibility. A comprehensive analysis of the role of water vapor in haze [...] Read more.
Haze refers to an atmospheric phenomenon with extremely low visibility, which has significant impacts on human health and safety. Water vapor alters the scattering properties of atmospheric particulate matter, thus affecting visibility. A comprehensive analysis of the role of water vapor in haze formation is of great scientific significance for forecasting severe pollution weather events. This study investigates the distribution characteristics and variations of water vapor during haze weather in Changchun City (44°N, 125.5°E) in autumn and winter seasons, aiming to reveal the relationship between haze and atmospheric water vapor content. Analysis of observational results for a period of two months (October to November 2023) from a three-wavelength Raman lidar deployed at the site reveals that atmospheric water vapor content is mainly concentrated below 5 km, accounting for 64% to 99% of the total water vapor below 10 km. Furthermore, water vapor content in air pollution exhibits distinct stratification characteristics with altitude, especially within the height range of 1–3 km, where significant water vapor variation layers exist, showing spatial consistency with inversion layers. Statistical analysis of haze events at the site indicates a high correlation between the concentration variations of PM2.5 and PM10 and the variations in average water vapor mixing ratio (WVMR). During haze episodes, the average WVMR within 3 km altitude is 3–4 times higher than that during clear weather. Analysis of spatiotemporal height maps of aerosols and water vapor during a typical haze event suggests that the relative stability of the atmospheric boundary layer may hinder the vertical transport and diffusion of aerosols. This, in turn, could lead to a sharp increase in aerosol extinction coefficients through hygroscopic growth, thereby possibly exacerbating haze processes. These observational findings indicate that water vapor might play a significant role in haze formation, emphasizing the potential importance of observing the vertical distribution of water vapor for better simulation and prediction of haze events. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Figure 1

19 pages, 3356 KiB  
Article
The First Validation of Aerosol Optical Parameters Retrieved from the Terrestrial Ecosystem Carbon Inventory Satellite (TECIS) and Its Application
by Yijie Ren, Binglong Chen, Lingbing Bu, Gen Hu, Jingyi Fang and Pasindu Liyanage
Remote Sens. 2024, 16(19), 3689; https://doi.org/10.3390/rs16193689 - 3 Oct 2024
Viewed by 950
Abstract
In August 2022, China successfully launched the Terrestrial Ecosystem Carbon Inventory Satellite (TECIS). The primary payload of this satellite is an onboard multi-beam lidar system, which is capable of observing aerosol optical parameters on a global scale. This pioneering study used the Fernald [...] Read more.
In August 2022, China successfully launched the Terrestrial Ecosystem Carbon Inventory Satellite (TECIS). The primary payload of this satellite is an onboard multi-beam lidar system, which is capable of observing aerosol optical parameters on a global scale. This pioneering study used the Fernald forward integration method to retrieve aerosol optical parameters based on the Level 2 data of the TECIS, including the aerosol depolarization ratio, aerosol backscatter coefficient, aerosol extinction coefficient, and aerosol optical depth (AOD). The validation of the TECIS-retrieved aerosol optical parameters was conducted using CALIPSO Level 1 and Level 2 data, with relative errors within 30%. A comparison of the AOD retrieved from the TECIS with the AERONET and MODIS AOD products yielded correlation coefficients greater than 0.7 and 0.6, respectively. The relative error of aerosol optical parameter profiles compared with ground-based measurements for CALIPSO was within 40%. Additionally, the correlation coefficients R2 with MODIS and AERONET AOD were approximately between 0.5 and 0.7, indicating the high accuracy of TECIS retrievals. Utilizing the TECIS retrieval results, combined with ground air quality monitoring data and HYSPLIT outcomes, a typical dust transport event was analyzed from 2 to 7 April 2023. The results indicate that dust was transported from the Taklamakan Desert in Xinjiang, China, to Henan and Anhui provinces, with a gradual decrease in the aerosol depolarization ratio and backscatter coefficient during the transport process, causing varying degrees of pollution in the downstream regions. This research verifies the accuracy of the retrieval algorithm through multi-source data comparison and demonstrates the potential application of the TECIS in the field of aerosol science for the first time. It enables the fine-scale regional monitoring of atmospheric aerosols and provides reliable data support for the three-dimensional distribution of global aerosols and related scientific applications. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Figure 1

12 pages, 4151 KiB  
Article
Gold Nanoparticles Modulate Excimer and Exciplex Dynamics of PDDCP-Conjugated Polymers
by Khalid H. Ibnaouf, Ahmed Alsadig, Hajo Idriss, Moez A. Ibrahem and Humberto Cabrera
Polymers 2024, 16(17), 2420; https://doi.org/10.3390/polym16172420 - 26 Aug 2024
Viewed by 1228
Abstract
How plasmonic nanostructures modulate the behavior of exciplexes and excimers within materials remains unclear. Thus, advanced knowledge is essential to bridge this gap for the development of optoelectronic devices that leverage the interplay between plasmonic and conjugated polymer hybrid materials. Herein, this work [...] Read more.
How plasmonic nanostructures modulate the behavior of exciplexes and excimers within materials remains unclear. Thus, advanced knowledge is essential to bridge this gap for the development of optoelectronic devices that leverage the interplay between plasmonic and conjugated polymer hybrid materials. Herein, this work aims to explore the role of gold nanoparticles (AuNPs) in modulating exciplex and excimer states within the conjugated polymer poly(2,5-di(3,7-dimethyloctyloxy) cyanoterephthalylidene) (PDDCP), known for its photoluminescent and semi-conductive properties, aiming to create innovative composite materials with tailored optical features. The spectral analysis was conducted to investigate the effects of AuNPs on the PDDCP, varying AuNP volume percentages to measure changes in the absorption profile, molar extinction coefficient (ε), absorption cross-section (σa), and optical bandgap (Eg). Fluorescence spectra of the mixture at different volume ratios were also examined to assess exciplex formation, while amplified spontaneous emission (ASE) profiles were analyzed to study the behavior and photochemical stability of the polymer–NP hybrid material. Increasing AuNP volume induced both blue and red shifts in the absorption profile of the PDDCP. Higher AuNPs concentrations correlated with decreased ε and σa, inversely impacting Eg. The emission spectra obtained at varied AuNP volume ratios indicated significantly enhanced exciplex and excimer formations. The ASE profiles remained consistent but showed reduced intensity with increasing AuNPs concentrations, indicating their influence on hybrid material behavior and stability. The findings suggest that AuNPs affect PDDCP’s optical characteristics, altering the absorption profile, bandgap, and fluorescence spectra. Furthermore, the observed reduction in ASE intensity highlights their influence on the behavior and photochemical stability of the hybrid material. These results contribute to a better understanding of the versatile applications of plasmonic-conjugated hybrid polymers. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Figure 1

18 pages, 6707 KiB  
Article
Geometric Factor Correction Algorithm Based on Temperature and Humidity Profile Lidar
by Bowen Zhang, Guangqiang Fan and Tianshu Zhang
Remote Sens. 2024, 16(16), 2977; https://doi.org/10.3390/rs16162977 - 14 Aug 2024
Cited by 2 | Viewed by 1266
Abstract
Due to the influence of geometric factors, the temperature and humidity profile of lidar’s near-field signal was warped when sensing the air environment. In order to perform geometric factor correction on near-field signals, this article proposes different correction solutions for the Mie and [...] Read more.
Due to the influence of geometric factors, the temperature and humidity profile of lidar’s near-field signal was warped when sensing the air environment. In order to perform geometric factor correction on near-field signals, this article proposes different correction solutions for the Mie and Raman scattering channels. Here, the Mie scattering channel used the Raman method to invert the aerosol backscatter coefficient and correct the extinction coefficient in the transition zone. The geometric factor was the ratio of the measured signal to the forward-computed vibration Raman scattering signal. The aerosol optical characteristics were reversed using the corrected echo signal, and the US standard atmospheric model was added to the missing signal in the blind zone, reflecting the aerosol evolution process. The stability and dependability of the proposed algorithm were validated by the consistency between the visibility provided by the Environmental Protection Agency and the visibility acquired via lidar retrieval data. The near-field humidity data were supplemented by the interpolation method in the Raman scattering channel to reflect the water vapor transfer process in the temporal dimension. The measured transmittance curve of the filter, the theoretical normalized spectrum, and the sounding data were used to compute the delay geometric factor. The temperature was retrieved and the near-field signal distortion issue was resolved by applying the corrected quotient of the temperature channel. The proposed algorithm exhibited robustness and universality, enhancing the system’s detection accuracy compared to the temperature and humidity data constantly recorded by the probes in the meteorological gradient tower, which have a high correlation with the lidar observation data. The comparison between lidar data and instrument monitoring data showed that the proposed algorithm could effectively correct distorted echo signals in the transition zone, which was of great value for promoting the application of lidar in the meteorological monitoring of the urban canopy layer. Full article
Show Figures

Graphical abstract

Back to TopTop