Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (72)

Search Parameters:
Keywords = extended gate field effect transistor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2721 KB  
Article
A Portable Extended-Gate FET Integrated Sensing System with Low-Noise Current Readout for On-Site Detection of Escherichia coli O157:H7
by Weilin Guo, Yanping Hu, Yunchao Cao, Hongbin Zhang and Hong Wang
Micromachines 2026, 17(2), 151; https://doi.org/10.3390/mi17020151 - 23 Jan 2026
Viewed by 91
Abstract
Field-effect transistor (FET) biosensors enable label-free and real-time electrical transduction; however, their practical deployment is often constrained by the need for bulky benchtop instrumentation to provide stable biasing, low-noise readout, and data processing. Here, we report a portable extended-gate FET (EG-FET) integrated sensing [...] Read more.
Field-effect transistor (FET) biosensors enable label-free and real-time electrical transduction; however, their practical deployment is often constrained by the need for bulky benchtop instrumentation to provide stable biasing, low-noise readout, and data processing. Here, we report a portable extended-gate FET (EG-FET) integrated sensing system that consolidates the sensing interface, analog front-end conditioning, embedded acquisition/control, and user-side visualization into an end-to-end prototype suitable for on-site operation. The system couples a screen-printed Au extended-gate electrode to a MOSFET and employs a low-noise signal-conditioning chain with microcontroller-based digitization and real-time data streaming to a host graphical interface. As a proof-of-concept, enterohemorrhagic Escherichia coli O157:H7 was selected as the target. A bacteria-specific immunosensing interface was constructed on the Au extended gate via covalent immobilization of monoclonal antibodies. Measurements in buffered samples produced concentration-dependent current responses, and a linear calibration was experimentally validated over 104–1010 CFU/mL. In specificity evaluation against three common foodborne pathogens (Staphylococcus aureus, Salmonella typhimurium, and Listeria monocytogenes), the sensor showed a maximum interference response of only 13% relative to the target signal (ΔI/ΔImax) with statistical significance (p < 0.001). Our work establishes a practical hardware–software architecture that mitigates reliance on benchtop instruments and provides a scalable route toward portable EG-FET sensing for rapid, point-of-need detection of foodborne pathogens and other biomarkers. Full article
(This article belongs to the Special Issue Next-Generation Biomedical Devices)
Show Figures

Figure 1

36 pages, 5230 KB  
Review
Organic Field-Effect Transistor Biosensors for Clinical Biomarkers: Materials, Architectures, and Translational Applications
by Joydip Sengupta, Arpita Adhikari and Chaudhery Mustansar Hussain
Chemosensors 2025, 13(12), 411; https://doi.org/10.3390/chemosensors13120411 - 30 Nov 2025
Viewed by 1007
Abstract
Organic field-effect transistor (OFET) biosensors have emerged as a transformative technology for clinical biomarker detection, offering unprecedented sensitivity, selectivity, and versatility in point-of-care (POC) diagnostics. This review examines the fundamental principles, materials innovations, device architectures, and clinical applications of OFET-based biosensing platforms. The [...] Read more.
Organic field-effect transistor (OFET) biosensors have emerged as a transformative technology for clinical biomarker detection, offering unprecedented sensitivity, selectivity, and versatility in point-of-care (POC) diagnostics. This review examines the fundamental principles, materials innovations, device architectures, and clinical applications of OFET-based biosensing platforms. The unique properties of organic semiconductors, combined with advanced biorecognition strategies, enable the detection of clinically relevant biomarkers at low concentrations. Recent developments in organic semiconductor materials have significantly enhanced device performance and stability. The integration of novel device architectures such as electrolyte-gated OFETs (EGOFETs) and extended-gate configurations has expanded the operational capabilities of these sensors in aqueous environments. Clinical applications span a broad spectrum of biomarkers, demonstrating the versatility of OFET biosensors in disease diagnosis and monitoring. Despite remarkable progress, challenges remain in terms of long-term stability, standardization, and translation to clinical practice. The convergence of organic electronics, biotechnology, and clinical medicine positions OFET biosensors as a promising platform for next-generation personalized healthcare and precision medicine applications. Full article
(This article belongs to the Special Issue Recent Advances in Field-Effect Transistor-Based Sensors)
Show Figures

Graphical abstract

22 pages, 3094 KB  
Article
Enhanced NO2 Detection in ZnO-Based FET Sensor: Charge Carrier Confinement in a Quantum Well for Superior Sensitivity and Selectivity
by Hicham Helal, Marwa Ben Arbia, Hakimeh Pakdel, Dario Zappa, Zineb Benamara and Elisabetta Comini
Chemosensors 2025, 13(10), 358; https://doi.org/10.3390/chemosensors13100358 - 1 Oct 2025
Cited by 1 | Viewed by 920
Abstract
NO2 is a toxic gas mainly generated by combustion processes, such as vehicle emissions and industrial activities. It is a key contributor to smog, acid rain, ground-level ozone, and particulate matter, all of which pose serious risks to human health and the [...] Read more.
NO2 is a toxic gas mainly generated by combustion processes, such as vehicle emissions and industrial activities. It is a key contributor to smog, acid rain, ground-level ozone, and particulate matter, all of which pose serious risks to human health and the environment. Conventional resistive gas sensors, typically based on metal oxide semiconductors, detect NO2 by resistance modulation through surface interactions with the gas. However, they often suffer from low responsiveness and poor selectivity. This study investigates NO2 detection using nanoporous zinc oxide thin films integrated into a resistor structure and floating-gate field-effect transistor (FGFET). Both Silvaco-Atlas simulations and experimental fabrication were employed to evaluate sensor behavior under NO2 exposure. The results show that FGFET provides higher sensitivity, faster response times, and improved selectivity compared to resistor-based devices. In particular, FGFET achieves a detection limit as low as 89 ppb, with optimal performance around 400 °C, and maintains stability under varying humidity levels. The enhanced performance arises from quantum well effects at the floating-gate Schottky contact, combined with NO2 adsorption on the ZnO surface. These interactions extend the depletion region and confine charge carriers, amplifying conductivity modulation in the channel. Overall, the findings demonstrate that FGFET is a promising platform for NO2 sensors, with strong potential for environmental monitoring and industrial safety applications. Full article
(This article belongs to the Special Issue Functionalized Material-Based Gas Sensing)
Show Figures

Figure 1

30 pages, 6054 KB  
Article
Development of a High-Switching-Frequency Motor Controller Based on SiC Discrete Components
by Shaokun Zhang, Jing Guo and Wei Sun
World Electr. Veh. J. 2025, 16(8), 474; https://doi.org/10.3390/wevj16080474 - 19 Aug 2025
Viewed by 1814
Abstract
Discrete Silicon Carbide Metal-Oxide-Semiconductor Field-Effect Transistors (SiC MOSFETs) are characterized by their lower parasitic parameters and single-chip design, enabling them to achieve even faster switching speeds. However, the rapid rate of change in voltage (dv/dt) and current (di/dt) can lead to overshoot and [...] Read more.
Discrete Silicon Carbide Metal-Oxide-Semiconductor Field-Effect Transistors (SiC MOSFETs) are characterized by their lower parasitic parameters and single-chip design, enabling them to achieve even faster switching speeds. However, the rapid rate of change in voltage (dv/dt) and current (di/dt) can lead to overshoot and oscillation in both voltage and current, ultimately limiting the performance of high-frequency operations. To address this issue, this paper presents a high-switching-frequency motor controller that utilizes discrete SiC MOSFETs. To achieve a high switching frequency for the controller while minimizing current oscillation and voltage overshoot, a novel electronic system architecture is proposed. Additionally, a passive driving circuit is designed to suppress gate oscillation without the need for additional control circuits. A new printed circuit board (PCB) laminate stack featuring low parasitic inductance, high current conduction capacity, and efficient heat dissipation is also developed using advanced wiring technology and a specialized heat dissipation structure. Compared to traditional methods, the proposed circuit and bus design features a simpler structure, a higher power density, and achieves a 13% reduction in current overshoot, along with a 15.7% decrease in switching loss. The silicon carbide (SiC) controller developed from this research has successfully undergone double-pulse and power testing. The results indicate that the designed controller can operate reliably over extended periods at a switching frequency of 50 kHz, achieving a maximum efficiency of 98.2% and a power density of 9 kW/kg (10 kW/L). The switching frequency and quality density achieved by the controller have not been observed in previous studies. This controller is suitable for use in the development of new energy electrical systems. Full article
Show Figures

Figure 1

11 pages, 1701 KB  
Article
Design Strategies for Optimized Bulk-Linearized MOS Pseudo-Resistor
by Lorenzo Benatti, Tommaso Zanotti and Francesco Maria Puglisi
Micromachines 2025, 16(8), 941; https://doi.org/10.3390/mi16080941 - 16 Aug 2025
Viewed by 1316
Abstract
The bulk linearization technique is a design strategy used to extend the linear region of a metal oxide semiconductor field effect transistor (MOSFET) by increasing its saturation voltage through a composite structure and a gate biasing circuit. This allows us to develop compact [...] Read more.
The bulk linearization technique is a design strategy used to extend the linear region of a metal oxide semiconductor field effect transistor (MOSFET) by increasing its saturation voltage through a composite structure and a gate biasing circuit. This allows us to develop compact and flexible pseudo-resistor elements for integrated circuit designs. In this paper we propose a new simple yet effective design approach, focused on the biasing circuit, that optimizes area, offset, and power consumption without altering the design complexity of the original solution. Post-layout simulations verify the presented design strategy, which is then applied for designing a band-pass filter for neural action potential acquisition. Results of harmonic distortion and noise analysis strengthen the validity of the proposed strategy. Full article
Show Figures

Figure 1

15 pages, 3579 KB  
Article
Dual-Control-Gate Reconfigurable Ion-Sensitive Field-Effect Transistor with Nickel-Silicide Contacts for Adaptive and High-Sensitivity Chemical Sensing Beyond the Nernst Limit
by Seung-Jin Lee, Seung-Hyun Lee, Seung-Hwa Choi and Won-Ju Cho
Chemosensors 2025, 13(8), 281; https://doi.org/10.3390/chemosensors13080281 - 2 Aug 2025
Viewed by 1141
Abstract
In this study, we propose a bidirectional chemical sensor platform based on a reconfigurable ion-sensitive field-effect transistor (R-ISFET) architecture. The device incorporates Ni-silicide Schottky barrier source/drain (S/D) contacts, enabling ambipolar conduction and bidirectional turn-on behavior for both p-type and n-type configurations. Channel polarity [...] Read more.
In this study, we propose a bidirectional chemical sensor platform based on a reconfigurable ion-sensitive field-effect transistor (R-ISFET) architecture. The device incorporates Ni-silicide Schottky barrier source/drain (S/D) contacts, enabling ambipolar conduction and bidirectional turn-on behavior for both p-type and n-type configurations. Channel polarity is dynamically controlled via the program gate (PG), while the control gate (CG) suppresses leakage current, enhancing operational stability and energy efficiency. A dual-control-gate (DCG) structure enhances capacitive coupling, enabling sensitivity beyond the Nernst limit without external amplification. The extended-gate (EG) architecture physically separates the transistor and sensing regions, improving durability and long-term reliability. Electrical characteristics were evaluated through transfer and output curves, and carrier transport mechanisms were analyzed using band diagrams. Sensor performance—including sensitivity, hysteresis, and drift—was assessed under various pH conditions and external noise up to 5 Vpp (i.e., peak-to-peak voltage). The n-type configuration exhibited high mobility and fast response, while the p-type configuration demonstrated excellent noise immunity and low drift. Both modes showed consistent sensitivity trends, confirming the feasibility of complementary sensing. These results indicate that the proposed R-ISFET sensor enables selective mode switching for high sensitivity and robust operation, offering strong potential for next-generation biosensing and chemical detection. Full article
(This article belongs to the Section Electrochemical Devices and Sensors)
Show Figures

Figure 1

22 pages, 5844 KB  
Article
Scaling, Leakage Current Suppression, and Simulation of Carbon Nanotube Field-Effect Transistors
by Weixu Gong, Zhengyang Cai, Shengcheng Geng, Zhi Gan, Junqiao Li, Tian Qiang, Yanfeng Jiang and Mengye Cai
Nanomaterials 2025, 15(15), 1168; https://doi.org/10.3390/nano15151168 - 28 Jul 2025
Cited by 2 | Viewed by 1456
Abstract
Carbon nanotube field-effect transistors (CNTFETs) are becoming a strong competitor for the next generation of high-performance, energy-efficient integrated circuits due to their near-ballistic carrier transport characteristics and excellent suppression of short-channel effects. However, CNT FETs with large diameters and small band gaps exhibit [...] Read more.
Carbon nanotube field-effect transistors (CNTFETs) are becoming a strong competitor for the next generation of high-performance, energy-efficient integrated circuits due to their near-ballistic carrier transport characteristics and excellent suppression of short-channel effects. However, CNT FETs with large diameters and small band gaps exhibit obvious bipolarity, and gate-induced drain leakage (GIDL) contributes significantly to the off-state leakage current. Although the asymmetric gate strategy and feedback gate (FBG) structures proposed so far have shown the potential to suppress CNT FET leakage currents, the devices still lack scalability. Based on the analysis of the conduction mechanism of existing self-aligned gate structures, this study innovatively proposed a design strategy to extend the length of the source–drain epitaxial region (Lext) under a vertically stacked architecture. While maintaining a high drive current, this structure effectively suppresses the quantum tunneling effect on the drain side, thereby reducing the off-state leakage current (Ioff = 10−10 A), and has good scaling characteristics and leakage current suppression characteristics between gate lengths of 200 nm and 25 nm. For the sidewall gate architecture, this work also uses single-walled carbon nanotubes (SWCNTs) as the channel material and uses metal source and drain electrodes with good work function matching to achieve low-resistance ohmic contact. This solution has significant advantages in structural adjustability and contact quality and can significantly reduce the off-state current (Ioff = 10−14 A). At the same time, it can solve the problem of off-state current suppression failure when the gate length of the vertical stacking structure is 10 nm (the total channel length is 30 nm) and has good scalability. Full article
(This article belongs to the Special Issue Advanced Nanoscale Materials and (Flexible) Devices)
Show Figures

Figure 1

11 pages, 3461 KB  
Article
Magnetotransport Measurements in Overdoped Mn:Bi2Te3 Thin Films
by Angadjit Singh, Varun S. Kamboj, Crispin H. W. Barnes and Thorsten Hesjedal
Crystals 2025, 15(6), 557; https://doi.org/10.3390/cryst15060557 - 11 Jun 2025
Viewed by 1446
Abstract
Introducing magnetic dopants into topological insulators (TIs) provides a pathway to realizing novel quantum phenomena, including the quantum anomalous Hall effect (QAHE) and axionic states. One of the most commonly used 3d transition metal dopants is Mn, despite its known tendency to [...] Read more.
Introducing magnetic dopants into topological insulators (TIs) provides a pathway to realizing novel quantum phenomena, including the quantum anomalous Hall effect (QAHE) and axionic states. One of the most commonly used 3d transition metal dopants is Mn, despite its known tendency to be highly mobile and to cause phase segregation. In this study, we present a detailed magnetotransport investigation of Mn-overdoped Bi2Te3 thin films using field-effect transistor architectures. Building on our previous structural investigations of these samples, we examine how high Mn content influences their electronic transport properties. From our earlier studies, we know that high Mn doping concentrations lead to the formation of secondary phases, which significantly alter weak antilocalization behavior and suppress topological surface transport. To probe the gate response of these doped films over extended areas, we fabricate field-effect transistor structures, and we observe uniform electrostatic control of conduction across the magnetic phase. Inspired by recent developments in intrinsic topological systems such as the MnTe-Bi2Te3 septuple-layer compounds, we explore the influence of embedded ferromagnetic chalcogenide inclusions as an alternative route to engineer magnetic topological states and potentially expand the operational temperature range of QAHE-enabled devices. Full article
(This article belongs to the Special Issue Advances in Thin-Film Materials and Their Applications)
Show Figures

Figure 1

19 pages, 4266 KB  
Article
Accurate and Efficient Process Modeling and Inverse Optimization for Trench Metal Oxide Semiconductor Field Effect Transistors: A Machine Learning Proxy Approach
by Mingqiang Geng, Jianming Guo, Yuting Sun, Dawei Gao and Dong Ni
Processes 2025, 13(5), 1544; https://doi.org/10.3390/pr13051544 - 16 May 2025
Viewed by 2661
Abstract
This study proposes a novel framework integrating long short-term memory (LSTM) networks with Bayesian optimization (BO) to address process–device co-optimization challenges in trench-gate metal–oxide–semiconductor field-effect transistor (MOSFET) manufacturing. Conventional TCAD simulations, while accurate, suffer from computational inefficiency in high-dimensional parameter spaces. To overcome [...] Read more.
This study proposes a novel framework integrating long short-term memory (LSTM) networks with Bayesian optimization (BO) to address process–device co-optimization challenges in trench-gate metal–oxide–semiconductor field-effect transistor (MOSFET) manufacturing. Conventional TCAD simulations, while accurate, suffer from computational inefficiency in high-dimensional parameter spaces. To overcome this, an LSTM-based TCAD proxy model is developed, leveraging hierarchical temporal dependencies to predict electrical parameters (e.g., breakdown voltage, threshold voltage) with deviations below 3.5% compared to physical simulations. The model, validated on both N-type and P-type 20 V trench MOS devices, outperforms conventional RNN and GRU architectures, reducing average relative errors by 1.78% through its gated memory mechanism. A BO-driven inverse optimization methodology is further introduced to navigate trade-offs between conflicting objectives (e.g., minimizing on-resistance while maximizing breakdown voltage), achieving recipe predictions with a maximum deviation of 8.3% from experimental data. Validation via TCAD-simulated extrapolation tests and SEM metrology confirms the framework’s robustness under extended operating ranges (e.g., 0–40 V drain voltage) and dimensional tolerances within industrial specifications. The proposed approach establishes a scalable, data-driven paradigm for semiconductor manufacturing, effectively bridging TCAD simulations with production realities while minimizing empirical trial-and-error iterations. Full article
(This article belongs to the Special Issue Machine Learning Optimization of Chemical Processes)
Show Figures

Figure 1

13 pages, 6356 KB  
Article
Detection of Ascorbic Acid in Tears with an Extended-Gate Field-Effect Transistor-Based Electronic Tongue Made of Electropolymerized Porphyrinoids on Laser-Induced Graphene Electrodes
by Kishore Pushparaj, Lorena Di Zazzo, Valerio Allegra, Rosamaria Capuano, Alexandro Catini, Gabriele Magna, Roberto Paolesse and Corrado Di Natale
Chemosensors 2025, 13(3), 108; https://doi.org/10.3390/chemosensors13030108 - 15 Mar 2025
Cited by 2 | Viewed by 1673
Abstract
Porphyrinoids are suitable sensitive materials for potentiometric electronic tongues. In this paper, we take advantage of these properties to develop an electronic tongue using an extended-gate field-effect transistor as a signal transducer. The sensitive films were made of different porphyrins and corroles electropolymerized [...] Read more.
Porphyrinoids are suitable sensitive materials for potentiometric electronic tongues. In this paper, we take advantage of these properties to develop an electronic tongue using an extended-gate field-effect transistor as a signal transducer. The sensitive films were made of different porphyrins and corroles electropolymerized in situ onto laser-induced graphene electrodes. The electronic tongue was duly characterized with respect to ascorbic acid, a common natural antioxidant. The sensors were shown to be sensitive and selective with respect to common interferents, such as dopamine and uric acid. Finally, the sensors were tested to detect ascorbic acid in artificial tears. Full article
Show Figures

Figure 1

12 pages, 4491 KB  
Communication
Label-Free Extended Gate Field-Effect Transistor for Sensing Microcystin-LR in Freshwater Samples
by Sondavid Nandanwar, Songyi Lee, Myeongkee Park and Hak Jun Kim
Sensors 2025, 25(5), 1587; https://doi.org/10.3390/s25051587 - 5 Mar 2025
Cited by 2 | Viewed by 1997
Abstract
In this study, we developed a label-free biosensor based on aptamer-modified multi-walled carbon nanotube extended gate field-effect transistor (MWCNT-EG-FET) for easy and selective detection of microcystin-LR (MC-LR), a prominent cyanotoxin associated with liver damage, bleeding, and necrosis. EG-FET had two parts: a MOSFET [...] Read more.
In this study, we developed a label-free biosensor based on aptamer-modified multi-walled carbon nanotube extended gate field-effect transistor (MWCNT-EG-FET) for easy and selective detection of microcystin-LR (MC-LR), a prominent cyanotoxin associated with liver damage, bleeding, and necrosis. EG-FET had two parts: a MOSFET and an extended-gate Au/SiO2 electrode, which serves as the sensitive membrane. A custom-designed DNA oligonucleotide (5-NH2-C6-AN6) was used as MC-LR-targeting aptamer (MCTA). MWCNTs were functionalized with MCTA and then stably fixed on the sensitive membrane. The detection of MC-LR in freshwater was effectively achieved within 5 min by assessing the variations in electrical resistance that occur due to the selective interactions between MC-LR and MCTA. The detection limit and analytical sensitivity of the biosensor for MC-LR were found to be 0.134 ng/mL and 0.024 ng/mL, respectively. The sensitive membrane could be readily discarded if damaged, eliminating the need to replace the main transducer MOSFET. The developed sensor exhibits features such as straightforward preparation, swift response, potential for miniaturization, and ease of use, making it an attractive candidate for future integrated lab-on-chip systems for MC-LR detection in freshwater environments. Full article
(This article belongs to the Collection Sensors and Biosensors for Environmental and Food Applications)
Show Figures

Figure 1

16 pages, 3648 KB  
Article
Emerging Dual-Gate FET Sensor Paradigm for Ultra-Low Concentration Cortisol Detection in Complex Bioenvironments
by Seung-Jin Lee and Won-Ju Cho
Biosensors 2025, 15(3), 134; https://doi.org/10.3390/bios15030134 - 22 Feb 2025
Cited by 1 | Viewed by 3097
Abstract
Cortisol is a pivotal hormone regulating stress responses and is linked to various health conditions, making precise and continuous monitoring essential. Despite their non-invasive nature, conventional cortisol detection methods often suffer from inadequate sensitivity and reliability at low concentrations, limiting their diagnostic utility. [...] Read more.
Cortisol is a pivotal hormone regulating stress responses and is linked to various health conditions, making precise and continuous monitoring essential. Despite their non-invasive nature, conventional cortisol detection methods often suffer from inadequate sensitivity and reliability at low concentrations, limiting their diagnostic utility. To address these limitations, this study introduces a novel paradigm for high sensitivity cortisol detection using field-effect transistor (FET) sensors with dual-gate (DG) structures. The proposed sensor platform enhances sensitivity through capacitive coupling without requiring external circuits. Cortisol detection performance was evaluated by immobilizing monoclonal antibodies activated via 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide and N-hydroxysuccinimide onto a SnO2 thin film-based extended-gate. The results revealed a sensitivity of 14.3 mV/dec in single-gate mode, which significantly increased to 243.8 mV/dec in DG mode, achieving a detection limit of 276 pM. Additionally, the reliability and stability of the sensor were validated by evaluating drift effects, confirming its ability to provide accurate detection even in artificial saliva environments containing interfering substances. In conclusion, the DG-FET-based cortisol detection approach developed in this study significantly outperforms conventional FET-based methods, enabling precise monitoring at ultra-low concentrations. This approach holds significant potential for diverse bioassays requiring high sensitivity and reliability in complex environments. Full article
Show Figures

Figure 1

18 pages, 2946 KB  
Article
Integrating an Extended-Gate Field-Effect Transistor in Microfluidic Chips for Potentiometric Detection of Creatinine in Urine
by Dhaniella Cristhina De Brito Oliveira, Fernando Henrique Marques Costa, Renato Massaroto Beraldo, José Alberto Fracassi da Silva and José Alexandre Diniz
Sensors 2025, 25(3), 779; https://doi.org/10.3390/s25030779 - 28 Jan 2025
Cited by 3 | Viewed by 1880
Abstract
Monitoring creatinine levels in urine helps to recognize kidney dysfunction. In this research, we developed a photocurable membrane for the detection of serum creatinine. Using a system based on field-effect transistors, we carried out creatinine quantification in synthetic urine. The device was able [...] Read more.
Monitoring creatinine levels in urine helps to recognize kidney dysfunction. In this research, we developed a photocurable membrane for the detection of serum creatinine. Using a system based on field-effect transistors, we carried out creatinine quantification in synthetic urine. The device was able to cover values between 3 and 27 mmol L−1. The current sensitivity was 0.8529 (mA)1/2 mmol−1 L with 91.8% linearity, with the LOD and LOQ being 5.3 and 17.5 mmol L−1, respectively. The voltage sensitivity was 0.71 mV mmol−1 L with a linearity of 96.2%, with the LOD and LOQ being 4.2 and 14.0 mmol L−1, respectively. These data were obtained under flow conditions. The system performed very well during the measurements, with a hysteresis of about 1.1%. Up to 90 days after manufacture, the sensor still maintained more than 70% of its initial response. Even when used periodically during the first week and then stored unused at −18 °C, it was able to maintain 96.7% of its initial response. The device used in the flow setup only had a useful life of three days due to membrane saturation, which was not reversible. In the interference test, the membrane was also shown to respond to the urea molecule, but in a different response window, which allowed us to discriminate urea in synthetic urine. EGFETs can be used to identify variations in the creatinine concentration in urine and can help in therapeutic decision-making. Full article
(This article belongs to the Special Issue 3D Printed Sensors: Innovations and Applications)
Show Figures

Figure 1

13 pages, 4278 KB  
Article
Flexible and Disposable Hafnium Nitride Extended Gates Fabricated by Low-Temperature High-Power Impulse Magnetron Sputtering
by Chia-Ming Yang, Chao-Hui Wei, Jia-Yuan Chang and Chao-Sung Lai
Nanomaterials 2024, 14(14), 1191; https://doi.org/10.3390/nano14141191 - 12 Jul 2024
Cited by 2 | Viewed by 1954
Abstract
To obtain a high-performance extended gate field-effect transistor for pH detection, hafnium nitride (HfN) was first fabricated on an indium tin oxide on polyethylene terephthalate (ITO/PET) substrate using a high-power impulse magnetron sputter system (HiPIMS) in this study. It can be easily applied [...] Read more.
To obtain a high-performance extended gate field-effect transistor for pH detection, hafnium nitride (HfN) was first fabricated on an indium tin oxide on polyethylene terephthalate (ITO/PET) substrate using a high-power impulse magnetron sputter system (HiPIMS) in this study. It can be easily applied in biomedical diagnostic and environmental monitoring applications with the advantages of flexible, disposable, cost-effective, and reliable components. Various duty cycle conditions in HiPIMSs were designed to investigate the corresponding sensing performance and material properties including surface morphology and composition. As the duty cycle increased, the grain size of HfN increased. Additionally, X-ray photoelectron spectroscopy (XPS) analysis illustrated the presence of HfOxNy on the deposited HfN surface. Both behaviors could result in a better pH sensing performance based on the theory of the site-binding model. Subsequently, HfN with a 15% duty cycle exhibited excellent pH sensitivity and linearity, with values of 59.3 mV/pH and 99.8%, respectively; its hysteresis width and drift coefficient were −1 mV and 0.5 mV/h, respectively. Furthermore, this pH-sensing performance remained stable even after 2000 repeated bending cycles. These results indicate the potential and feasibility of this HiPIMS-deposited HfN for future wearable chemical applications. Full article
Show Figures

Figure 1

13 pages, 2616 KB  
Article
Enhancement of Ion-Sensitive Field-Effect Transistors through Sol-Gel Processed Lead Zirconate Titanate Ferroelectric Film Integration and Coplanar Gate Sensing Paradigm
by Dong-Gyun Mah, Seong-Moo Oh, Jongwan Jung and Won-Ju Cho
Chemosensors 2024, 12(7), 134; https://doi.org/10.3390/chemosensors12070134 - 9 Jul 2024
Cited by 4 | Viewed by 2332
Abstract
To facilitate the utility of field effect transistor (FET)-type sensors, achieving sensitivity enhancement beyond the Nernst limit is crucial. Thus, this study proposed a novel approach for the development of ferroelectric FETs (FeFETs) using lead zirconate titanate (PZT) ferroelectric films integrated with indium–tungsten [...] Read more.
To facilitate the utility of field effect transistor (FET)-type sensors, achieving sensitivity enhancement beyond the Nernst limit is crucial. Thus, this study proposed a novel approach for the development of ferroelectric FETs (FeFETs) using lead zirconate titanate (PZT) ferroelectric films integrated with indium–tungsten oxide (IWO) channels synthesized via a cost-effective sol-gel process. The electrical properties of PZT-IWO FeFET devices were significantly enhanced through the strategic implementation of PZT film treatment by employing intentional annealing procedures. Consequently, key performance metrics, including the transfer curve on/off ratio and subthreshold swings, were improved. Moreover, unprecedented electrical stability was realized by eliminating the hysteresis effect during double sweeps. By leveraging a single-gate configuration as an FeFET transformation element, extended-gate (EG) detection methodologies for pH sensing were explored, thereby introducing a pioneering dimension to sensor architecture. A measurement paradigm inspired by plane gate work was adopted, and the proposed device exhibited significant resistive coupling, consequently surpassing the sensitivity thresholds of conventional ion-sensitive field-effect transistors. This achievement represents a substantial paradigm shift in the landscape of ion-sensing methodologies, surpassing the established Nernst limit (59.14 mV/pH). Furthermore, this study advances FeFET technology and paves the way for the realization of highly sensitive and reliable ion sensing modalities. Full article
(This article belongs to the Collection pH Sensors, Biosensors and Systems)
Show Figures

Figure 1

Back to TopTop